A Robust Segmentation Method for Iris Recognition
Main Article Content
Abstract
In this paper, a new iris Segmentation method is presented. An iris recognition system acquires a human eye image, segments the iris region from the rest of the image, normalizes this segmented image and encodes features to get a compact iris template. Performance of all subsequent stages in an iris recognition system is highly dependent on correct detection of pupil-iris and iris-sclera boundaries in the eye images. In this paper, we present one such system which finds pupil boundary using image gray levels but uses Canny edge detection and Hough transform to locate iris boundary. Experiments are done on CASIA database of 756 iris images of 108 different persons with both left and right eyes images available per person. Experimental evaluation shows that the proposed system is accurate and efficient enough for real life applications. We are able to detect iris boundary almost 99.20% accurately with the proposed approach.   Keywords: Iris, Segmentation, Hough Transform, Canny, Hamming distance.A Robust Segmentation Method for Iris Recognition
Downloads
Download data is not yet available.
Article Details
Section
Articles
COPYRIGHT
Submission of a manuscript implies: that the work described has not been published before, that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
- The journal allows the author(s) to retain publishing rights without restrictions.
- The journal allows the author(s) to hold the copyright without restrictions.