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Abstract: The advent of the digital era increased the use of social media platforms such as X, which has also become a platform 

where humans express their emotions and generate a large volume of complex emotional data. This research explores artificial 

intelligence (AI) applications, especially natural language processing (NLP), for emotion detection in text on social media platforms. 

Advanced classifiers like SVM, RNN, LSTM, CNN, and GRU are used to study the performance and identify emotion spectrums 

beyond binary sentiment analysis. Comparative analysis of before and after optimization outcomes shows the significance of 

hyperparameter tuning and cross-validation in enhancing the model metrics like accuracy and F1-score. GRU is the top after post-

optimization, with 93.10% accuracy and outstanding generalization. On the other hand, CNN is also strong, with 92.44%. Based on 

this, the significance of optimization techniques is figured out. Thus, GRU and CNN are optimal options for emotion detection on 

X because the platform gives strong support to mental health, marketing and public sentiment analysis.  

Keywords: Emotional Detection, Social Media, Natural Language Processing (NLP), Sentiment Analysis, Deep Learning, RNN, 

CNN, GRU, Hyperparameter Tuning, Cross-Validation.  

I. INTRODUCTION 

The digital age brought about the proliferation of social 
media platforms like Facebook, Instagram, and X (formerly 
known as Twitter). These, among many others, are now part of 
how people emote, opine and think. The platforms generate a 
large volume of text data daily, including capturing many 
emotional expressions with a unique opportunity for massive 
analysis of human behavior [1]. This array of data generated 
empowers researchers with the know-how of real-time 
emotional study and the application of insights across boards, 
such as its application in mental health, marketing, and social 
research. 

The development of artificial intelligence (AI) has changed 
how data is analyzed and interpreted by researchers, especially 
when it comes to how humans interact [2]. For instance, [2] 
further states that AI has computational power and top-notch 
algorithms needed to process voluminous text data efficiently. A 
major advancement in this is the deployment of Natural 
Language Processing (NLP). This is one of the most specialized 
parts of AI, whose focus is to enable machines to understand, 
interpret and generate data as humans do [3]. As shown in the 
findings of [4], NLP bridges the gap between human 
communication and machine learning systems, changing 
unstructured and spurious text data to structured ones that 
machines can easily process and analyze. 

Although past studies such as [5], [6], [7], explored emotion 
detection on social media platforms, their focus was basically on 
binary sentiment analysis, which groups content as positive or 
negative sentiments. Human emotions are complex, consisting 
of a broad spectrum such as anger, fear, happiness, sadness, and 
surprise [8]. 

X, as a social media platform, is crucial to individuals’ 
emotional expressions, opinion sharing and communication [9]. 

The large expanse of data generated by the platform is an 
opportunity for researchers to explore variability in human 
emotions at a larger scale. No doubt, different studies have been 
done a lot in the past on the subject matter. However, the focus 
was on binary sentiment analysis [10], [11]. This kind of analysis 
oversimplifies the inherent complexities in human emotions, 
especially because emotions need a more robust detection 
framework for analysis and drawing of conclusions [12]. Thus, 
the existing studies have not addressed the inherent challenges 
in informal, context-dependent languages usually used in social 
media. 

Also, the tools and methodologies deployed by researchers 
for emotion detection in social media are not rigorous in terms 
of the effectiveness of their classifiers [13] and they have not 
succeeded in harnessing the potential of AI-driven models like 
Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), and Long Short-Term Memory (LSTM). 
Therefore, a sophisticated framework that integrates a robust 
framework for a thorough evaluation of classifiers is imperative 
to address these gaps. Hence, this study. 

The research questions for this study are as follows: 

• Which classifier (SVM, RNN, LSTM, CNN, or GRU) 
provides the most accurate and reliable results for emotion 
detection in social media text combined with a robust data 
preprocessing pipeline? 

• In what ways can hyperparameter tuning strengthen the AI-
based emotion detection system's performance and 
scalability if applied in different industries? 

Since binary sentiment analysis is limited, this study, 
therefore, advances academic research by introducing a robust 
framework to detect a wider range of emotions in social media 
text. It, therefore, contributes to the growth of the body of 
knowledge in AI, NLP and social media analytics. The study is 
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also significant in that there are real-time implications in 
different fields; for instance, this study helps early detection of 
emotional distress to provide prompt intervention. Also, the 
emotion-based analysis of consumer sentiment can enhance 
targeted marketing strategies. 

The contributions of this study are provided below. 

• Classifier evaluation: The current study compares CSS, 
RNN, LSTM, CNN, and GRU classifiers to discover which 
is most effective for detecting emotion in social media text. 

• Performance optimization: Comprehensive solutions can be 
provided for processing spurious and context-dependent 
data, as hyperparameter tuning can enhance the classifier's 
accuracy and scalability. 

• Real-world applications: The researcher shows practical case 
studies of how the subject matter is applied to conduct 
mental health, marketing, and public sentiment analysis. 
This way, academic research can meet the needs of 
industry.  

II. LITERATURE REVIEW 

A. Approaches to emotion detection 

Detecting emotions from text encompasses the identified and 
classified emotional expression found in the written text [14]. 
Over time, researchers were able to use different approaches, 
such as traditional machine learning, deep learning models, and 
specialized classifiers, and each of these had its inherent benefits 
and weaknesses [15]. 

Machine Learning Approaches 

This approach is one of the early efforts of emotion detection, 
which depended on machine learning techniques like Support 
Vector Machines (SVM), Naive Bayes, and Random Forests 
[14], [16]. These models needed to be handcrafted with features 
obtained from sentiment lexicons, n-grams, and Part-of-Speech 
(POS) tagging [17]. Although they were effective for structured 
datasets, their limitations are due to overdependence on set rules 
and feature engineering; as such, their adaptability to informal 
and diverse social media text is limited [18]. 

For instance, SVM is robust for binary classification tasks 
and small datasets; however, it does not do well with 
voluminous, high-dimensional datasets, which social media 
generates [19]. Naïve Bayes, on the other hand, despite its 
computational efficiency, still does not perform efficiently when 
capturing context and sequential dependencies in text [20]. 
These limitations are felt more in spurious and unstructured text 
due to the presence of slang, emojis and abbreviations, limiting 
its overall performance. 

Deep Learning Approaches 

This model has changed the way emotions are detected, as it 
mitigated the need for complex feature engineering. It is the type 
that performs well at identifying inherent complex patterns in 
text [21]. Architectures like Recurrent Neural Networks (RNN), 
Long Short-Term Memory (LSTM) networks, and 
Convolutional Neural Networks (CNN) have performed 
excellently [22]. 

• RNN and LSTM: These models perform well with sequential 
data such as text. They retain contextual information across 
time steps [23]. LSTM networks tackle the issue of 
vanishing gradients in standard RNNs; because of this, they 
are highly effective in identifying long-term dependencies 
[24]. For example, LSTM understands emotional context in 

sentences where different words are implied, such as “I’m 
not happy about the outcome.” 

• CNN: At first, this model only processed images 
traditionally. However, due to advancements, it now 
classifies text through pattern identifications in n-grams and 
hierarchical feature extraction [25]. CNNs are highly 
effective when it comes to detecting text with local 
dependencies [26]. 

• Transformer-based models: BERT and GPT-3 are two of the 
advanced models in this field. They use attention 
mechanisms to identify global dependencies in text [27]. 
These models perform effectively when identifying 
language complexities like sarcasm and ambiguity, which 
are prevalent on social media. 

Deep learning models are unique because they are effective 
with transfer learning. They can also fine-tune the pre-trained 
models on specific datasets, enhancing task performance 
significantly even if the labeled data is limited.  

Specialized Classifiers 

Contextual Semantic Similarity (CSS) and Gated Recurrent 
Unit (GRU) are significant examples of emerging specialized 
classifiers, and they have brought another dimension and level 
of sophistication into emotion detection [28]. Their focus is on 
semantic relationships and vector-based representations of text, 
which offer comprehensive performance in unstructured and 
diverse datasets [29]. 

• CSS: CSS identifies and captures subtle emotional 
expressions inherent in text by emphasizing contextual 
understanding. For example, it can distinguish between the 
expression of sadness and happiness even when expressed 
in the same words [30], for instance, “I’m crying” (sadness) 
and “I’m crying tears of joy” (happiness) because of its 
ability to analyze a broader context semantically. 

• GRU: GRU uses gating mechanisms for efficient capturing 
of sequential dependencies in text data, which then makes it 
appropriate for the identification of emotional group. The 
use of bidirectional layers makes GRU process input 
sequences from different directions, which enhances its 
identification ability for emotional patterns. Its ability to 
handle different sentence structures and style makes it more 
effective, which is an added advantage for social media data 
analysis, where tone and expression significantly varies 
[31].   

B. Applications of Emotion Detection  

Emotion detection has become crucial to research due to its 
application in different domains of study. The findings of 
emotional expression analysis in text data can present insightful 
information on how individuals and groups behave. Thanks to 
emotion detection systems, areas such as healthcare and business 
intelligence have become more impactful. For instance,  

Mental health monitoring: The emotion detection system can 
unravel underlying mental health issues in people based on their 
social media posts and messages [32]. Thus, negative trends in 
emotional expressions can be promptly identified. Also, 
government and health organizations use the system for 
emotional health assessment during pandemics or major 
disasters [33]. Emotion-aware chatbots can be integrated into 
mental health platforms to provide empathetic and personalized 
support [34]. 
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Marketing and consumer insights: Business organizations 
can use emotion detection systems to analyze customer 
sentiment [35]. The findings from such analysis can be used to 
develop an optimized strategy. Information from social media 
reviews can be leveraged to measure consumer satisfaction and 
address their concerns [36]. Also, tailored campaigns can be 
used to evoke excitement, a positive emotion that enhances 
buying intention. 

Public sentiment monitoring: Government and other 
policymakers can better understand people’s opinions on various 
issues affecting them using an emotion detection system [37]. 
For instance, sentiment during special events like elections and 
strike actions can be easily analyzed to get real-time information. 
Also, policymakers with the system can easily assess the 
emotional response to policies and attendant issues. The findings 
of such analysis can be used to refine people-friendly strategies. 

Education and E-learning: In this field, the emotion detection 
system adds and enhances personalized learning experiences, 
improving student performance. For instance, the system can 
identify if students are bored or frustrated with content delivery 
[38]. This may mean the content needs to be augmented so they 
can understand better. Also, e-learning platforms leverage 
emotion-aware AI to streamline content and pace using students' 
emotional states. This promotes enhanced comprehension and 
facilitates retention [39].  

The versatility of emotion detection tools has far-reaching 
applications in different domains. Incorporating the information 
generated into human emotions helps with making an informed 
decision, enhances user experiences, and contributes to the well-
being of society [40]. Continuous development in the field and 
advancements in AI and NLP will still refine emotion detection 
systems, expanding their applicability and impact [41]. 

C. Performance Optimization 

The optimization of emotion detection system performance 
is critical in ensuring the system’s accuracy, efficiency, and 
scalability, especially when it comes to spurious and 
unstructured social media data [42]. Performance optimization 
is all about model architecture enhancement, hyperparameter 
fine-tuning, and leveraging advanced techniques to improve 
evaluation metrics like accuracy, precision, recall, and F1-score 
[43]. 

1. Importance of Optimization in Emotion Detection 

The emotion detection model is operational on voluminous 
and complex datasets whose features are informal language, 
abbreviations, emojis, and contextual ambiguity [44]. Models 
may be unable to generalize effectively without optimization, 
which could result in poor performance classification [44]. Some 
of the features of performance optimization include: 

• High accuracy: The system correctly classifies anger, 
happiness, sadness, and surprise, which are mixed emotions, in 
different text inputs [45]. 

• Efficiency: It reduces computational overhead in real-
time social media stream processing [45]. 

• Scalability: The model can handle large datasets 
without affecting performance [46]. 

2. Hyperparameter Tuning 

This is crucial to machine and deep learning model 
optimization. It encompasses parameter adjustments that control 
the learning process and enhance the model's performance [47]. 
Common hyperparameters in the system include: 

• Learning rate: This determines the step size in the 
algorithmic gradient descent. An effectively optimized 
learning rate would ensure rapid convergence without over 
flogging the solutions provided [48]. 

• Batch size: This controls the volume of training examples 
deployed into an iteration. Even though smaller batch sizes 
may sometimes be spurious, they provide faster feedback 
[48]. Large batches, on the other hand, are stable but take 
more time to compute. 

• Dropout Rate: This is about dropout regulation in neural 
networks for prevention of the problem of overfitting by 
randomly deactivating neurons during training [48]. 

• The number of layers and neurons determines the model’s 
complexity. For example, adding layers in RNNs and 
LSTMs could enhance the model's ability to identify 
temporal dependencies, yet the risk of overfitting could rise 
[22]. 

Techniques for Hyperparameter Tuning: 

Grid search: This is a systematic search using predefined 
hyperparameter values. It is expensive to compute; however, if 
successfully done, it makes the system comprehensive [47]. 

Random search: The system chooses hyperparameter 
combinations at random, which makes it better than grid search 
[47]. 

Bayesian Optimization: The system uses probabilistic 
models to predict hyperparameter combination performance, 
reducing the number of iterations needed [48]. 

Automated tuning: Optuna and Hyperopt tools can automate 
the tuning process, which uses advanced algorithms to identify 
optimal configurations [48]. 

Research Gap 

Many studies explored different approaches to emotion 
detection; however, significant gaps remain in addressing social 
media text's inherent complexities and unique challenges. 
Machine learning frameworks like SVM and Naïve Bayes still 
struggle with the informal nature of social media data, which 
includes slang, emojis and abbreviations. LSTM and CNN are 
advanced fields of deep-learning models that can reduce the need 
for extensive feature engineering and the identification of long-
term dependencies. Yet, there are limitations in understanding 
context-dependent emotional expressions, like sarcasm or subtle 
changes in sentiments.  

Furthermore, models such as BERT and GPT-3 enhance the 
capabilities of identification of global dependencies and 
handling language complexities; their applications to different 
unstructured datasets have not been explored fully, especially 
with multilingual contexts. Developing specialized classifiers 
such as CSS and GRU is promising as they are effective across 
large-scale datasets. However, they still need further validation, 
which current literature often overlooks, particularly how 
hyperparameter tuning impacts the real-world application of 
emotion detection systems, like the scalability and 
computational efficiency of processing real-time social media 
streams. 

III. METHOD 

This study underscores the transformative impact of AI-
driven emotion detection on X. Prior to optimization, SVM was 
the best-performing model because of its accuracy, F1 score, and 
specificity. However, post-optimization using hyperparameter 
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tuning and cross-validation, CNN emerged as the best-
performing model, achieving the highest accuracy and showing 
comprehensive generalization capabilities. These findings 
highlight the importance of optimization strategies for model 
performance enhancement, especially when it comes to handling 
imbalanced datasets and complex emotional classifications. 

This study focuses on 7 major steps to complete emotional 
detection.  

 

Fig 1. Methodology 

The complete information about the steps completed is 
provided below. 

Step 1: Data Loading and Inspection 

pd.read_csv() function is used to load the dataset. This allows 
for proper structural and content exploration. The first ten rows 
are the data snapshot, so row counts indicate successful loading. 
Doing this strengthens familiarity with how the dataset is 
composed prior to processing. The dataset was downloaded from 
Kaggle [49].  

Step 2: Data Cleaning and Preparation 

Tweet_id is an example of unnecessary columns that are 
dropped to focus on suitable attributes such as content and 
sentiment. For dataset integrity, missing values are removed. 
Also, redundancy that can alter the results is identified and 
eliminated from the duplicate rows.  The summary of the data 
cleaning is provided below.  

 

Step 3: Sentiment Analysis and Visualization 

At the post-dataset cleaning, analysis is conducted to 
understand the sentiment’s frequency and distribution. Each 
sentiment occurrence is counted while its percentage values are 
calculated. With a bar chart, the result is visualized for sentiment 
prevalence highlight, which helps with the interpretation.  

The dataset distribution can be seen in the figure below. 

 

Fig 2. Dataset Distribution 

There is a significant level of class imbalance relative to the 
sentiments in the data distribution. With more than 140000 
samples, Joy had the highest representation, followed by Sad 
with 120000 samples. Anger and fear had 58000 and 50000 
samples respectively, so they were moderately represented. 
Love had 35000 samples, while Surprise had 15000 samples. 
This imbalance shows that the model requires class weighting, 
oversampling, or undersampling as techniques needed for fair 
learning in all categories of sentiments. 

Step 4: Model-Specific Preprocessing 

The transformation of text data into a suitable numerical 
format for each machine-learning model is needed. The 
TfidfVectorizer changes SVM text into TF-IDF features, which 
identify the word's relevancy. RNN, CNN, LSTM and GRU text 
are tokenized into sequences for deep learning models to 
optimize the data for model architecture.  

Step 5, and step 6 information is provided in the next section. 

IV. MODEL EXPLANATION 

A. Model 1 - Support Vector Machine (SVM) 

SVM is a supervised machine learning algorithm that 
classifies and executes regression tasks. Its effectiveness can 
also be seen in text-based sentiment analysis because it has the 
ability to work well with high-dimensional data using kernel 
functions, even if the dataset is limited. This model is effective 
with binary or multi-class emotional classification tasks, 
particularly if emotional data is a feature represented as vectors 
that are derived from images, text and voice. The pseudocode for 
the SVM model implemented before optimization can be seen 
below. 

Algorithm for Model 1 – SVM model implementation before 

optimization 

Input 

Training data: X_train_tfidf, y_train_tfidf 

Test data: X_test_tfidf, y_test_tfidf 

Output 

Evaluation metrics: Accuracy, Precision, Recall, F1-Score, Confusion 

matrix visualization 

1. # 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑆𝑉𝑀 𝑀𝑜𝑑𝑒𝑙 

2. 𝑠𝑣𝑚_𝑚𝑜𝑑𝑒𝑙 ←  𝐿𝑖𝑛𝑒𝑎𝑟𝑆𝑉𝐶(𝐶 = 1.0, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 50000, 𝑑𝑢𝑎𝑙 =

𝐹𝑎𝑙𝑠𝑒) 

3. # 𝑇𝑟𝑎𝑖𝑛 𝑡ℎ𝑒 𝑆𝑉𝑀 𝑀𝑜𝑑𝑒𝑙 

4. 𝑠𝑣𝑚_𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛_𝑡𝑓𝑖𝑑𝑓, 𝑦_𝑡𝑟𝑎𝑖𝑛_𝑡𝑓𝑖𝑑𝑓) 

5. # 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑜𝑛 𝑇𝑒𝑠𝑡 𝐷𝑎𝑡𝑎 

6. 𝑦_𝑝𝑟𝑒𝑑_𝑠𝑣𝑚 ←  𝑠𝑣𝑚_𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡_𝑡𝑓𝑖𝑑𝑓) 

7. # 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 

8. 𝑐𝑜𝑛𝑓_𝑚𝑎𝑡𝑟𝑖𝑥 ←  𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥(𝑦_𝑡𝑒𝑠𝑡_𝑡𝑓𝑖𝑑𝑓, 𝑦_𝑝𝑟𝑒𝑑_𝑠𝑣𝑚) 

Step 1-Data Loading 
and Inspection

Step 2-Data Cleaning and 
Preparation

Step 3-Sentiment 
Analysis and 
Visualization

Step 4- Model Specific 
Preprocessing

Step 5- Model Implementation and 
Training

Step 6- Model Optimization 
using Hyperparameter Tuning 

and Cross validation
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9. # 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑡𝑟𝑖𝑐𝑠 

10. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ←  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑠𝑐𝑜𝑟𝑒(𝑦_𝑡𝑒𝑠𝑡_𝑡𝑓𝑖𝑑𝑓, 𝑦_𝑝𝑟𝑒𝑑_𝑠𝑣𝑚) 

11. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, 𝑓1, _  ←

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑟𝑒𝑐𝑎𝑙𝑙_𝑓𝑠𝑐𝑜𝑟𝑒_𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑦_𝑡𝑒𝑠𝑡_𝑡𝑓𝑖𝑑𝑓, 𝑦_𝑝𝑟𝑒𝑑_𝑠𝑣𝑚, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =

′𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑′) 

 

Optimization of SVM  

1. # 𝑆𝑒𝑙𝑒𝑐𝑡 𝑎 𝑆𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 

2. 𝑠𝑎𝑚𝑝𝑙𝑒_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ←  0.5 

3. 𝑋_𝑠𝑎𝑚𝑝𝑙𝑒, _, 𝑦_𝑠𝑎𝑚𝑝𝑙𝑒, _  ←

 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡(𝑋, 𝑦, 𝑡𝑟𝑎𝑖𝑛_𝑠𝑖𝑧𝑒 =

𝑠𝑎𝑚𝑝𝑙𝑒_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝑠𝑡𝑟𝑎𝑡𝑖𝑓𝑦 = 𝑦) 

4. # 𝐶𝑟𝑒𝑎𝑡𝑒 𝑎 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑇𝑒𝑥𝑡 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔, 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

5. 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 ←  𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒([ 

6.     (′𝑡𝑓𝑖𝑑𝑓′, 𝑇𝑓𝑖𝑑𝑓𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑟(𝑠𝑡𝑜𝑝_𝑤𝑜𝑟𝑑𝑠 =

′𝑒𝑛𝑔𝑙𝑖𝑠ℎ′, 𝑛𝑔𝑟𝑎𝑚_𝑟𝑎𝑛𝑔𝑒 = (1, 3))), 

7.     (′𝑠𝑣𝑑′, 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝑆𝑉𝐷(𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 42)), 

8.     (′𝑠𝑔𝑑′, 𝑆𝐺𝐷𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 42)) 

9. ]) 

10. # 𝐷𝑒𝑓𝑖𝑛𝑒 𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐺𝑟𝑖𝑑 

11. 𝑝𝑎𝑟𝑎𝑚_𝑔𝑟𝑖𝑑 ←  { 

12.     ′𝑡𝑓𝑖𝑑𝑓__𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠′: [10000, 11000], 

13.     ′𝑡𝑓𝑖𝑑𝑓__𝑚𝑖𝑛_𝑑𝑓′: [5, 7], 

14.     ′𝑡𝑓𝑖𝑑𝑓__𝑚𝑎𝑥_𝑑𝑓′: [0.8, 0.9], 

15.     ′𝑠𝑣𝑑__𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠′: [250, 350], 

16.     ′𝑠𝑔𝑑__𝑎𝑙𝑝ℎ𝑎′: [0.0001, 0.001], 

17.     ′𝑠𝑔𝑑__𝑝𝑒𝑛𝑎𝑙𝑡𝑦′: [′𝑙2′, ′𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑛𝑒𝑡′], 

18.     ′𝑠𝑔𝑑__𝑙𝑜𝑠𝑠′: [′ℎ𝑖𝑛𝑔𝑒′, ′𝑙𝑜𝑔′] 

19. } 

20. # 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝐶𝑟𝑜𝑠𝑠 − 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝐺𝑟𝑖𝑑 𝑆𝑒𝑎𝑟𝑐ℎ 

21. 𝑔𝑟𝑖𝑑_𝑠𝑒𝑎𝑟𝑐ℎ ←  𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉(𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒, 𝑝𝑎𝑟𝑎𝑚_𝑔𝑟𝑖𝑑, 𝑐𝑣 =

2, 𝑠𝑐𝑜𝑟𝑖𝑛𝑔 = ′𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′, 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 1) 

22. 𝑔𝑟𝑖𝑑_𝑠𝑒𝑎𝑟𝑐ℎ. 𝑓𝑖𝑡(𝑋_𝑠𝑎𝑚𝑝𝑙𝑒, 𝑦_𝑠𝑎𝑚𝑝𝑙𝑒) 

23. # 𝑇𝑟𝑎𝑖𝑛 − 𝑇𝑒𝑠𝑡 𝑆𝑝𝑙𝑖𝑡 𝑓𝑜𝑟 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 

24. 𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑋_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑒𝑠𝑡 ←

 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡(𝑋_𝑠𝑎𝑚𝑝𝑙𝑒, 𝑦_𝑠𝑎𝑚𝑝𝑙𝑒, 𝑡𝑒𝑠𝑡_𝑠𝑖𝑧𝑒 =

0.2, 𝑠𝑡𝑟𝑎𝑡𝑖𝑓𝑦 = 𝑦_𝑠𝑎𝑚𝑝𝑙𝑒) 

25. # 𝑇𝑟𝑎𝑖𝑛 𝑎𝑛𝑑 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝐵𝑒𝑠𝑡 𝑀𝑜𝑑𝑒𝑙 

26. 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙 ←  𝑔𝑟𝑖𝑑_𝑠𝑒𝑎𝑟𝑐ℎ. 𝑏𝑒𝑠𝑡_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟_ 

27. 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛) 

28. 𝑦_𝑝𝑟𝑒𝑑 ←  𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡) 

29. # 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐𝑠 

30. 𝑠𝑣𝑚_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ←  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑠𝑐𝑜𝑟𝑒(𝑦_𝑡𝑒𝑠𝑡, 𝑦_𝑝𝑟𝑒𝑑) 

31. 𝑠𝑣𝑚_𝑐𝑚 ←  𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥(𝑦_𝑡𝑒𝑠𝑡, 𝑦_𝑝𝑟𝑒𝑑) 

32. 𝑠𝑣𝑚_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑠𝑣𝑚_𝑟𝑒𝑐𝑎𝑙𝑙, 𝑠𝑣𝑚_𝑓𝑠𝑐𝑜𝑟𝑒, _  ←
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑟𝑒𝑐𝑎𝑙𝑙_𝑓𝑠𝑐𝑜𝑟𝑒_𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑦_𝑡𝑒𝑠𝑡, 𝑦_𝑝𝑟𝑒𝑑, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
′𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑′) 

 

The optimization of this model was done with pipeline that 
combines TF-IDF vectorization, reduced dimensionality with 
Truncated SVD and SGDClassifier-induced classification. All 
three stages of hyperparameters, there were some fine-tuning 
which uses grid search for performance maximization. Some of 
the components of TF-IDF parameters are the number of 
features (max_features), minimum document frequency 
(min_df), and maximum document frequency (max_df), which 
ensure retention of relevant terms while at the same time 
excludes overly common or rare terms. SVD parameters like the 
number of components (n_components) were tuned for 
dimensionality reduction and information retention. 
Regularization strength (alpha), penalty types (l2, elasticnet), 
and loss functions (hinge, log) were explored for the 
SGDClassifier for classification optimization. 

Hyperparameters combination was evaluated with cross-
validation grid search to identify the best-performing 
configuration. The sub-dataset was used for efficiency, and to 

stratify sampling that is maintained by class balance. The 
evaluation of the best model was done using different test sets to 
achieve enhanced performance with high accuracy, precision, 
recall, and F1-score. The optimization of SVM model revealed 
thorough generalization while it effectively captures important 
patterns inherent in the data. This was validated with confusion 
matrix visualization and classification metrics. 

B. Recurrent Neural Network (RNN) 

This belongs to a class of neural networks, and it is designed 
to recognize data patterns that are arranged sequentially. 
Because of the “memory,” RNNs can recall the inputs from 
previous connections. RNNs model temporal dependencies; 
therefore, they are suitable for emotional tone analysis. The 
pseudocode for the RNN model implemented before 
optimization can be seen below. 

Algorithm for Model 2 – RNN model implementation before 

optimization 

Input 

Training data: X_train, y_train 

Test data: X_test, y_test 

Output 

Evaluation metrics: Accuracy, Loss, Confusion Matrix Visualization 

1. # 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑅𝑁𝑁 𝑀𝑜𝑑𝑒𝑙 

2. 𝑚𝑜𝑑𝑒𝑙 ←  𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙([ 

3.     𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚 = 𝑚𝑎𝑥_𝑤𝑜𝑟𝑑𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑚 =

128, 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 𝑚𝑎𝑥_𝑙𝑒𝑛), 

4.     𝐿𝑆𝑇𝑀(128, 𝑟𝑒𝑡𝑢𝑟𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒), 

5.     𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.2), 

6.     𝐿𝑆𝑇𝑀(64), 

7.     𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.2), 

8.     𝐷𝑒𝑛𝑠𝑒(32, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′), 

9.     𝐷𝑒𝑛𝑠𝑒(𝑙𝑒𝑛(𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑠), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑠𝑜𝑓𝑡𝑚𝑎𝑥′) 

10. ]) 

11. # 𝐶𝑜𝑚𝑝𝑖𝑙𝑒 𝑡ℎ𝑒 𝑅𝑁𝑁 𝑀𝑜𝑑𝑒𝑙 

12. 𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ′𝑎𝑑𝑎𝑚′, 

13.               𝑙𝑜𝑠𝑠 = ′𝑠𝑝𝑎𝑟𝑠𝑒_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦′, 

14.               𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = [′𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′]) 

15. # 𝑇𝑟𝑎𝑖𝑛 𝑡ℎ𝑒 𝑅𝑁𝑁 𝑀𝑜𝑑𝑒𝑙 

16. 𝑒𝑝𝑜𝑐ℎ𝑠 ←  3 

17. 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ←  32 

18. ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ←  𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 

19.                         𝑒𝑝𝑜𝑐ℎ𝑠 = 𝑒𝑝𝑜𝑐ℎ𝑠, 

20.                         𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 

21.                         𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑎 = (𝑋_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑒𝑠𝑡)) 

22. # 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑅𝑁𝑁 𝑀𝑜𝑑𝑒𝑙 

23. 𝑡𝑒𝑠𝑡_𝑙𝑜𝑠𝑠, 𝑡𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ←  𝑚𝑜𝑑𝑒𝑙. 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑋_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑒𝑠𝑡) 

24. # 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

25. 𝑦_𝑝𝑟𝑒𝑑 ←  𝑛𝑝. 𝑎𝑟𝑔𝑚𝑎𝑥(𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡), 𝑎𝑥𝑖𝑠 = −1) 

26. # 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 

27. 𝑐𝑚 ←  𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥(𝑦_𝑡𝑒𝑠𝑡, 𝑦_𝑝𝑟𝑒𝑑) 

 

Optimization of RNN 

1. # 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑆𝑡𝑟𝑎𝑡𝑖𝑓𝑖𝑒𝑑 𝑘 − 𝐹𝑜𝑙𝑑 𝐶𝑟𝑜𝑠𝑠 − 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 

2. 𝑓𝑜𝑙𝑑 ←  1 

3. 𝑐𝑣_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠 ←  [] 

4. # 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑆𝑡𝑟𝑎𝑡𝑖𝑓𝑖𝑒𝑑 𝑘 − 𝐹𝑜𝑙𝑑 𝐶𝑟𝑜𝑠𝑠 − 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 

5. 𝐹𝑜𝑟 𝑡𝑟𝑎𝑖𝑛_𝑖𝑛𝑑𝑒𝑥, 𝑣𝑎𝑙_𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑘𝑓𝑜𝑙𝑑. 𝑠𝑝𝑙𝑖𝑡(𝑋_𝑝𝑎𝑑𝑑𝑒𝑑, 𝑦) 𝑑𝑜 

6.     𝑃𝑟𝑖𝑛𝑡 "𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑓𝑜𝑙𝑑 " +  𝑓𝑜𝑙𝑑 

7.     𝑓𝑜𝑙𝑑 ←  𝑓𝑜𝑙𝑑 +  1 

8.     # 𝑆𝑝𝑙𝑖𝑡 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑖𝑛𝑡𝑜 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑛𝑑 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡𝑠  

9.     𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑋_𝑣𝑎𝑙 ←

 𝑋_𝑝𝑎𝑑𝑑𝑒𝑑[𝑡𝑟𝑎𝑖𝑛_𝑖𝑛𝑑𝑒𝑥], 𝑋_𝑝𝑎𝑑𝑑𝑒𝑑[𝑣𝑎𝑙_𝑖𝑛𝑑𝑒𝑥] 

10.     𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑣𝑎𝑙 ←  𝑦. 𝑖𝑙𝑜𝑐[𝑡𝑟𝑎𝑖𝑛_𝑖𝑛𝑑𝑒𝑥], 𝑦. 𝑖𝑙𝑜𝑐[𝑣𝑎𝑙_𝑖𝑛𝑑𝑒𝑥] 

11.     # 𝐵𝑢𝑖𝑙𝑑 𝑡ℎ𝑒 𝑅𝑁𝑁 𝑀𝑜𝑑𝑒𝑙 

12.     𝑚𝑜𝑑𝑒𝑙 ←  𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙([ 

13.         𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚 = 𝑚𝑎𝑥_𝑤𝑜𝑟𝑑𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑚 =

𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑑𝑖𝑚, 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 𝑚𝑎𝑥_𝑙𝑒𝑛), 
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14.         𝐵𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙(𝐿𝑆𝑇𝑀(128, 𝑟𝑒𝑡𝑢𝑟𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒)), 

15.         𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.3), 

16.         𝐵𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙(𝐿𝑆𝑇𝑀(64)), 

17.         𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.3), 

18.         𝐷𝑒𝑛𝑠𝑒(128, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′), 

19.         𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.3), 

20.         𝐷𝑒𝑛𝑠𝑒(64, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′), 

21.         𝐷𝑒𝑛𝑠𝑒(𝑙𝑒𝑛(𝑦. 𝑢𝑛𝑖𝑞𝑢𝑒()), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑠𝑜𝑓𝑡𝑚𝑎𝑥′) 

22.     ]) 

23.     # 𝐶𝑜𝑚𝑝𝑖𝑙𝑒 𝑡ℎ𝑒 𝑀𝑜𝑑𝑒𝑙 

24.     𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 ←  𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒) 

25.     𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟, 

26.                   𝑙𝑜𝑠𝑠 = ′𝑠𝑝𝑎𝑟𝑠𝑒_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦′, 

27.                   𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = [′𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′]) 

28.     # 𝐸𝑎𝑟𝑙𝑦 𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘 

29.     𝑒𝑎𝑟𝑙𝑦_𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 ←  𝐸𝑎𝑟𝑙𝑦𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔(𝑚𝑜𝑛𝑖𝑡𝑜𝑟 =

′𝑣𝑎𝑙_𝑙𝑜𝑠𝑠′, 

30.                                        𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 3, 

31.                                        𝑟𝑒𝑠𝑡𝑜𝑟𝑒_𝑏𝑒𝑠𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑇𝑟𝑢𝑒) 

32.     # 𝑇𝑟𝑎𝑖𝑛 𝑡ℎ𝑒 𝑀𝑜𝑑𝑒𝑙 

33.     ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ←  𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡( 

34.         𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 

35.         𝑒𝑝𝑜𝑐ℎ𝑠 = 𝑒𝑝𝑜𝑐ℎ𝑠, 

36.         𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 

37.         𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑎 = (𝑋_𝑣𝑎𝑙, 𝑦_𝑣𝑎𝑙), 

38.         𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘𝑠 = [𝑒𝑎𝑟𝑙𝑦_𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔], 

39.         𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 1 

40.     ) 

41.     # 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑀𝑜𝑑𝑒𝑙 𝑜𝑛 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑡 

42.     𝑣𝑎𝑙_𝑙𝑜𝑠𝑠, 𝑣𝑎𝑙_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ←

 𝑚𝑜𝑑𝑒𝑙. 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑋_𝑣𝑎𝑙, 𝑦_𝑣𝑎𝑙, 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 0) 

43.     𝐴𝑝𝑝𝑒𝑛𝑑 𝑣𝑎𝑙_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑡𝑜 𝑐𝑣_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠 

 

The RNN model was hyperparameter tuned and cross-
validated to optimize its performance and generalization. LSTM 
units 128 and 64, 30% rate of dropout, batch size, learning and 
embedding dimensions are the chosen hyperparameters for 
iterative experimentation to create an accurate balance and 
computational efficiency. Not only that, the Adam optimizer’s 
rate of learning was also fine-tuned for enhanced convergence 
without loss minima overshooting. 

To divide K-fold, cross-validation was deployed for the 
evaluation of the robustness of the model across series of sub-
datasets. This approach accurately validated each of the folds, to 
ensure the performance of the model did not rely totally on a 
certain training-validation divides. The accurate mean cross-
validation showed the level of consistency and reliability of the 
model. Also, quick stopping while the training hold can further 
strengthen the performance by stopping the training when 
validation loss stopped to improve, prevent, overfit and save 
computational resources. Such integrative techniques could 
bring about a efficiently generalized RNN model. 

C. Long Short-Term Memory (LSTM) 

They use a gating mechanism to control the flow of 
information. They are now able to tackle the vanishing gradient 
problems in standard RNNs. LSTMs identify complex 
emotional patterns in text or speech with long sequences. 

Algorithm for Model 3 – LSTM model implementation before 

optimization 

Input 

Training data: X_train, y_train 

Test data: X_test, y_test 

Output 

Evaluation metrics: Accuracy, Loss, Confusion Matrix Visualization 

1. # 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐿𝑆𝑇𝑀 𝑀𝑜𝑑𝑒𝑙 

2. 𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙 ←  𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙([ 

3.     𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚 = 𝑚𝑎𝑥_𝑤𝑜𝑟𝑑𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑚 =

128, 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 𝑚𝑎𝑥_𝑙𝑒𝑛), 

4.     𝐿𝑆𝑇𝑀(128, 𝑟𝑒𝑡𝑢𝑟𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒), 

5.     𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.2), 

6.     𝐿𝑆𝑇𝑀(64), 

7.     𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.2), 

8.     𝐷𝑒𝑛𝑠𝑒(32, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′), 

9.     𝐷𝑒𝑛𝑠𝑒(𝑙𝑒𝑛(𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑠), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑠𝑜𝑓𝑡𝑚𝑎𝑥′) 

10. ]) 

11. # 𝐶𝑜𝑚𝑝𝑖𝑙𝑒 𝑡ℎ𝑒 𝐿𝑆𝑇𝑀 𝑀𝑜𝑑𝑒𝑙 

12. 𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ′𝑎𝑑𝑎𝑚′, 

13.                   𝑙𝑜𝑠𝑠 = ′𝑠𝑝𝑎𝑟𝑠𝑒_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦′, 

14.                   𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = [′𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′]) 

15. # 𝑇𝑟𝑎𝑖𝑛 𝑡ℎ𝑒 𝐿𝑆𝑇𝑀 𝑀𝑜𝑑𝑒𝑙 

16. 𝑒𝑝𝑜𝑐ℎ𝑠 ←  3 

17. 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ←  32 

18. 𝑙𝑠𝑡𝑚_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ←  𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 

19.                                 𝑒𝑝𝑜𝑐ℎ𝑠 = 𝑒𝑝𝑜𝑐ℎ𝑠, 

20.                                 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 

21.                                 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑎 = (𝑋_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑒𝑠𝑡)) 

22. # 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝐿𝑆𝑇𝑀 𝑀𝑜𝑑𝑒𝑙 

23. 𝑙𝑠𝑡𝑚_𝑡𝑒𝑠𝑡_𝑙𝑜𝑠𝑠, 𝑙𝑠𝑡𝑚_𝑡𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ←

 𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙. 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑋_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑒𝑠𝑡) 

24. # 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝐿𝑆𝑇𝑀 

25. 𝑦_𝑝𝑟𝑒𝑑_𝑙𝑠𝑡𝑚 ←

 𝑛𝑝. 𝑎𝑟𝑔𝑚𝑎𝑥(𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡), 𝑎𝑥𝑖𝑠 = −1) 

26. # 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 

27. 𝑙𝑠𝑡𝑚_𝑐𝑚 ←  𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥(𝑦_𝑡𝑒𝑠𝑡, 𝑦_𝑝𝑟𝑒𝑑_𝑙𝑠𝑡𝑚). 

 

 

Optimization of LSTM  

1. # 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑆𝑡𝑟𝑎𝑡𝑖𝑓𝑖𝑒𝑑 𝑘 − 𝐹𝑜𝑙𝑑 𝐶𝑟𝑜𝑠𝑠 − 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 

2. 𝑓𝑜𝑙𝑑 ←  1 

3. 𝑐𝑣_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠 ←  [] 

4. # 𝐷𝑒𝑓𝑖𝑛𝑒 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 

5. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑟_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟(𝑒𝑝𝑜𝑐ℎ, 𝑙𝑟): 

6.     𝐼𝑓 𝑒𝑝𝑜𝑐ℎ >  5 𝑡ℎ𝑒𝑛 

7.         𝑅𝑒𝑡𝑢𝑟𝑛 𝑙𝑟 ∗  0.5 

8.     𝐸𝑙𝑠𝑒 

9.         𝑅𝑒𝑡𝑢𝑟𝑛 𝑙𝑟 

10.  

11. 𝑙𝑟_𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘 ←  𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟(𝑙𝑟_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟) 

12. # 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑆𝑡𝑟𝑎𝑡𝑖𝑓𝑖𝑒𝑑 𝑘 − 𝐹𝑜𝑙𝑑 𝐶𝑟𝑜𝑠𝑠 − 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 

13. 𝐹𝑜𝑟 𝑡𝑟𝑎𝑖𝑛_𝑖𝑛𝑑𝑒𝑥, 𝑣𝑎𝑙_𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑘𝑓𝑜𝑙𝑑. 𝑠𝑝𝑙𝑖𝑡(𝑋_𝑝𝑎𝑑𝑑𝑒𝑑, 𝑦) 𝑑𝑜 

14.     𝑃𝑟𝑖𝑛𝑡 "𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑓𝑜𝑙𝑑 " +  𝑓𝑜𝑙𝑑 

15.     𝑓𝑜𝑙𝑑 ←  𝑓𝑜𝑙𝑑 +  1 

16.     # 𝑆𝑝𝑙𝑖𝑡 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑖𝑛𝑡𝑜 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑛𝑑 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡𝑠  

17.     𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑋_𝑣𝑎𝑙 ←

 𝑋_𝑝𝑎𝑑𝑑𝑒𝑑[𝑡𝑟𝑎𝑖𝑛_𝑖𝑛𝑑𝑒𝑥], 𝑋_𝑝𝑎𝑑𝑑𝑒𝑑[𝑣𝑎𝑙_𝑖𝑛𝑑𝑒𝑥] 

18.     𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑣𝑎𝑙 ←  𝑦. 𝑖𝑙𝑜𝑐[𝑡𝑟𝑎𝑖𝑛_𝑖𝑛𝑑𝑒𝑥], 𝑦. 𝑖𝑙𝑜𝑐[𝑣𝑎𝑙_𝑖𝑛𝑑𝑒𝑥] 

19.     # 𝐵𝑢𝑖𝑙𝑑 𝑡ℎ𝑒 𝐿𝑆𝑇𝑀 𝑀𝑜𝑑𝑒𝑙 

20.     𝑚𝑜𝑑𝑒𝑙 ←  𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙([ 

21.         𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚 = 𝑚𝑎𝑥_𝑤𝑜𝑟𝑑𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑚 =

𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑑𝑖𝑚, 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 𝑚𝑎𝑥_𝑙𝑒𝑛), 

22.         𝐵𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙(𝐿𝑆𝑇𝑀(128, 𝑟𝑒𝑡𝑢𝑟𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒)), 

23.         𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.3), 

24.         𝐵𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙(𝐿𝑆𝑇𝑀(64)), 

25.         𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.3), 

26.         𝐷𝑒𝑛𝑠𝑒(128, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′), 

27.         𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.3), 

28.         𝐷𝑒𝑛𝑠𝑒(64, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′), 

29.         𝐷𝑒𝑛𝑠𝑒(𝑙𝑒𝑛(𝑦. 𝑢𝑛𝑖𝑞𝑢𝑒()), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑠𝑜𝑓𝑡𝑚𝑎𝑥′) 

30.     ]) 

31.     # 𝐶𝑜𝑚𝑝𝑖𝑙𝑒 𝑡ℎ𝑒 𝑀𝑜𝑑𝑒𝑙 

32.     𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 ←  𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒) 

33.     𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟, 

34.                   𝑙𝑜𝑠𝑠 = ′𝑠𝑝𝑎𝑟𝑠𝑒_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦′, 

35.                   𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = [′𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′]) 

36.     # 𝐸𝑎𝑟𝑙𝑦 𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘 

37.     𝑒𝑎𝑟𝑙𝑦_𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 ←  𝐸𝑎𝑟𝑙𝑦𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔(𝑚𝑜𝑛𝑖𝑡𝑜𝑟 = ′𝑣𝑎𝑙_𝑙𝑜𝑠𝑠′, 
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38.                                        𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 3, 

39.                                        𝑟𝑒𝑠𝑡𝑜𝑟𝑒_𝑏𝑒𝑠𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑇𝑟𝑢𝑒) 

40.     # 𝑇𝑟𝑎𝑖𝑛 𝑡ℎ𝑒 𝑀𝑜𝑑𝑒𝑙 

41.     ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ←  𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡( 

42.         𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 

43.         𝑒𝑝𝑜𝑐ℎ𝑠 = 𝑒𝑝𝑜𝑐ℎ𝑠, 

44.         𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 

45.         𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑎 = (𝑋_𝑣𝑎𝑙, 𝑦_𝑣𝑎𝑙), 

46.         𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘𝑠 = [𝑒𝑎𝑟𝑙𝑦_𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔, 𝑙𝑟_𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘], 

47.         𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 1 

48.     ) 

49.     # 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑀𝑜𝑑𝑒𝑙 𝑜𝑛 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑡 

50.     𝑣𝑎𝑙_𝑙𝑜𝑠𝑠, 𝑣𝑎𝑙_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ←

 𝑚𝑜𝑑𝑒𝑙. 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑋_𝑣𝑎𝑙, 𝑦_𝑣𝑎𝑙, 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 0) 

51.     𝐴𝑝𝑝𝑒𝑛𝑑 𝑣𝑎𝑙_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑡𝑜 𝑐𝑣_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠 

 

Bidirectional architecture was utilized in capturing past and 
future dependencies of sequential data in LSTM model. Two 
LSTM layers such as 128 and 64 units were implemented to 
create a balance between complexity of the model and efficient 
computation. The addition of 30% dropout layer was done after 
each LSTM layer and full connection to layers for overfitting 
prevention. The wholly connected layers were 128 and 64 units 
with ReLU activation, and this was followed by a softmax output 
layer for different classes classification. 

In evaluation of the robustness of the model across different 
data divides, cross-validation was used to have accurate and 
consistent validation. A learning rate scheduler dynamically 
altered the learning rate, dividing it into two after epoch 5 for 
convergence enhancement. Quick or early stopping was applied 
for the training termination when validation loss no longer 
improves. This therefore prevented overfitting. High-performing 
LSTM model was the result of the optimization. This is 
concluded as such because of cross-validation accuracies, test 
performance measures which include the accuracy, precision, 
recall, and F1-score), and confusion matrix visualization, as well 
as confusion matrix visualization. 

D. Convolutional Neural Network (CNN) 

These are used to process images or any other grid-like data. 
They use convolutional layers for data features and pattern 
detection. However, they were applied in the past to text by 
treating it as a dimensional grid of words or characters. CNN has 
the capacity to extract facial expressions or local patterns from 
text. 

Algorithm for Model 4 – CNN model implementation before 

optimization 

Input 

Training data: X_train, y_train 

Test data: X_test, y_test 

 

Output 

Evaluation metrics: Accuracy, Loss, Confusion Matrix Visualization 

1. # 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐶𝑁𝑁 𝑀𝑜𝑑𝑒𝑙 

2. 𝑐𝑛𝑛_𝑚𝑜𝑑𝑒𝑙 ←  𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙([ 

3.     𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚 = 𝑚𝑎𝑥_𝑤𝑜𝑟𝑑𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑚 =

128, 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 𝑚𝑎𝑥_𝑙𝑒𝑛), 

4.     𝐶𝑜𝑛𝑣1𝐷(𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 128, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 5, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′), 

5.     𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔1𝐷(𝑝𝑜𝑜𝑙_𝑠𝑖𝑧𝑒 = 2), 

6.     𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.2), 

7.     𝐹𝑙𝑎𝑡𝑡𝑒𝑛(), 

8.     𝐷𝑒𝑛𝑠𝑒(64, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′), 

9.     𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.2), 

10.     𝐷𝑒𝑛𝑠𝑒(𝑙𝑒𝑛(𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑠), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑠𝑜𝑓𝑡𝑚𝑎𝑥′) 

11. ]) 

12. # 𝐶𝑜𝑚𝑝𝑖𝑙𝑒 𝑡ℎ𝑒 𝐶𝑁𝑁 𝑀𝑜𝑑𝑒𝑙 

13. 𝑐𝑛𝑛_𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ′𝑎𝑑𝑎𝑚′, 

14.                   𝑙𝑜𝑠𝑠 = ′𝑠𝑝𝑎𝑟𝑠𝑒_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦′, 

15.                   𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = [′𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′]) 

16. # 𝑇𝑟𝑎𝑖𝑛 𝑡ℎ𝑒 𝐶𝑁𝑁 𝑀𝑜𝑑𝑒𝑙 

17. 𝑒𝑝𝑜𝑐ℎ𝑠 ←  3 

18. 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ←  32 

19. 𝑐𝑛𝑛_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ←  𝑐𝑛𝑛_𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 

20.                               𝑒𝑝𝑜𝑐ℎ𝑠 = 𝑒𝑝𝑜𝑐ℎ𝑠, 

21.                               𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 

22.                               𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑎 = (𝑋_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑒𝑠𝑡)) 

23. # 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝐶𝑁𝑁 𝑀𝑜𝑑𝑒𝑙 

24. 𝑐𝑛𝑛_𝑡𝑒𝑠𝑡_𝑙𝑜𝑠𝑠, 𝑐𝑛𝑛_𝑡𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ←

 𝑐𝑛𝑛_𝑚𝑜𝑑𝑒𝑙. 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑋_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑒𝑠𝑡) 

25. # 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝐶𝑁𝑁 

26. 𝑦_𝑝𝑟𝑒𝑑_𝑐𝑛𝑛 ←  𝑛𝑝. 𝑎𝑟𝑔𝑚𝑎𝑥(𝑐𝑛𝑛_𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡), 𝑎𝑥𝑖𝑠 =

−1) 

27. # 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 

28. 𝑐𝑛𝑛_𝑐𝑚 ←  𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥(𝑦_𝑡𝑒𝑠𝑡, 𝑦_𝑝𝑟𝑒𝑑_𝑐𝑛𝑛) 

 

Optimization of CNN 

1. # Initialize Stratified k-Fold Cross-Validation 

2. fold ← 1 

3. cv_accuracies ← [] 

4. # Perform Stratified k-Fold Cross-Validation 

5. For train_index, val_index in kfold.split(X_padded, y) do 

6.     Print "Training fold " + fold 

7.     fold ← fold + 1 

8.     # Split the data into training and validation sets for this fold 

9.     X_train, X_val ← X_padded[train_index], 

X_padded[val_index] 

10.     y_train, y_val ← y.iloc[train_index], y.iloc[val_index] 

11.     # Build the CNN Model 

12.     model ← Sequential([ 

13.         Embedding(input_dim=max_words, 

output_dim=embedding_dim, input_length=max_len), 

14.         Conv1D(filters=128, kernel_size=5, activation='relu'), 

15.         MaxPooling1D(pool_size=2), 

16.         Conv1D(filters=64, kernel_size=3, activation='relu'), 

17.         GlobalMaxPooling1D(), 

18.         Dropout(0.3), 

19.         Dense(128, activation='relu'), 

20.         Dropout(0.3), 

21.         Dense(len(y.unique()), activation='softmax') 

22.     ]) 

23.     # Compile the Model 

24.     optimizer ← Adam(learning_rate=learning_rate) 

25.     model.compile(optimizer=optimizer,  

26.                   loss='sparse_categorical_crossentropy',  

27.                   metrics=['accuracy']) 

28.     # Early Stopping Callback 

29.     early_stopping ← EarlyStopping(monitor='val_loss',  

30.                                        patience=3,  

31.                                        restore_best_weights=True) 

32.     # Train the Model 

33.     history ← model.fit( 

34.         X_train, y_train, 

35.         epochs=epochs, 

36.         batch_size=batch_size, 

37.         validation_data=(X_val, y_val), 

38.         callbacks=[early_stopping], 

39.         verbose=1 

40.     ) 

41.     # Evaluate the Model on Validation Set 

42.     val_loss, val_accuracy ← model.evaluate(X_val, y_val, 

verbose=0) 

43.     Append val_accuracy to cv_accuracies 

 

Structured approach was deployed to optimize CNN model 
for performance enhancement and to ensure overall 
generalization. Number of filters (128 and 64), sizes 5 and 3 
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Kernel, 30% of rate of dropout and the rate of learning for Adam 
Optimizer were iteratively fine-tuned. Some of the architectures 
are embedding layers, multiple convolutional layers to extract 
features, max pooling of layers to reduce dimensionality and 
wholly connected layers for classification. 

For the evaluation of the model using different multiple data 
splits, cross-validation was utilized to ensure unbiased 
performance against certain dataset divisions. Quick stopping 
was done so as not to overfit, halt training when validation no 
longer improve. The integration of such technique strengthened 
CNN model capabilities to extract insightful features and 
effectively classify the task without compromising the cross-
validation folds consistency.  

E. Gated Recurrent Unit (GRU) 

This uses RNN architecture for the optimization of 
sequential data. The incorporation of Bidirectional GRU layers 
enhances the capturing of past and future dependencies in the 
input sequences, which enhance the extraction of features. 
Dropout and L2 regularization are techniques that can be applied 
to reduce or eradicate overfitting and ensure generalization. The 
gating mechanism of GRU reduces complexities inherent in 
computations compared to LSTMs without compromising their 
performance. This then highlight their efficiency at analyzing 
emotional, trends in large datasets. The model is effective for 
temporal patterns identification and sequential dependencies, 
which ensure strong performance irrespective of the multi-class 
complexities sentiment classification tasks. 

Algorithm for Model 5 – GRU model implementation before 

optimization 

Input 

Training data: X_train, y_train 

Test data: X_test, y_test 

 

Output 

Evaluation metrics: Accuracy, Loss, Confusion Matrix Visualization 

1. # 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐺𝑅𝑈 𝑀𝑜𝑑𝑒𝑙 

2. 𝑔𝑟𝑢_𝑚𝑜𝑑𝑒𝑙 ←  𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙([ 

3.     𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚 = 𝑚𝑎𝑥_𝑤𝑜𝑟𝑑𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑚 =

128, 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ = 𝑚𝑎𝑥_𝑙𝑒𝑛), 

4.     𝐵𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙(𝐺𝑅𝑈(128, 𝑟𝑒𝑡𝑢𝑟𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒)), 

5.     𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.2), 

6.     𝐵𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙(𝐺𝑅𝑈(64)), 

7.     𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.2), 

8.     𝐷𝑒𝑛𝑠𝑒(64, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′), 

9.     𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.2), 

10.     𝐷𝑒𝑛𝑠𝑒(𝑙𝑒𝑛(𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑠), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑠𝑜𝑓𝑡𝑚𝑎𝑥′) 

11. ]) 

12. # 𝐶𝑜𝑚𝑝𝑖𝑙𝑒 𝑡ℎ𝑒 𝐺𝑅𝑈 𝑀𝑜𝑑𝑒𝑙 

13. 𝑔𝑟𝑢_𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ′𝑎𝑑𝑎𝑚′, 

14.                  𝑙𝑜𝑠𝑠 = ′𝑠𝑝𝑎𝑟𝑠𝑒_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦′, 

15.                  𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = [′𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′]) 

16. # 𝑇𝑟𝑎𝑖𝑛 𝑡ℎ𝑒 𝐺𝑅𝑈 𝑀𝑜𝑑𝑒𝑙 

17. 𝑒𝑝𝑜𝑐ℎ𝑠 ←  3  𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ←  32 

18. 𝑔𝑟𝑢_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ←  𝑔𝑟𝑢_𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 

19.                               𝑒𝑝𝑜𝑐ℎ𝑠 = 𝑒𝑝𝑜𝑐ℎ𝑠, 

20.                               𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 

21.                               𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑎 = (𝑋_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑒𝑠𝑡)) 

22. # 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝐺𝑅𝑈 𝑀𝑜𝑑𝑒𝑙 

23. 𝑔𝑟𝑢_𝑡𝑒𝑠𝑡_𝑙𝑜𝑠𝑠, 𝑔𝑟𝑢_𝑡𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ←

 𝑔𝑟𝑢_𝑚𝑜𝑑𝑒𝑙. 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑋_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑒𝑠𝑡) 

24. # 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝐺𝑅𝑈 

25. 𝑦_𝑝𝑟𝑒𝑑_𝑔𝑟𝑢 ←

 𝑛𝑝. 𝑎𝑟𝑔𝑚𝑎𝑥(𝑔𝑟𝑢_𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡), 𝑎𝑥𝑖𝑠 = −1) 

26. # 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 

27. 𝑔𝑟𝑢_𝑐𝑚 ←  𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥(𝑦_𝑡𝑒𝑠𝑡, 𝑦_𝑝𝑟𝑒𝑑_𝑔𝑟𝑢) 

 

Optimization of GRU 

1. # Initialize Cross-Validation 

2. fold ← 1 

3. cv_accuracies ← [] 

4. # Perform Cross-Validation for GRU-based Model 

5. For train_index, val_index in kfold.split(X_padded, y) do 

6.     Print "Training fold " + fold 

7.     fold ← fold + 1 

8.     # Prepare Training and Validation Data 

9.     X_train, X_val ← X_padded[train_index], X_padded[val_index] 

10.     y_train, y_val ← y.iloc[train_index], y.iloc[val_index] 

11.     # Build the GRU-based Model 

12.     model ← Sequential([ 

13.         Embedding(input_dim=max_words, 

output_dim=embedding_dim, input_length=max_len), 

14.         Bidirectional(GRU(128, return_sequences=True)), 

15.         Dropout(0.3), 

16.         Bidirectional(GRU(64)), 

17.         Dropout(0.3), 

18.         Dense(128, activation='relu', kernel_regularizer='l2'), 

19.         Dropout(0.3), 

20.         Dense(64, activation='relu', kernel_regularizer='l2'), 

21.         Dense(len(y.unique()), activation='softmax') 

22.     ]) 

23.     # Compile the Model 

24.     optimizer ← Adam(learning_rate=learning_rate) 

25.     model.compile(optimizer=optimizer,  

26.                   loss='sparse_categorical_crossentropy',  

27.                   metrics=['accuracy']) 

28.     # Early Stopping Callback 

29.     early_stopping ← EarlyStopping(monitor='val_loss',  

30.                                        patience=3,  

31.                                        restore_best_weights=True) 

32.     # Train the Model 

33.     history ← model.fit( 

34.         X_train, y_train, 

35.         epochs=epochs, 

36.         batch_size=batch_size, 

37.         validation_data=(X_val, y_val), 

38.         callbacks=[early_stopping], 

39.         verbose=1 

40.     ) 

41.     # Evaluate the Model on Validation Data 

42.     val_loss, val_accuracy ← model.evaluate(X_val, y_val, 

verbose=0) 

43.     Append val_accuracy to cv_accuracies 

 

The optimization of the GRU model was achieved with 
bidirectional architecture, which captured sequential pattern 
from forward and backward contexts. 128 and 64 units were the 
two GRU layers that were used for balancing the model’s 
complexity and efficient computation. 30% of dropout layers 
was integrated after each GRU and dense layer for overfitting 
reduction. The dense layers of 128 and 64 units used ReLU 
activation and L2 regularization for continuous prevention of 
overfitting and enhance generalization. The output layer utilized 
softmax activation for different classes classification. 

For model robustness and consistency, cross-validation was 
conducted to validate the accuracies of the fold. Quickly 
stopping the training when validation loss plateaued, reduced 
overfitting and extra cost of computation. The final test set 
evaluation revealed that the model is strong for generalization, 
with high accuracy, precision, recall, and F1-score. The 
performance metrics and confusion matrix visualizations are the 
confirmation of the ability of the model in effective handling of 
classification task.  
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V. RESULTS AND DISCUSSION 

A. Results observation before optimization 

 
Fig 3. Results before optimization 

0.8432 is the value for highest precision, while competitive 
test accuracy is 0.8279 and F-score is 0.8238. These values 
depict that GRU model performance is the best overall. This also 
implies a strong robustness of sequential data handling. The 
models that follow closely are RNN and LSTM with a bit of 
higher accuracy but lower precision than GRU. Also, the CNN 
Model performed reasonably, only lagging in sequential patterns 
handling. SVM model is the least of all with an accuracy value 
of 0.7571 and F-score, showing its limitation when it is 
compared to deep learning models.  

B.  Results observations after optimization 

 
Fig 4. Results after optimization 

This showed different performance levels; GRU emerged as 
the highest-performing model, with 93.10% test accuracy, 
93.96% precision and 93.18% F-Score, which shows its ability 
for effective management of sequential data. This is followed by 
LSTM at 93.07% test accuracy and 93.8% precision. This makes 
it a robust choice for tasks that need long-term reliance. The 
CNN model may be less accurate at 92.44% test accuracy, yet it 
is a viable choice in cases where spatial feature extraction is 
important. Contrastingly, the SVM model had a test accuracy of 
79.34% and an F-Score of 78.83%, which showed that it was the 
least effective when it came to handling complex, sequential 
datasets. In the overall, RNN models such as GRU and LSTM 
performed consistently and had generalization in different 
validation folds, as such they are the recommended options for 
sequential or time-series data activities.  

C. Comparison of before and after optimization 

 

Fig 5. Accuracy of models before and after optimization 

Test accuracy: Optimization resulted in significant 
improvement in test accuracy in all the models. RNN, for 
instance, improved the most, with an increase from 82.59% to 
93.14%. This implies it has an enhanced capacity to generalize. 
This is followed by LSTM and GRU with 93.07% and 93.10% 
accuracy respectively. This shows that they are robust in terms 
of sequential data. CNN, on the other hand, increased from 
82.06% to 92.44%, while the SVM also increased from 75.91% 
to 79.34%, a modest gain but still trailing behind deep learning 
models in the overall performance of all the models. 

 

 

Fig 6. F1-score of the models before and after optimization 

F-Score: This creates a balance between precision and recall 
and significantly improved all the model’s post-optimization; for 
example, the GRU had the highest score, ranging from 82.49% 
to 93.18%. This is followed by LSTM ranging from 82.55% to 
93.13%. Also, RNN and CNN recorded some levels of 
improvement, to the tune of 93.05% and 92.35%, respectively. 
Only SVM was modest, with an increase from 75.44% to 
78.83%. However, it can be regarded as below-par performance 
if compared to deep learning models. This shows it has relative 
limitations in fostering a balance between precision and recall. 

 

Fig 7. Precision of the models before and after optimization 

Precision: Every model in this study has significant 
improvement in their precision after they have been optimized. 
For instance, both LSTM and GRU had the highest gain, with 
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precisions ranging from 85.02% to 93.80% and from 84.70% to 
93.96%, respectively. This is followed by RNN and CNN with 
an improvement ranging from 83.39% and 83.43% to 93.56% 
and 92.41%, respectively. SVM had the least improvement, with 
its performance declining from 77.20% to 80.37%. This is an 
indication that despite its enhanced performance optimization, it 
is not effective like the deep learning models. 

 

Fig 8. Recall of the model before and after optimization 

Recall: Consistent optimization increased recall in all the 
models. This is a reflection of improved sensitivity. RNN, 
LSTM, and GRU all improved maximally, with recall being 
more than 93%. This is followed by CNN, with a significant rise 
from 82.06% to 92.44%. Conversely, the SVM had modest 
improvement ranging from 75.71% to 79.34%. All these are 
reflections of the superior capability of the deep learning model 
and its correct identification of positive cases compared to SVM. 

D. Final results 

Before the models were optimized, there were different 
performances. SVM had an accuracy of 0.7571; this was 
balanced with 0.7720 precision and 0.571 recall. RNN, LSTM 
and GRU were better off SVM, with 0.8280 accuracies. Only 
CNN recorded the lowest performance with a value of 0.8206. 
After optimization, GRU was the highest-performing model 
with an accuracy of 0.8206, 0.9936 precision and 0.9318 F1-
Score. This is followed by RNN and LSTM with 0.9314 and 
0.9307, respectively, coupled with balanced precision and recall. 
CNN was also accurate behind the GRU, RNN and LSTM with 
an accuracy of 0.9244 and 0.235 F1-Score. SVM recorded 
modest accuracy, that is, 0.7934. Based on this, GRU was the 
best overall, followed by RNN and LSTM. 

E. Discussion 

Emotional detection practical applications cut across 
different strata, including marketing, mental health and public 
sentiment analyses. Based on the information obtained from 
social media datasets, the application focuses on understanding 
the emotional trends of individuals and groups of individuals. 

Emotion detection is significant for understanding consumer 
sentiment in marketing about campaigns, products and services. 
Positive sentiments like happiness and love trigger the 
satisfaction of the consumers, and they are the main part of the 
dataset. Even though they are 27% of the overall datasets, they 
are important feedback to organization to fine-tune their 
strategies. Negative sentiment, that is, worry and sadness, which 
are 21.8% and 12.93%, respectively, are equally important 
because they let brands address their concerns proactively, 
improve relationships with customers and let products match the 
needs of the consumers. 

Emotion detection is significant with respect to monitoring 
the opinion of the public, where worry and neutral sentiments 
are the dominant emotions, and they are 43% of the overall 

datasets. They provide information with respect to the responses 
of society to current events or policies, which help policymakers 
understand and make informed decisions that effectively address 
public concerns. Other emotions, such as anger (0.28%) and 
enthusiasm (1.9%), also let the government and organization feel 
the pulse of the public and plan appropriate interventions. 

Emotion detection in mental health analysis provides 
information as to the well-being of people. Sadness and relief, 
for example, take about 3.82% of the total datasets, and they are 
needed to monitor mental health. Similarly, boredom (0.45% 
and surprise (5.48%), which are not dominant emotions, help in 
solidifying the understanding and enabling the targeted 
development of mental health initiatives. The application of such 
shows the significance of in-depth emotional insights that are 
capable of ensuring the development of mental health programs. 

CNN and GRU are advanced AI models with a significant 
impact on emotion detection performance, as they address the 
issue of class imbalance and improve important indices like 
precision, recall, and F-score. From the optimization result, 
CNN had 92.44% accuracy and 92.41% precision. GRU was 
exceptional also, with 93.10% accuracy and 93.95% precision. 
These indices show that the model is robust enough to offer 
dependable and various emotional insights across many 
domains. This is why they are significant tools for emotion 
detection application and optimization. 

VI. CONCLUSION 

 
This research has shown the transformative impact of AI-

driven emotion detection across different areas such as mental 
health, marketing, and public policy. After the optimization, 
GRU was the overall best-performing model with 93.10% 
accuracy and an F1-Score of 93.18%. CNN improved 
maximally; as such, it is an important model in feature-driven 
activities. Optimization strategies were crucial to address the 
imbalances in the datasets and performance. RNN and LSTMs, 
which are sequential models, excelled in short-time pattern 
identification. These findings, therefore, have provided requisite 
tools to advance emotion detection and its practical applications.  
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