Diagnosis of Diabetes using Correlation fuzzy logic in Fuzzy Expert System
Main Article Content
Abstract
Fuzzy expert system framework constructs large scale knowledge based system effectively for diabetes. Fuzzy Expert System helps the medical practitioners to solve decision problem. The components of correlation fuzzy determination mechanism are determination logic and knowledge base. The fuzzification interface converts the crisp values into fuzzy values for the diagnosis of diabetes. The determination logic evaluates the effect on the number of membership functions, the shape of membership functions and the effect of fuzzy operators. Correlation fuzzy logic is computed for fuzzy numbers and membership function. Knowledge base is constructed by fuzzy if-then rules. Defuzzification interface converts the resulting fuzzy set into crisp values. The result of the proposed method is compared with earlier method using accuracy as metrics. The proposed fuzzy expert system can work more effectively for diabetes application and also improves the accuracy of fuzzy expert system.
Keywords: Fuzzy Expert System, Correlation Fuzzy Determination Mechanism, determination logic, knowledge base, Diabetes application.
Downloads
Article Details
COPYRIGHT
Submission of a manuscript implies: that the work described has not been published before, that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
- The journal allows the author(s) to retain publishing rights without restrictions.
- The journal allows the author(s) to hold the copyright without restrictions.