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Abstract: The advent of the digital era increased the use of social media platforms such as X, which has also become a platform
where humans express their emotions and generate a large volume of complex emotional data. This research explores artificial
intelligence (Al) applications, especially natural language processing (NLP), for emotion detection in text on social media platforms.
Advanced classifiers like SVM, RNN, LSTM, CNN, and GRU are used to study the performance and identify emotion spectrums
beyond binary sentiment analysis. Comparative analysis of before and after optimization outcomes shows the significance of
hyperparameter tuning and cross-validation in enhancing the model metrics like accuracy and F1-score. GRU is the top after post-
optimization, with 93.10% accuracy and outstanding generalization. On the other hand, CNN is also strong, with 92.44%. Based on
this, the significance of optimization techniques is figured out. Thus, GRU and CNN are optimal options for emotion detection on
X because the platform gives strong support to mental health, marketing and public sentiment analysis.
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I. INTRODUCTION

The digital age brought about the proliferation of social
media platforms like Facebook, Instagram, and X (formerly
known as Twitter). These, among many others, are now part of
how people emote, opine and think. The platforms generate a
large volume of text data daily, including capturing many
emotional expressions with a unique opportunity for massive
analysis of human behavior [1]. This array of data generated
empowers researchers with the know-how of real-time
emotional study and the application of insights across boards,
such as its application in mental health, marketing, and social
research.

The development of artificial intelligence (AI) has changed
how data is analyzed and interpreted by researchers, especially
when it comes to how humans interact [2]. For instance, [2]
further states that Al has computational power and top-notch
algorithms needed to process voluminous text data efficiently. A
major advancement in this is the deployment of Natural
Language Processing (NLP). This is one of the most specialized
parts of Al, whose focus is to enable machines to understand,
interpret and generate data as humans do [3]. As shown in the
findings of [4], NLP bridges the gap between human
communication and machine learning systems, changing
unstructured and spurious text data to structured ones that
machines can easily process and analyze.

Although past studies such as [5], [6], [7], explored emotion
detection on social media platforms, their focus was basically on
binary sentiment analysis, which groups content as positive or
negative sentiments. Human emotions are complex, consisting
of a broad spectrum such as anger, fear, happiness, sadness, and
surprise [8].

X, as a social media platform, is crucial to individuals’
emotional expressions, opinion sharing and communication [9].
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The large expanse of data generated by the platform is an
opportunity for researchers to explore variability in human
emotions at a larger scale. No doubt, different studies have been
done a lot in the past on the subject matter. However, the focus
was on binary sentiment analysis [10], [11]. This kind of analysis
oversimplifies the inherent complexities in human emotions,
especially because emotions need a more robust detection
framework for analysis and drawing of conclusions [12]. Thus,
the existing studies have not addressed the inherent challenges
in informal, context-dependent languages usually used in social
media.

Also, the tools and methodologies deployed by researchers
for emotion detection in social media are not rigorous in terms
of the effectiveness of their classifiers [13] and they have not
succeeded in harnessing the potential of Al-driven models like
Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), and Long Short-Term Memory (LSTM).
Therefore, a sophisticated framework that integrates a robust
framework for a thorough evaluation of classifiers is imperative
to address these gaps. Hence, this study.

The research questions for this study are as follows:

e  Which classifier (SVM, RNN, LSTM, CNN, or GRU)
provides the most accurate and reliable results for emotion
detection in social media text combined with a robust data
preprocessing pipeline?

e In what ways can hyperparameter tuning strengthen the Al-
based emotion detection system's performance and
scalability if applied in different industries?

Since binary sentiment analysis is limited, this study,
therefore, advances academic research by introducing a robust
framework to detect a wider range of emotions in social media
text. It, therefore, contributes to the growth of the body of
knowledge in Al, NLP and social media analytics. The study is
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also significant in that there are real-time implications in
different fields; for instance, this study helps early detection of
emotional distress to provide prompt intervention. Also, the
emotion-based analysis of consumer sentiment can enhance
targeted marketing strategies.

The contributions of this study are provided below.

o Classifier evaluation: The current study compares CSS,
RNN, LSTM, CNN, and GRU classifiers to discover which
is most effective for detecting emotion in social media text.

e Performance optimization: Comprehensive solutions can be
provided for processing spurious and context-dependent
data, as hyperparameter tuning can enhance the classifier's
accuracy and scalability.

o Real-world applications: The researcher shows practical case
studies of how the subject matter is applied to conduct
mental health, marketing, and public sentiment analysis.
This way, academic research can meet the needs of
industry.

II. LITERATURE REVIEW

A. Approaches to emotion detection

Detecting emotions from text encompasses the identified and
classified emotional expression found in the written text [14].
Over time, researchers were able to use different approaches,
such as traditional machine learning, deep learning models, and
specialized classifiers, and each of these had its inherent benefits
and weaknesses [15].

Machine Learning Approaches

This approach is one of the early efforts of emotion detection,
which depended on machine learning techniques like Support
Vector Machines (SVM), Naive Bayes, and Random Forests
[14], [16]. These models needed to be handcrafted with features
obtained from sentiment lexicons, n-grams, and Part-of-Speech
(POS) tagging [17]. Although they were effective for structured
datasets, their limitations are due to overdependence on set rules
and feature engineering; as such, their adaptability to informal
and diverse social media text is limited [18].

For instance, SVM is robust for binary classification tasks
and small datasets; however, it does not do well with
voluminous, high-dimensional datasets, which social media
generates [19]. Naive Bayes, on the other hand, despite its
computational efficiency, still does not perform efficiently when
capturing context and sequential dependencies in text [20].
These limitations are felt more in spurious and unstructured text
due to the presence of slang, emojis and abbreviations, limiting
its overall performance.

Deep Learning Approaches

This model has changed the way emotions are detected, as it
mitigated the need for complex feature engineering. It is the type
that performs well at identifying inherent complex patterns in
text [21]. Architectures like Recurrent Neural Networks (RNN),
Long Short-Term Memory (LSTM) networks, and
Convolutional Neural Networks (CNN) have performed
excellently [22].

e RNNand LSTM: These models perform well with sequential
data such as text. They retain contextual information across
time steps [23]. LSTM networks tackle the issue of
vanishing gradients in standard RNNs; because of this, they
are highly effective in identifying long-term dependencies
[24]. For example, LSTM understands emotional context in
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sentences where different words are implied, such as “I’'m
not happy about the outcome.”

e CNN: At first, this model only processed images
traditionally. However, due to advancements, it now
classifies text through pattern identifications in n-grams and
hierarchical feature extraction [25]. CNNs are highly
effective when it comes to detecting text with local
dependencies [26].

o Transformer-based models: BERT and GPT-3 are two of the
advanced models in this field. They use attention
mechanisms to identify global dependencies in text [27].
These models perform effectively when identifying
language complexities like sarcasm and ambiguity, which
are prevalent on social media.

Deep learning models are unique because they are effective
with transfer learning. They can also fine-tune the pre-trained
models on specific datasets, enhancing task performance
significantly even if the labeled data is limited.

Specialized Classifiers

Contextual Semantic Similarity (CSS) and Gated Recurrent
Unit (GRU) are significant examples of emerging specialized
classifiers, and they have brought another dimension and level
of sophistication into emotion detection [28]. Their focus is on
semantic relationships and vector-based representations of text,
which offer comprehensive performance in unstructured and
diverse datasets [29].

e CSS: CSS identifies and captures subtle emotional
expressions inherent in text by emphasizing contextual
understanding. For example, it can distinguish between the
expression of sadness and happiness even when expressed
in the same words [30], for instance, “I’m crying” (sadness)
and “I'm crying tears of joy” (happiness) because of its
ability to analyze a broader context semantically.

e GRU: GRU uses gating mechanisms for efficient capturing
of sequential dependencies in text data, which then makes it
appropriate for the identification of emotional group. The
use of bidirectional layers makes GRU process input
sequences from different directions, which enhances its
identification ability for emotional patterns. Its ability to
handle different sentence structures and style makes it more
effective, which is an added advantage for social media data
analysis, where tone and expression significantly varies
[31].

B. Applications of Emotion Detection

Emotion detection has become crucial to research due to its
application in different domains of study. The findings of
emotional expression analysis in text data can present insightful
information on how individuals and groups behave. Thanks to
emotion detection systems, areas such as healthcare and business
intelligence have become more impactful. For instance,

Mental health monitoring: The emotion detection system can
unravel underlying mental health issues in people based on their
social media posts and messages [32]. Thus, negative trends in
emotional expressions can be promptly identified. Also,
government and health organizations use the system for
emotional health assessment during pandemics or major
disasters [33]. Emotion-aware chatbots can be integrated into
mental health platforms to provide empathetic and personalized
support [34].
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Marketing and consumer insights: Business organizations
can use emotion detection systems to analyze customer
sentiment [35]. The findings from such analysis can be used to
develop an optimized strategy. Information from social media
reviews can be leveraged to measure consumer satisfaction and
address their concerns [36]. Also, tailored campaigns can be
used to evoke excitement, a positive emotion that enhances
buying intention.

Public sentiment monitoring: Government and other
policymakers can better understand people’s opinions on various
issues affecting them using an emotion detection system [37].
For instance, sentiment during special events like elections and
strike actions can be easily analyzed to get real-time information.
Also, policymakers with the system can easily assess the
emotional response to policies and attendant issues. The findings
of such analysis can be used to refine people-friendly strategies.

Education and E-learning: In this field, the emotion detection
system adds and enhances personalized learning experiences,
improving student performance. For instance, the system can
identify if students are bored or frustrated with content delivery
[38]. This may mean the content needs to be augmented so they
can understand better. Also, e-learning platforms leverage
emotion-aware Al to streamline content and pace using students'
emotional states. This promotes enhanced comprehension and
facilitates retention [39].

The versatility of emotion detection tools has far-reaching
applications in different domains. Incorporating the information
generated into human emotions helps with making an informed
decision, enhances user experiences, and contributes to the well-
being of society [40]. Continuous development in the field and
advancements in Al and NLP will still refine emotion detection
systems, expanding their applicability and impact [41].

C. Performance Optimization

The optimization of emotion detection system performance
is critical in ensuring the system’s accuracy, efficiency, and
scalability, especially when it comes to spurious and
unstructured social media data [42]. Performance optimization
is all about model architecture enhancement, hyperparameter
fine-tuning, and leveraging advanced techniques to improve
evaluation metrics like accuracy, precision, recall, and F1-score
[43].

1. Importance of Optimization in Emotion Detection

The emotion detection model is operational on voluminous
and complex datasets whose features are informal language,
abbreviations, emojis, and contextual ambiguity [44]. Models
may be unable to generalize effectively without optimization,
which could result in poor performance classification [44]. Some
of the features of performance optimization include:

. High accuracy: The system correctly classifies anger,
happiness, sadness, and surprise, which are mixed emotions, in
different text inputs [45].

. Efficiency: It reduces computational overhead in real-
time social media stream processing [45].

. Scalability: The model can handle large datasets
without affecting performance [46].

2. Hyperparameter Tuning

This is crucial to machine and deep learning model
optimization. It encompasses parameter adjustments that control
the learning process and enhance the model's performance [47].
Common hyperparameters in the system include:

©2023-2025, IJARCS All Rights Reserved

e Learning rate: This determines the step size in the
algorithmic gradient descent. An effectively optimized
learning rate would ensure rapid convergence without over
flogging the solutions provided [48].

e Batch size: This controls the volume of training examples
deployed into an iteration. Even though smaller batch sizes
may sometimes be spurious, they provide faster feedback
[48]. Large batches, on the other hand, are stable but take
more time to compute.

e Dropout Rate: This is about dropout regulation in neural
networks for prevention of the problem of overfitting by
randomly deactivating neurons during training [48].

e The number of layers and neurons determines the model’s
complexity. For example, adding layers in RNNs and
LSTMs could enhance the model's ability to identify
temporal dependencies, yet the risk of overfitting could rise
[22].

Techniques for Hyperparameter Tuning:

Grid search: This is a systematic search using predefined
hyperparameter values. It is expensive to compute; however, if
successfully done, it makes the system comprehensive [47].

Random search: The system chooses hyperparameter
combinations at random, which makes it better than grid search
[47].

Bayesian Optimization: The system uses probabilistic
models to predict hyperparameter combination performance,
reducing the number of iterations needed [48].

Automated tuning: Optuna and Hyperopt tools can automate
the tuning process, which uses advanced algorithms to identify
optimal configurations [48].

Research Gap

Many studies explored different approaches to emotion
detection; however, significant gaps remain in addressing social
media text's inherent complexities and unique challenges.
Machine learning frameworks like SVM and Naive Bayes still
struggle with the informal nature of social media data, which
includes slang, emojis and abbreviations. LSTM and CNN are
advanced fields of deep-learning models that can reduce the need
for extensive feature engineering and the identification of long-
term dependencies. Yet, there are limitations in understanding
context-dependent emotional expressions, like sarcasm or subtle
changes in sentiments.

Furthermore, models such as BERT and GPT-3 enhance the
capabilities of identification of global dependencies and
handling language complexities; their applications to different
unstructured datasets have not been explored fully, especially
with multilingual contexts. Developing specialized classifiers
such as CSS and GRU is promising as they are effective across
large-scale datasets. However, they still need further validation,
which current literature often overlooks, particularly how
hyperparameter tuning impacts the real-world application of
emotion detection systems, like the scalability and
computational efficiency of processing real-time social media
streams.

III. METHOD

This study underscores the transformative impact of Al-
driven emotion detection on X. Prior to optimization, SVM was
the best-performing model because of'its accuracy, F1 score, and
specificity. However, post-optimization using hyperparameter
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tuning and cross-validation, CNN emerged as the best-
performing model, achieving the highest accuracy and showing
comprehensive generalization capabilities. These findings
highlight the importance of optimization strategies for model
performance enhancement, especially when it comes to handling
imbalanced datasets and complex emotional classifications.

This study focuses on 7 major steps to complete emotional
detection.

Step 1-Data Loading
and Inspection

N

Step 3-Sentimen
Analysis and
Visualization

Step 2-Data Cleaning and
Preparation

Step 4- Model Specific
Preprocessing

Step 5- Model Implementation and
Training

Step 6- Model Optimization
using Hyperparameter Tuning
and Cross validation

Fig 1. Methodology

The complete information about the steps completed is
provided below.

Step 1: Data Loading and Inspection

pd.read_csv() function is used to load the dataset. This allows
for proper structural and content exploration. The first ten rows
are the data snapshot, so row counts indicate successful loading.
Doing this strengthens familiarity with how the dataset is
composed prior to processing. The dataset was downloaded from
Kaggle [49].

Step 2: Data Cleaning and Preparation

Tweet _id is an example of unnecessary columns that are
dropped to focus on suitable attributes such as content and
sentiment. For dataset integrity, missing values are removed.
Also, redundancy that can alter the results is identified and
eliminated from the duplicate rows. The summary of the data
cleaning is provided below.

First 1@ rows of the dataset:
Unnamed: @ text label

i just feel really helpless and heavy hearted

ive enjoyed being able to slouch about relax a...
i gave up my internship with the dmrg and am f...
i dont know i feel so lost

i am a kindergarten teacher and i am thoroughl...
i was beginning to feel quite disheartened

i would think that whomever would be lucky eno...
i fear that they won t ever feel that deliciou...
im forever taking some time out to have a lie ...
i can still lose the weight without feeling de...

WO NGOV EWNREO®
VNGOV A WNRE®
QU R N®ROPLP

Data cleaning summary:
Number of rows after cleaning: 416123
Columns in the dataset: ['text', 'label']

Step 3: Sentiment Analysis and Visualization

At the post-dataset cleaning, analysis is conducted to
understand the sentiment’s frequency and distribution. Each
sentiment occurrence is counted while its percentage values are
calculated. With a bar chart, the result is visualized for sentiment
prevalence highlight, which helps with the interpretation.

The dataset distribution can be seen in the figure below.
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Fig 2. Dataset Distribution

There is a significant level of class imbalance relative to the
sentiments in the data distribution. With more than 140000
samples, Joy had the highest representation, followed by Sad
with 120000 samples. Anger and fear had 58000 and 50000
samples respectively, so they were moderately represented.
Love had 35000 samples, while Surprise had 15000 samples.
This imbalance shows that the model requires class weighting,
oversampling, or undersampling as techniques needed for fair
learning in all categories of sentiments.

Step 4: Model-Specific Preprocessing

The transformation of text data into a suitable numerical
format for each machine-learning model is needed. The
TfidfVectorizer changes SVM text into TF-IDF features, which
identify the word's relevancy. RNN, CNN, LSTM and GRU text
are tokenized into sequences for deep learning models to
optimize the data for model architecture.

Step 5, and step 6 information is provided in the next section.

IV. MODEL EXPLANATION

A. Model 1 - Support Vector Machine (SVM)

SVM is a supervised machine learning algorithm that
classifies and executes regression tasks. Its effectiveness can
also be seen in text-based sentiment analysis because it has the
ability to work well with high-dimensional data using kernel
functions, even if the dataset is limited. This model is effective
with binary or multi-class emotional classification tasks,
particularly if emotional data is a feature represented as vectors
that are derived from images, text and voice. The pseudocode for
the SVM model implemented before optimization can be seen
below.

Algorithm for Model 1 — SVM model implementation before
optimization
Input
Training data: X_train_tfidf, y_train_tfidf
Test data: X test tfidf, y test tfidf
Output
Evaluation metrics: Accuracy, Precision, Recall, F1-Score, Confusion
matrix visualization
1.  # Initialize SVM Model
svm_model < LinearSVC(C = 1.0, max_iter = 50000, dual =
False)
# Train the SVM Model
svm_model. fit(X_train_tfidf,y_train_tfidf)
# Predict on Test Data
y_pred_svm « svm_model.predict(X_test_tfidf)
# Compute Confusion Matrix
conf_matrix « confusion_matrix(y_test_tfidf,y_pred_svm)

N

PN e W
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9.  # Compute Evaluation Metrics

10. accuracy « accuracy_score(y_test_tfidf,y_pred_svm)

11. precision,recall, f1,_ «
precision_recall_fscore_support(y_test_tfidf,y_pred_svm, avei
” weighted” )

Optimization of SVM

1. # Select a Sample of the Dataset
sample_fraction < 0.5
3.  X_sample,_,y_sample, _ «
train_test_split(X,y, train_size =
sample_fraction, stratify = y)
4.  # Create a Pipeline for Text Preprocessing, Classification

5. pipeline « Pipeline([

6. ('tfidf', TfidfVectorizer(stop_words =
‘english',ngram_range = (1,3))),

7. ('svd’, TruncatedSVD (random_state = 42)),

8. ('sgd',SGDClassifier(random_state = 42))

o

10. # Define Hyperparameter Grid

11. param_grid < {

12.  'tfidf _max_features’: [10000,11000],

13. "tfidf _min_df': [5,7],

14. "tfidf_max_df": [0.8,0.9],

15. 'svd_n_components': [250,350],

16.  'sgd_alpha': [0.0001,0.001],

17.  'sgd_penalty’: ['12', elasticnet’],

18.  'sgd_loss": ['hinge','log']

19. }

20. # Perform Cross — Validation with Grid Search

21. grid_search « GridSearchCV (pipeline,param_grid, cv =
2,scoring = accuracy’ ,verbose = 1)

22. grid_search. fit(X_sample,y_sample)

23. # Train — Test Split for Evaluation

24, X_train,X_test,y_train,y_test «
train_test_split(X_sample, y_sample, test_size =
0.2, stratify = y_sample)

25. # Train and Evaluate the Best Model

26. best_model < grid_search.best_estimator_

27. best_model. fit(X_train, y_train)

28. y_pred « best_model.predict(X_test)

29. # Calculate Performance Metrics

30. svm_accuracy « accuracy_score(y_test,y_pred)

31. svm_cm « confusion_matrix(y_test,y_pred)

32. svm_precision, svm_recall, svm_fscore, _ «
precision_recall_fscore_support(y_test,y_pred, average =
” weighted” )

The optimization of this model was done with pipeline that
combines TF-IDF vectorization, reduced dimensionality with
Truncated SVD and SGDClassifier-induced classification. All
three stages of hyperparameters, there were some fine-tuning
which uses grid search for performance maximization. Some of
the components of TF-IDF parameters are the number of
features (max_features), minimum document frequency
(min_df), and maximum document frequency (max_df), which
ensure retention of relevant terms while at the same time
excludes overly common or rare terms. SVD parameters like the
number of components (n_components) were tuned for
dimensionality  reduction and information retention.
Regularization strength (alpha), penalty types (12, elasticnet),
and loss functions (hinge, log) were explored for the
SGDClassifier for classification optimization.

Hyperparameters combination was evaluated with cross-
validation grid search to identify the best-performing
configuration. The sub-dataset was used for efficiency, and to
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stratify sampling that is maintained by class balance. The
evaluation of the best model was done using different test sets to
achieve enhanced performance with high accuracy, precision,
recall, and F1-score. The optimization of SVM model revealed
thorough generalization while it effectively captures important
patterns inherent in the data. This was validated with confusion
matrix visualization and classification metrics.

B. Recurrent Neural Network (RNN)

This belongs to a class of neural networks, and it is designed
to recognize data patterns that are arranged sequentially.
Because of the “memory,” RNNs can recall the inputs from
previous connections. RNNs model temporal dependencies;
therefore, they are suitable for emotional tone analysis. The
pseudocode for the RNN model implemented before
optimization can be seen below.

Algorithm for Model 2 — RNN model implementation before
optimization
Input
Training data: X_train, y_train
Test data: X test, y test
Output
Evaluation metrics: Accuracy, Loss, Confusion Matrix Visualization
1.  # Initialize RNN Model

2. model « Sequential(|

3. Embedding (input_dim = max_words, output_dim =
128, input_length = max_len),

4. LSTM (128, return_sequences = True),

5. Dropout(0.2),

6. LSTM(64),

7. Dropout(0.2),

8. Dense(32, activation = 'relu’),

9. Dense(len(sentiments), activation = 'softmax")

10. D

11. # Compile the RNN Model

12. model.compile(optimizer = 'adam’,

13. loss = 'sparse_categorical_crossentropy’,
14. metrics = ['accuracy'])

15. # Train the RNN Model

16. epochs « 3

17. batc/_size < 32

18. ‘Zistory < model. fit(X_train,y_train,

19. epochs = epochs,
20. batch_size = batch_size,
21. validation_data = (X_test,y_test))

22. # Evaluate the RNN Model

23. test_loss, test_accuracy < model.evaluate(X_test,y_test)
24. # Generate Predictions

25. y_pred « np.argmax(model.predict(X_test), axis = —1)
26. # Compute Confusion Matrix

27. cm « confusion_matrix(y_test,y_pred)

Optimization of RNN

# Initialize Stratified k — Fold Cross — Validation
fold « 1
cv_accuracies « ||
# Perform Stratified k — Fold Cross — Validation
For train_index, val_index in kfold. split(X_padded, y) do
Print "Training fold" + fold
fold « fold + 1
# Split the data into training and validation sets
X _train, X_val <
X_padded|[train_index], X_padded|[val_index]
10. y_train,y_val < y.iloc[train_index],y.iloc[val_index]
11. # Build the RNN Model
12. model « Sequential([
13. Embedding (input_dim = max_words, output_dim =
embedding_dim, input_length = max_len),
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14. Bidirectional (LSTM (128, return_sequences = True)),
15. Dropout(0.3),

16. Bidirectional (LSTM (64)),

17. Dropout(0.3),

18. Dense(128, activation = 'relu’),

19. Dropout(0.3),

20. Dense(64, activation = 'relu’),

21. Dense(len(y.unique()), activation = 'softmax")
22. D

23. # Compile the Model

24. optimizer « Adam(learning_rate = learning_rate)
25. model. compile(optimizer = optimizer,

26. loss = 'sparse_categorical_crossentropy’,

27. metrics = ['accuracy'])

28. # Early Stopping Callback
29. early_stopping < EarlyStopping(monitor =
’ val_loss” ,
30. patience = 3,
31. restore_best_weights = True)
32. # Train the Model
33. history « model. fit(

34, X_train, y_train,
35. epochs = epochs,
36. batch_size = batch_size,
37. validation_data = (X_val,y_val),
38. callbacks = [early_stopping],
39. verbose = 1
40. )
41. # Evaluate the Model on Validation Set
42. val_loss,val_accuracy «
model. evaluate(X_val,y_val, verbose = 0)
43. Append val_accuracy to cv_accuracies

The RNN model was hyperparameter tuned and cross-
validated to optimize its performance and generalization. LSTM
units 128 and 64, 30% rate of dropout, batch size, learning and
embedding dimensions are the chosen hyperparameters for
iterative experimentation to create an accurate balance and
computational efficiency. Not only that, the Adam optimizer’s
rate of learning was also fine-tuned for enhanced convergence
without loss minima overshooting.

To divide K-fold, cross-validation was deployed for the
evaluation of the robustness of the model across series of sub-
datasets. This approach accurately validated each of the folds, to
ensure the performance of the model did not rely totally on a
certain training-validation divides. The accurate mean cross-
validation showed the level of consistency and reliability of the
model. Also, quick stopping while the training hold can further
strengthen the performance by stopping the training when
validation loss stopped to improve, prevent, overfit and save
computational resources. Such integrative techniques could
bring about a efficiently generalized RNN model.

C. Long Short-Term Memory (LSTM)

They use a gating mechanism to control the flow of
information. They are now able to tackle the vanishing gradient
problems in standard RNNs. LSTMs identify complex
emotional patterns in text or speech with long sequences.

Algorithm for Model 3 — LSTM model implementation before
optimization
Input
Training data: X_train, y_train
Test data: X test, y_test
Output
Evaluation metrics: Accuracy, Loss, Confusion Matrix Visualization

1.  # Initialize LSTM Model
2. Istm_model « Sequential(]
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3. Embedding (input_dim = max_words, output_dim =
128, input_length = max_len),
4, LSTM (128, return_sequences = True),
5. Dropout(0.2),
6. LSTM(64),
7. Dropout(0.2),
8. Dense(32, activation = 'relu’),
9. Dense(len(sentiments), activation = 'softmax")
10. D
11. # Compile the LSTM Model
12. Istm_model.compile(optimizer = 'adam’,
13. loss = 'sparse_categorical_crossentropy’,
14. metrics = ['accuracy'])
15. # Train the LSTM Model
16. epocks « 3
17. batc/_size « 32
18. Istm_zistory < Istm_model. fit(X_train,y_train,
19. epochs = epochs,
20. batch_size = batch_size,
21. validation_data = (X_test, y_test))
22. # Evaluate the LSTM Model
23. lIstm_test_loss,lstm_test_accuracy «
Istm_model. evaluate(X_test, y_test)
24. # Generate Predictions for LSTM
25. y_pred_lstm «
np. argmax(Istm_model. predict(X_test), axis = —1)
26. # Compute Confusion Matrix
27. Istm_cm < confusion_matrix(y_test,y_pred_lstm).
Optimization of LSTM
1. #Initialize Stratified k — Fold Cross — Validation
2. fold « 1
3. cv_accuracies « []
4. # Define Learning Rate Scheduler
5. Function lr_scheduler(epoch, lr):
6. If epoch > 5 then
7. Returnlr * 0.5
8. Else
9. Return lr
10.
11. Ir_callback < LearningRateScheduler(lr_scheduler)
12. # Perform Stratified k — Fold Cross — Validation
13. For train_index,val_index in kfold. split(X_padded, y) do
14. Print "Training fold" + fold
15. fold « fold + 1
16. # Split the data into training and validation sets
17. X _train, X_val <
X_padded|[train_index], X_padded|[val_index]
18. y_train,y_val < y.iloc[train_index],y.iloc[val_index]
19. # Build the LSTM Model
20. model « Sequential([
21. Embedding (input_dim = max_words, output_dim =
embedding_dim, input_length = max_len),
22. Bidirectional (LSTM (128, return_sequences = True)),
23. Dropout(0.3),
24. Bidirectional(LSTM(64)),
25. Dropout(0.3),
26. Dense(128, activation = "relu’),
27. Dropout(0.3),
28. Dense(64, activation = 'relu’),
29. Dense(len(y.unique()), activation = 'softmax")
3.
31. # Compile the Model
32. optimizer « Adam(learning_rate = learning_rate)
33. model. compile(optimizer = optimizer,
34. loss = 'sparse_categorical_crossentropy’,
35. metrics = ['accuracy'])
36. # Early Stopping Callback
37. early_stopping « EarlyStopping(monitor = ~ val_loss”
12
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38. patience = 3,

39. restore_best_weights = True)
40. # Train the Model

41. history < model. fit(

42. X_train, y_train,

43. epochs = epochs,

44, batch_size = batch_size,

45. validation_data = (X_val,y_val),

46. callbacks = [early_stopping, lr_callback],
47. verbose = 1

48. )

49. # Evaluate the Model on Validation Set
50. val_loss,val_accuracy «

model. evaluate(X_val,y_val, verbose = 0)
51. Append val_accuracy to cv_accuracies

Bidirectional architecture was utilized in capturing past and
future dependencies of sequential data in LSTM model. Two
LSTM layers such as 128 and 64 units were implemented to
create a balance between complexity of the model and efficient
computation. The addition of 30% dropout layer was done after
each LSTM layer and full connection to layers for overfitting
prevention. The wholly connected layers were 128 and 64 units
with ReLU activation, and this was followed by a softmax output
layer for different classes classification.

In evaluation of the robustness of the model across different
data divides, cross-validation was used to have accurate and
consistent validation. A learning rate scheduler dynamically
altered the learning rate, dividing it into two after epoch 5 for
convergence enhancement. Quick or early stopping was applied
for the training termination when validation loss no longer
improves. This therefore prevented overfitting. High-performing
LSTM model was the result of the optimization. This is
concluded as such because of cross-validation accuracies, test
performance measures which include the accuracy, precision,
recall, and F1-score), and confusion matrix visualization, as well
as confusion matrix visualization.

D. Convolutional Neural Network (CNN)

These are used to process images or any other grid-like data.
They use convolutional layers for data features and pattern
detection. However, they were applied in the past to text by
treating it as a dimensional grid of words or characters. CNN has
the capacity to extract facial expressions or local patterns from
text.

Algorithm for Model 4 — CNN model implementation before
optimization
Input
Training data: X_train, y_train
Test data: X_test, y_test

Output
Evaluation metrics: Accuracy, Loss, Confusion Matrix Visualization
1.  # Initialize CNN Model
2. cnn_model « Sequential([
3. Embedding (input_dim = max_words, output_dim =
128, input_length = max_len),
4 Convl1D(filters = 128, kernel_size = 5, activation = 'relu’),
5. MaxPooling1D(pool_size = 2),
6. Dropout(0.2),
7
8

Flatten(),
. Dense(64, activation = 'relu’),
9. Dropout(0.2),
10.  Dense(len(sentiments), activation = 'softmax")
1. D
12. # Compile the CNN Model
13. cnn_model. compile(optimizer = 'adam’,

15. metrics = ['accuracy'])

16. # Train the CNN Model

17. epocks « 3

18. batc/_size « 32

19. cnn_tistory < cnn_model. fit(X_train,y_train,

20. epochs = epochs,
21. batch_size = batch_size,
22. validation_data = (X_test, y_test))

23. # Evaluate the CNN Model

24. cnn_test_loss,cnn_test_accuracy «
cnn_model. evaluate(X_test,y_test)

25. # Generate Predictions for CNN

26. y_pred_cnn « np.argmax(cnn_model.predict(X_test), axis =
-1)

27. # Compute Confusion Matrix

28. cnn_cm < confusion_matrix(y_test,y_pred_cnn)

Optimization of CNN

1. #Initialize Stratified k-Fold Cross-Validation

2. fold <1

3. cv_accuracies < []

4.  # Perform Stratified k-Fold Cross-Validation

5. For train_index, val_index in kfold.split(X_padded, y) do

6. Print "Training fold " + fold

7. fold < fold + 1

8. # Split the data into training and validation sets for this fold

9. X_train, X _val <= X padded[train_index],
X padded[val_index]

10. y_train, y_val < y.iloc[train_index], y.iloc[val_index]

11. # Build the CNN Model

12. model < Sequential([

13. Embedding(input_dim=max_words,
output_dim=embedding_dim, input length=max_len),

14. Conv1D(filters=128, kernel_size=5, activation="relu'),

15. MaxPooling1 D(pool_size=2),

16. Conv1D(filters=64, kernel size=3, activation="relu’),

17. GlobalMaxPooling1D(),

18. Dropout(0.3),

19. Dense(128, activation="relu'),

20. Dropout(0.3),

21. Dense(len(y.unique()), activation="softmax")

2. D

23. # Compile the Model

24. optimizer <— Adam(learning_rate=learning_rate)

25. model.compile(optimizer=optimizer,

26. loss="sparse_categorical crossentropy',

217. metrics=["accuracy'])

28. # Early Stopping Callback

29. early_stopping <— EarlyStopping(monitor="val loss',

30. patience=3,

31. restore_best weights=True)

32. # Train the Model

33. history <— model.fit(

34. X train, y_train,

35. epochs=epochs,

36. batch_size=batch_size,

37. validation_data=(X_val, y val),

38. callbacks=[early_stopping],

39. verbose=1

40. )

41. # Evaluate the Model on Validation Set

42. val_loss, val accuracy <— model.evaluate(X val,y val,
verbose=0)

43. Append val accuracy to cv_accuracies

14. loss = 'sparse_categorical_crossentropy’,
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Structured approach was deployed to optimize CNN model
for performance enhancement and to ensure overall
generalization. Number of filters (128 and 64), sizes 5 and 3
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Kernel, 30% of rate of dropout and the rate of learning for Adam
Optimizer were iteratively fine-tuned. Some of the architectures
are embedding layers, multiple convolutional layers to extract
features, max pooling of layers to reduce dimensionality and
wholly connected layers for classification.

For the evaluation of the model using different multiple data
splits, cross-validation was utilized to ensure unbiased
performance against certain dataset divisions. Quick stopping
was done so as not to overfit, halt training when validation no
longer improve. The integration of such technique strengthened
CNN model capabilities to extract insightful features and
effectively classify the task without compromising the cross-
validation folds consistency.

E. Gated Recurrent Unit (GRU)

This uses RNN architecture for the optimization of
sequential data. The incorporation of Bidirectional GRU layers
enhances the capturing of past and future dependencies in the
input sequences, which enhance the extraction of features.
Dropout and L2 regularization are techniques that can be applied
to reduce or eradicate overfitting and ensure generalization. The
gating mechanism of GRU reduces complexities inherent in
computations compared to LSTMs without compromising their
performance. This then highlight their efficiency at analyzing
emotional, trends in large datasets. The model is effective for
temporal patterns identification and sequential dependencies,
which ensure strong performance irrespective of the multi-class
complexities sentiment classification tasks.

Algorithm for Model 5 — GRU model implementation before
optimization
Input
Training data: X _train, y_train
Test data: X test, y_test

Output
Evaluation metrics: Accuracy, Loss, Confusion Matrix Visualization
1.  # Initialize GRU Model
2.  gru_model « Sequential([
3. Embedding (input_dim = max_words, output_dim =
128, input_length = max_len),

4 Bidirectional(GRU (128, return_sequences = True)),
5. Dropout(0.2),

6. Bidirectional(GRU(64)),

7 Dropout(0.2),

8. Dense(64, activation = 'relu’),

9. Dropout(0.2),

10.  Dense(len(sentiments), activation = 'softmax")

1. )

12. # Compile the GRU Model

13. gru_model.compile(optimizer ="adam’,

14. loss = 'sparse_categorical_crossentropy’,
15. metrics = ['accuracy'])

16. # Train the GRU Model

17. epoc/s « 3 batch_size « 32

18. gru_sistory < gru_model. fit(X_train,y_train,

19. epochs = epochs,
20. batch_size = batch_size,
21. validation_data = (X_test, y_test))

22. # Evaluate the GRU Model
23. gru_test_loss, gru_test_accuracy <«
gru_model. evaluate(X_test,y_test)
24. # Generate Predictions for GRU
25. y_pred_gru «
np.argmax(gru_model. predict(X_test), axis = —1)
26. # Compute Confusion Matrix
27. gru_cm < confusion_matrix(y_test,y_pred_gru)
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Optimization of GRU

1. # Initialize Cross-Validation

2. fold <1

3. cv_accuracies < []

4.  # Perform Cross-Validation for GRU-based Model

5. For train_index, val_index in kfold.split(X_padded, y) do

6. Print "Training fold " + fold

7. fold < fold + 1

8. # Prepare Training and Validation Data

9. X_train, X _val <= X padded[train_index], X padded[val_index]

10. y_train, y val < y.iloc[train_index], y.iloc[val index]

11. # Build the GRU-based Model

12. model < Sequential([

13. Embedding(input_dim=max_words,
output_dim=embedding_dim, input_length=max_len),

14. Bidirectional(GRU(128, return_sequences=True)),

15. Dropout(0.3),

16. Bidirectional(GRU(64)),

17. Dropout(0.3),

18. Dense(128, activation="relu', kernel_regularizer="12"),

19. Dropout(0.3),

20. Dense(64, activation="relu', kernel_regularizer="12"),

21. Dense(len(y.unique()), activation="softmax")

2. )

23. # Compile the Model

24. optimizer <~ Adam(learning_rate=learning_rate)

25. model.compile(optimizer=optimizer,

26. loss='sparse_categorical_crossentropy',

27. metrics=['accuracy'])

28. # Early Stopping Callback

29. early_stopping < EarlyStopping(monitor="val_loss',

30. patience=3,

31. restore_best_weights=True)

32. # Train the Model

33. history <— model.fit(

34. X_train, y_train,

35. epochs=epochs,

36. batch_size=batch_size,

37. validation_data=(X_val, y val),

38. callbacks=[early stopping],

39. verbose=1

40. )

41. # Evaluate the Model on Validation Data

42. val_loss, val_accuracy <— model.evaluate(X_val, y val,
verbose=0)

43. Append val_accuracy to cv_accuracies

The optimization of the GRU model was achieved with
bidirectional architecture, which captured sequential pattern
from forward and backward contexts. 128 and 64 units were the
two GRU layers that were used for balancing the model’s
complexity and efficient computation. 30% of dropout layers
was integrated after each GRU and dense layer for overfitting
reduction. The dense layers of 128 and 64 units used ReLU
activation and L2 regularization for continuous prevention of
overfitting and enhance generalization. The output layer utilized
softmax activation for different classes classification.

For model robustness and consistency, cross-validation was
conducted to validate the accuracies of the fold. Quickly
stopping the training when validation loss plateaued, reduced
overfitting and extra cost of computation. The final test set
evaluation revealed that the model is strong for generalization,
with high accuracy, precision, recall, and Fl-score. The
performance metrics and confusion matrix visualizations are the
confirmation of the ability of the model in effective handling of
classification task.
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V. RESULTS AND DISCUSSION

A. Results observation before optimization

Performance Metrics Comparison Across Models Before Optimi:
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Fig 3. Results before optimization

0.8432 is the value for highest precision, while competitive
test accuracy is 0.8279 and F-score is 0.8238. These values
depict that GRU model performance is the best overall. This also
implies a strong robustness of sequential data handling. The
models that follow closely are RNN and LSTM with a bit of
higher accuracy but lower precision than GRU. Also, the CNN
Model performed reasonably, only lagging in sequential patterns
handling. SVM model is the least of all with an accuracy value
of 0.7571 and F-score, showing its limitation when it is
compared to deep learning models.

B. Results observations after optimization

Metrics Comparison Across Models after
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Models

Fig 4. Results after optimization

This showed different performance levels; GRU emerged as
the highest-performing model, with 93.10% test accuracy,
93.96% precision and 93.18% F-Score, which shows its ability
for effective management of sequential data. This is followed by
LSTM at 93.07% test accuracy and 93.8% precision. This makes
it a robust choice for tasks that need long-term reliance. The
CNN model may be less accurate at 92.44% test accuracy, yet it
is a viable choice in cases where spatial feature extraction is
important. Contrastingly, the SVM model had a test accuracy of
79.34% and an F-Score of 78.83%, which showed that it was the
least effective when it came to handling complex, sequential
datasets. In the overall, RNN models such as GRU and LSTM
performed consistently and had generalization in different
validation folds, as such they are the recommended options for
sequential or time-series data activities.
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C. Comparison of before and after optimization

‘Test Accuracy Comparison Before and After O
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Fig 5. Accuracy of models before and after optimization

Test accuracy: Optimization resulted in significant
improvement in test accuracy in all the models. RNN, for
instance, improved the most, with an increase from 82.59% to
93.14%. This implies it has an enhanced capacity to generalize.
This is followed by LSTM and GRU with 93.07% and 93.10%
accuracy respectively. This shows that they are robust in terms
of sequential data. CNN, on the other hand, increased from
82.06% to 92.44%, while the SVM also increased from 75.91%
to 79.34%, a modest gain but still trailing behind deep learning
models in the overall performance of all the models.

F-Score Comparison Before and After Opti
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Fig 6. Fl-score of the models before and after optimization

F-Score: This creates a balance between precision and recall
and significantly improved all the model’s post-optimization; for
example, the GRU had the highest score, ranging from 82.49%
to 93.18%. This is followed by LSTM ranging from 82.55% to
93.13%. Also, RNN and CNN recorded some levels of
improvement, to the tune of 93.05% and 92.35%, respectively.
Only SVM was modest, with an increase from 75.44% to
78.83%. However, it can be regarded as below-par performance
if compared to deep learning models. This shows it has relative
limitations in fostering a balance between precision and recall.

Precision Comparison Before and After Optimisation
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Fig 7. Precision of the models before and after optimization

Precision: Every model in this study has significant
improvement in their precision after they have been optimized.
For instance, both LSTM and GRU had the highest gain, with
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precisions ranging from 85.02% to 93.80% and from 84.70% to
93.96%, respectively. This is followed by RNN and CNN with
an improvement ranging from 83.39% and 83.43% to 93.56%
and 92.41%, respectively. SVM had the least improvement, with
its performance declining from 77.20% to 80.37%. This is an
indication that despite its enhanced performance optimization, it
is not effective like the deep learning models.

Recall Comparison Before and After Optimisation
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Fig 8. Recall of the model before and after optimization

Recall: Consistent optimization increased recall in all the
models. This is a reflection of improved sensitivity. RNN,
LSTM, and GRU all improved maximally, with recall being
more than 93%. This is followed by CNN, with a significant rise
from 82.06% to 92.44%. Conversely, the SVM had modest
improvement ranging from 75.71% to 79.34%. All these are
reflections of the superior capability of the deep learning model
and its correct identification of positive cases compared to SVM.

D. Final results

Before the models were optimized, there were different
performances. SVM had an accuracy of 0.7571; this was
balanced with 0.7720 precision and 0.571 recall. RNN, LSTM
and GRU were better off SVM, with 0.8280 accuracies. Only
CNN recorded the lowest performance with a value of 0.8206.
After optimization, GRU was the highest-performing model
with an accuracy of 0.8206, 0.9936 precision and 0.9318 F1-
Score. This is followed by RNN and LSTM with 0.9314 and
0.9307, respectively, coupled with balanced precision and recall.
CNN was also accurate behind the GRU, RNN and LSTM with
an accuracy of 0.9244 and 0.235 F1-Score. SVM recorded
modest accuracy, that is, 0.7934. Based on this, GRU was the
best overall, followed by RNN and LSTM.

E. Discussion

Emotional detection practical applications cut across
different strata, including marketing, mental health and public
sentiment analyses. Based on the information obtained from
social media datasets, the application focuses on understanding
the emotional trends of individuals and groups of individuals.

Emotion detection is significant for understanding consumer
sentiment in marketing about campaigns, products and services.
Positive sentiments like happiness and love trigger the
satisfaction of the consumers, and they are the main part of the
dataset. Even though they are 27% of the overall datasets, they
are important feedback to organization to fine-tune their
strategies. Negative sentiment, that is, worry and sadness, which
are 21.8% and 12.93%, respectively, are equally important
because they let brands address their concerns proactively,
improve relationships with customers and let products match the
needs of the consumers.

Emotion detection is significant with respect to monitoring
the opinion of the public, where worry and neutral sentiments
are the dominant emotions, and they are 43% of the overall
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datasets. They provide information with respect to the responses
of society to current events or policies, which help policymakers
understand and make informed decisions that effectively address
public concerns. Other emotions, such as anger (0.28%) and
enthusiasm (1.9%), also let the government and organization feel
the pulse of the public and plan appropriate interventions.

Emotion detection in mental health analysis provides
information as to the well-being of people. Sadness and relief,
for example, take about 3.82% of the total datasets, and they are
needed to monitor mental health. Similarly, boredom (0.45%
and surprise (5.48%), which are not dominant emotions, help in
solidifying the understanding and enabling the targeted
development of mental health initiatives. The application of such
shows the significance of in-depth emotional insights that are
capable of ensuring the development of mental health programs.

CNN and GRU are advanced Al models with a significant
impact on emotion detection performance, as they address the
issue of class imbalance and improve important indices like
precision, recall, and F-score. From the optimization result,
CNN had 92.44% accuracy and 92.41% precision. GRU was
exceptional also, with 93.10% accuracy and 93.95% precision.
These indices show that the model is robust enough to offer
dependable and various emotional insights across many
domains. This is why they are significant tools for emotion
detection application and optimization.

V1. CONCLUSION

This research has shown the transformative impact of Al-
driven emotion detection across different areas such as mental
health, marketing, and public policy. After the optimization,
GRU was the overall best-performing model with 93.10%
accuracy and an Fl1-Score of 93.18%. CNN improved
maximally; as such, it is an important model in feature-driven
activities. Optimization strategies were crucial to address the
imbalances in the datasets and performance. RNN and LSTMs,
which are sequential models, excelled in short-time pattern
identification. These findings, therefore, have provided requisite
tools to advance emotion detection and its practical applications.
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