Influences Combination of Multi-Sensor Images on Classification Accuracy
Main Article Content
Abstract
This paper focuses on two main issues; first one is the impact of combination of multi-sensor images on the supervised learning classification accuracy using segment Fusion (SF). The second issue attempts to undertake the study of supervised machine learning classification technique of remote sensing images by using four classifiers like Parallelepiped (Pp), Mahalanobis Distance (MD), Maximum-Likelihood (ML) and Euclidean Distance(ED) classifiers, and their accuracies have been evaluated on their respected classification to choose the best technique for classification of remote sensing images. QuickBird multispectral data (MS) and panchromatic data (PAN) have been used in this study to demonstrate the enhancement and accuracy assessment of fused image over the original images using ALwassaiProcess software. According to experimental result of this study, is that the test results indicate the supervised classification results of fusion image, which generated better than the MS did. As well as the result with Euclidean classifier is robust and provides better results than the other classifiers do, despite of the popular belief that the maximum-likelihood classifier is the most accurate classifier.
Keywords: Segment Fusion, Euclidean Classifier, Mahalanobis Classifier, Parallelepiped Classifier, Maximum-Likelihood, Classification.
Downloads
Article Details
COPYRIGHT
Submission of a manuscript implies: that the work described has not been published before, that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
- The journal allows the author(s) to retain publishing rights without restrictions.
- The journal allows the author(s) to hold the copyright without restrictions.