Evaluating the Effectiveness of Generic Personalized WebSearch
Main Article Content
Abstract
Although personalized search has been under way for many years and many personalization algorithms have been investigated, it is still unclear whether personalization is consistently effective on different queries for different users and under different search contexts. In this paper, we study this problem and provide some findings. We present a large-scale evaluation framework for personalized search based on query logs and then evaluate five personalized search algorithms (including two click-based ones and three topical-interest-based ones) using 12-day query logs of Windows Live Search. By analyzing the results, we reveal that personalized Web search does not work equally well under various situations. It represents a significant improvement over generic Web search for some queries, while it has little effect and even harms query performance under some situations. We propose click entropy as a simple measurement on whether a query should be personalized. We further propose several features to automatically predict when a query will benefit from a specific personalization algorithm. Experimental results show that using a personalization algorithm for queries selected by our prediction model is better than using it simply for all queries. Index Terms—Web search, personalization, information filtering, performance evaluation.
Â
Â
Keywords: rodents,prediction,entropy,click-based ,semiambiguous,affinities,topical
Downloads
Article Details
COPYRIGHT
Submission of a manuscript implies: that the work described has not been published before, that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
- The journal allows the author(s) to retain publishing rights without restrictions.
- The journal allows the author(s) to hold the copyright without restrictions.