DOI: http://dx.doi.org/10.26483/ijarcs.v16i5.7348

Volume 16, No. 5, September-October 2025

ISSN No. 0976-5697

International Journal of Advanced Research in Computer Science

Available Online at www.ijarcs.info

AN EXPERIMENT OF THE COMPLEXITY OF SLIDING BLOCK PUZZLES BY
2D HEAT FLOW IN PARAMODULATION

Ruo Ando
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430 Japan

Yoshiyasu Takefuji
Musashino University
3-3-3 Ariake, Koto-Ku, Tokyo 135-8181, Japan

Abstract: In this paper, we present a curious experiment with the hot list strategy in solving sliding block puzzles by paramodulation. The hot list
strategy is one of the look-ahead strategies using paramodulation in automated reasoning. We define two heat flows in the reasoning process -
vertical with the hot list of permutations along the Y-axis and horizontal along the X-axis. In the experiment, we have generated 500 * 8 puzzles
under the test of the solvability checking by counting inversions. We have obtained curious 2D and 3D plots of the complexity by defining heat
flow with hot lists. We can distinguish a few groups in 500 boards (puzzles) based on the concept of heat-resisting.

Keywords: Paramodulation, Hot List Strategy, Sliding Block Puzzle, Given Clause Algorithm, Heat Flow, Complexity Measurement

I. INTRODAUCTION

A sliding puzzle (also called a sliding block puzzle) is a
combination puzzle where a player slides pieces along certain
routes on a board to reach a certain end configuration (state).

Initial State Goal State
1 2 3 1 2 3
8 4 4 56
7 6 5 7 8

Figure 1. Initial state and goal state of 8 puzzle.

In sliding puzzles, a player is prohibited from lifting any
piece off the board. This constraint separates sliding puzzles
from rearrangement puzzles. Consequently, discovering routes
opened up by each move with the two-dimensional confines of
the board is an interesting point of solving sliding block
puzzles. Figure 1 shows the example of a sliding puzzle. The
puzzle has 9 square slots on a square board.

The first eight slots have square pieces. The 9th slot is
empty. Sliding block can be represented as the permutation. A
permutation of a set S is a bijection from S onto itself. If the set
we permuting is $§ A = {1,2, ..., n} $, it is often convenient to
represent a permutation sigma as follows:

For instance, consider the set A = {1,2,3,4,5,6}. Then the
permutation π,

sends 1 to 4, 2 to 1, 3 to 5 and fixes, or leaves unchanged,
the element 6.

© 2023-2025, IJARCS All Rights Reserved

The theorem prover OTTER (Organized Techniques for
Theorem-proving and Effective Research) has been developed
by W. McCune as a product of Argonne National Laboratory.
OTTER is based on earlier work by E. Lusk, R. Overbeek, and
others [1]. OTTER adopts the given-clause algorithm and
implements the set of support strategy [2]. In this paper we use
OTTER for our experiments.

Algorithm 1 Given clause algorithm
Input: SOS, Usable List
Output: Proof
1: while until SoS is empty do
2: choose a given clause G from SoS;
3: move the clause g to Usable List;
4. while c¢_1, ..., ¢_n in Usable List do
5 while R(cy,..c;,G, ¢it1,..¢,)exists do

6: A<= R(ey,..0;, G eiq1,.0n);
7: if A is the goal then

8 report the proof;

9: stop

10: else {A is new odd}

11: add A to SoS X

12: end if

13: end while

14: end while
15: end while

Algorithm 1. Given clause algorithm
I1. GIVEN CLAUSE ALGORITHM

OTTER adopts given-clause algorithm in which the
program attempts to use any and all combinations from axioms
in the given clause. In other words, the combinations of the
clause are generated from given clauses which have been
focused on. Given clause algorithm is shown in Algorithm 1.

At line 2, given clause G is extracted from SoS (Set of
Support). Line 4 and 5 is a loop to use any and all combinations
of the given clause and Usable List. In detail, \cite{Slaney}
discuss the basic framework of the given clause algorithm.

76

Ruo Ando et al, International Journal of Advanced Research in Computer Science, 16 (5), September-October 2025, 76-80

111. PARAMODULATON

A. Formulation

Paramodulation, which is introduced by [3], is a powerful
method of equational reasoning. Paramodulation takes two
clauses of which at least cone contains positive equality literal
.

{L1, La,...Ly}
{l=r, Ks..K\,}3p, 0.0 = mgu(L1/p,1) 3)
{Li/p+r,La,.... Ly, Ko, ... K;p}o

According to [4], paramodulation is a realization of Leibniz's
substitution of equals by equals. In the case that L1 contains a
subterm at a position p which is unifiable with 1, the
paramount can be computed with the unifier sigma. For
example, consider two clauses.

{F(z.7) = 9(2). Q(2)} @
(4) generates the new clause.
{P(y,h(g(e, B)), Q) } (5)

From the mathematical rules x+0=x and -y+y=0.
{plus(z,0) = =}
{plus(minus(y),y) = 0}
generates from the first into the second of the clauses.
{minus(0) = 0} (7

(6)

Paramodulation uses unification, while demodulation adopts
matching.

Algorithm 2 para_into (paramodulation into given clause)

Input: given clause
Output: subterm list
1: into_literal = given_clause — first_literal
2: while into_literal != NULL do
3: subterm_list = into_literal — term — list
4. while subterm_list '= NULL do
5 subterm_list — path = 1
para_into_terms(subterm_list, into_literal)
subterm_list — path = 0
subterm_list = subterm_list — next
into_literal = into_literal
10 end while
11: end while

R TS A

Algorithm 2. Paramodulation

B. Implementation

Concerning the implementation of OTTER, in
paramodulation, two parents and a child are processed. The
parent clauses contain the equality applied for the replacement.
The parent clauses are divided into two: from parent and from
clause. If equality comes from the literal, the side of equality
unifies with the term, which is replaced with from the term.
The replaced term is called the into the term. The literal
containing the replaced term is also called the into literal. Also,
the parent containing the replaced term is called the into the
parent or into clause. Paramodulation is divided into two
procedures: para_into and para_from.

e para_into. Paramodulation into the given -clause.
When we make an inference by the para_into rule, we

© 2023-2025, IJARCS All Rights Reserved

paramodulte into the given clause from containing
positive equality and on the usable list.

e para_from. Paramodulation from the given clause.
When we make an inference by the para\ from rule,
the given clause contains positive equality, and the
inference is made by paramodulating using this
equality into a clause.

In this paper, we use the rule of para_into. The procedure of
para_into is invoked from infer and process taking the given
clause.

Algorithm 2 has two loops. The first one (lines 2 to 11) is over
literals. The second one (lines 4 to 10) is over terms. Clauses,
literals, and terms are defined as follows.

e Clause is an expression formed from a finite collection
of literals (atoms or their negations).
Literal is an atomic formula (atom) or its negation.
A variable, a constant and an n-ary function symbol
applied to n terms
[]
At line 6, OTTER computes paramodulants over current
subterm lists.

IV. HOT LIST STRATEGY

The hot list strategy [5] is one of the look-ahead strategies.
Look-ahead strategies are designed to enable the program to
evade many CPU hours to draw conclusions. The conclusion to
draw may require focusing on a retained clause.

Definition of the hot list strategy. The hot list strategy enables
the program to specify the facts by revisiting the hot clause
repeatedly in the context of completing the application of an
inference rule. For implementing the hot list strategy, the main
loop based on the given clause algorithm should be modified.
The main loop for inferring and processing clauses and
searching for a refutation operates mainly on the lists usable
and SoS.

Choose appropriate given_clause in SoS;
Move given_clause from list(SoS) to list(usable)
Infer and process new clauses using the inference rules
set.

e Newly generated
$given\ clause$.

e Do the retention test on new clauses and append those
to list(SoS).

clause must have the

Figure 2 shows the chart flow of modifying the main loop for
the hot list strategy. The hot list strategy is designed to make
some set of clauses (hot lists) immediately considered with
each newly retained clause. With the modification, if the
program passes the branch on the lower side of Figure 2, which
is “‘hotlist exists?", the paramodulation routine (para\ into) is
immediately invoked in the post-process.

77

Ruo Ando et al, International Journal of Advanced Research in Computer Science, 16 (5), September-October 2025, 76-80

1 main Loop —

set
para_into) ?

para_into (clause)

No
hot list
exists?

Figure 2. Hot list sttegy by modifying main loop

marking subterms

para_into (clause)

unmarking subterms

V.METHODOLOGY

Wherever Times is specified, Times Roman or Times New
Roman may be used. If neither is available on your word
processor, please use the font closest in appearance to Times.
Avoid using bit-mapped fonts if possible. True-Type 1 or Open
Type fonts are preferred. Please embed symbol fonts, as well,
for math, etc.

A. Setting Inferene Rule set

As we discussed before, the basic inference mechanism of
OTTER is based on the given-clause algorithm. Given-clause
algorithm can be viewed as a simple implementation of the set
of support strategy. OTTER maintains four lists of clauses:
usable, SoS, demodulator, and passive. In our case, we cope
with two kinds of clauses: usable and SoS. Horizontal sliding
from row[i] to row[i+1] is represented as follows.

list (usable).

EQUAL (1 (hole, 1 (n(
end_of_list.

1 hole 2 3
"z{l 2 hole 3 } ®)

Vertical sliding from row[i] to row[i+4] is represented as
follows.

x),y)),1(n(x),1l(hole,y))).

list (usable).

EQUAL (1 (hole, 1 (x,1(v,1(z,1(u,l(n(w),
1(n(w),1(x,1(y,1(z,1(u,l(hole,v)))
end_of_list.

6 7
67})

B. Generating puzzles (boards)

In general, to check the solvability of N puzzles, the number
of inversions of each number of N slots is calculated. For
example, if we have the board configuration board
[2,3,6,1,7,8,5,4, hole] (5,2,8,4,1,7, hole, 3,6), the number of
inversions are as follows:

© 2023-2025, IJARCS All Rights Reserved

1) 2 precedes 1 - 1 inversions

2) 3 precedes 1 - 1 inversion

3) 6 precedes 1, 5, 4 - 3 inversions
4) 1 precedes none - O inversions
5) 7 precedes 5, 4 - 2 inversions
6) 8 precedes 5, 4 - 2 inversions
7) 5 precedes 4 - 1 inversions

8) 4 precedes none -) inversions

Total inversions 1+1+3+0+2+2+1+0 = 10 (Even Number) So
this puzzle configuration is solvable. On the other hand, it is
not possible to solve an instance of 8 puzzles if a number of
inversions are odd in the input state.

Algorithm 3 Checking the solvability of N puzzles
Input: Board[x,z2,...,Z,, hole]
Output: SOLVABLE or UNSOLVABLE

1: Board[X|XS] = Board|zy,x2, ..., Ty, hole]
2: while XS in Board[X1XS] is empty do
32 foriin XS do

4: statements..

5: if (X # X S[i]) then

6: counter[i] + +

7: end if

8: end for

9: end while

10: line = check(Board|...] C hole)

11: sum =0

12: for i to n do
132 sum+ = counter|i]
14: end for
15: if (line + sum%2 == 0) then
16: flag = SOLVABLE
17: else
, 18 flag = UNSOLVABLE
19: end if

Algorithm 3. Checking solvability

Algorithm 3 shows the procedure for checking the
solvability of N puzzles. At lines 2 to 9, the number of
inversions of each slot is counted. These figures are counted
up at lines 11 to 14. Finally, the sum is checked if it is an even
or odd number at lines 15 to 19.

VI. EXPERIMENTAL RESULTS

A. Generating puzzles

In the experiment, we have generated 500 sliding puzzles with
size 8 * 8.All generated configurations of 8 puzzles are
solvable. For each puzzle, we have measured the number of
generated clauses with the procedures shown in Algorithm 2.
For simplicity, we have generated the configuration of the first
8 slots with random integers ranging from 1 to 8 and fixed 9th
slot to hole.

B. Counting clauses

Algorithm 4 shows the brief description of the modified given
clause algorithm for counting the generated clauses.

78

Ruo Ando e al, International Journal of Advanced Research in Computer Science, 16 (5), September-October 2025, 76-80

Algorithm 4 [ncrementing the number of generated clanses
while given clause 15 MOT MULL do

aneder _{als_clash{gie_of];

appernd_cl{Usalde. e oI,

s pd mm

4 0 spletfang() then

3 purssahle_geoven_splad{giv_el);

e endd 0

T uler_and _proscessiziv_cll;

! giv_el = extract_gven_clansed)]

& trackithe_number_of_genevated _clauses);
1 end while

Algorithm 4. Counting clauses generated

At line 9, the number of generated clauses is incremented.
After line 8 of picking up the clause from a set of support, we
can record the current size of the set of support.

By doing this, we can obtain the plot with \# puzzles and the
number of generated clauses of the Y-axis, as shown in the
next section.

Table I shows the numerical results of solving 500 puzzles
randomly generated. The number of generated clauses with
paramodulation ranges from 510 (1,3,5,4,6,8,7,2,hole - easiest)
to 188,610 (6,2,7,3,4,5,8,1,hole - the most difficult). In the
view of complexity of reasoning process, the configuration
[#295 1,3,5,4,6,8,7,2,hole)] is 369.82 times harder to solve
than the configuration [#124 (6,2,7,3,4,5,8,1,hole)].

board No [Initial state | clauses generated

#205 1,3,5,4,6,8,7,2,hole | 510 (easiest)

#340 8.1.3,4.2,5.7,6,hole | 918

#294 2.3.,5,1,6,8,7,4hole | 1,362

#86 8,7.6,4,5,23,1,hole | 188,475

#124 6,2,7,3,4,5,8,1,hole | 188,610 (the most difficult)
Table 1. Initial board states and the complexities of
paramodulation

| Board No [TInitial state | vertical [horizontal |

#295 1.3,5.4,6,8,7.2.,hole | 254 388
#340 8.1,3,4,2,5,7,6,hole | 502 725
#2904 2.3,5,1,6,8,7.4,hole 1,290 1,964
#86 8.,7,6,4,5,2,3.1,hole 110,423 100,803
#124 6,2,7,3,4,5,8.1,hole | 96,809 100,824
Table 2. The number of clauses generated by
vertical/horizontal heat flow
r r 3 F 3 r
vertical horizontal bidirectional

Figure 3. Heat flow in paramodulation.

© 2023-2025, IJARCS All Rights Reserved

C. Heat flow

In nature, sliding puzzles are two-dimensional, even if the
sliding is facilitated by encaged marbles or three-dimensional
tokens. We define the heat flow in paramodulation as follows.

Definition of heat flow. Heat flow makes the reasoning
program consider the hot list immediately with vertical and
horizontal permutation.

Horizontal heat flow is set by the hot clause as follows:
list (hot).
EQUAL (1 (hole, 1 (n(x),y)),1(n(x),1(hole,y))).

Also, vertical heat flow is set by the hot clause as follows:

list (hot).

EQUAL (1 (hole, 1 (x,1(y,1(z,l(u,1(n(w),v)))))),
l(n(w),1(x,1(y,1(z,1(u,1l(hole,v))))))).
end_of_list.

120000 4
100000 A
80000
]
~
5 60000
H
400001
[L
® ©
20000 1 L & ° B
B T oo n by o
o{ W sescoo To oo
0 20000 40000 60000 80000 100000 120000
horizontal

Figure 4. 2D scatter diagram of the number of clauses geerated by solving
500 puzzles

Figure 4 shows the number of clauses generated in solving 500
puzzles. Figure 4 has 500 points of the initial state of the board.
The X-axis is the number of clauses generated with vertical
heat flow. Y-axis is the number of clauses generated with
horizontal heat flow. That is, there are 500 points of boards
with point (x,y) where x is the number of clauses generated
with horizontal heat flow and y is the number of clauses in
vertical heat flow. For example, the points \#295 have the
values (388,254) as shown in Table II.

In Figure 4, we distiguish three areas among 500 points.
1. Area A: The boards are affected by vertical heat flow.
Area B: Horizontal heat flow are effective on the boards.

3. Area C: Both vertical and horizontal heat flow have
effects on the boards

79

Ruo Ando et al, International Journal of Advanced Research in Computer Science, 16 (5), September-October 2025, 76-80

c sdhee | h2ccco
-
.y *+ / hooooo
gty o]
- ’ J"'/‘:o 74 é
ot TS 1
> "
Lo =% " 200005
a® Ao l
’ 20000
e - .
- } :. " _} 0
—— . /-
o, - -, of
»“¢ \ D 7120000

- G -
- . \ .
’ ¥ e ,
50000 — Q & gt -
i o "0
100000 — a J 000(£
argp, 150000 T 20000
Money 200 S
& 200000 0

Figure 5. 3D scatter diagram of the number of generated clauses in solving
500 puzzles.

Figure 5 is a 3D scatter diagram of 500 boards. Points in
Area C in Figure 4 are also plotted in Figure 5. We see the
bulk of points (Area D) in the lower side of the figure
(seemingly with little effect of bidirectional heat flow).

VII. RELATED WORK

Historically, Noyes Chapman invented the oldest type of
sliding puzzle, which is the fifteen puzzle in 1880. Folklore
tells us that in 1886, puzzle master Sam Loyd offered a one-
thousand dollar prize if anyone could swap tile 14 and 15 and
return the other tiles to their original slots. Archer [6] firstly
discusses an algorithmic analysis of 15 puzzles. In [6], a
summary of all possible permutations of slots attained by
moving the black block from cell i to cell j affecting the
permutation of sigma i,j. Howe [7] proposes two approaches
in the two kinds of viewpoints: the properties of permutations
and graph theory. Calabro [8] proposes $ O(n"2) $ time
algorithm for deciding the time when the initial configuration
of the n * n puzzle game is solvable.

Paramodulation originated as development of resolution
[12], one of the main computational methods in first-order
logic, see [13]. For improving resolution-based methods, the
study of the equality predicate has been particularly important
since reasoning with equality is well-known to be of the great
importance of mathematics, logic, and computer science. Ando
et al. [14] propose a measurement of the complexity of sliding
block puzzles using paramodulation.

VIII. CONCLUSION

In this paper, we have presented the new novel experiments
of the complexity of sliding block puzzles based on the
concept of heat flow in paramodulation. Heat flow is set by

© 2023-2025, IJARCS All Rights Reserved

the hot list with vertical and horizontal permutation. In the
experiment, we have generated 500 * 8 puzzles to calculate the
number of clauses generated by vertical and horizontal heat
flow in the board. We have obtained some curious results. To
name a few, board \#295 (1,3,5,4,6,8,7,2,hole) turned out to be
easiest with the 2D coordinate (388, 254). Board \#124
(6,2,7,3,4,5,8,1,hole) is the most difficult with the 2D
coordinate (96,809 100,824). Also, we have distinguished
three areas in 500 points. For one possible further work, we
are aiming to leverage this research for the hybrid of
algorithmic module

IX. REFERENCES

[1] Ewing L. Lusk, William McCune, Ross A. Overbeek: ITP
at Argonne National Laboratory. CADE 1986: 697-698

21 Larry Wos, George A. Robinson, Daniel F. Carson:
Efficiency and Completeness of the Set of Support
Strategy in Theorem Proving. J. ACM 12(4): 536541
(1965)

31 G. Robinson and L. Wos: Paramodulation and theorem-
proving in first order theories with equality. In D. Michie
and R. Meltzer (eds.), Machine Intelligence, Vol. IV, pp.
135-150. Edinburgh University Press, 1969.

[4] Peter Graf: Term Indexing (Lecture Notes in Computer
Science, 1053), Springer, Mar. 27, 1996.

[5] Larry Wos, Gail W. Pieper: The Hot List Strategy. J.
Autom. Reason. 22(1): 1-44 (1999)

6] A.F. Archer: A Modern Treatment of the 15 Puzzle. The
American Mathematical Monthly 106, 793-799, 1999.

[71 Tom Howe: Two Approaches to Analyzing the
Permutations of the 15 Puzzle.
https://www.whitman.edu/Documents/Academics/Mathe
matics/2017/

[8] Chris Calabro (2005): Solving the 15-Puzzle.

[97 John K. Slaney, Ewing L. Lusk, William McCune:
SCOTT: Semantically Constrained Otter System
Description. CADE 1994: 764-768

[10] Ross A. Overbeeck: An implementation of hyper-
resolution. Computers & Mathematics with Applications,
Vol. 1, Issue 2, June 1975, pp. 201-214.

[11] Larry Wos, Gail W. Pieper: The Hot List Strategy. J.
Autom. Reason. 22(1): 1-44 (1999)

[12] J. A. Robinson: A machine-oriented logic based on the
resolution principle. Journal of the Association for
Computing Machinery, Vol. 12 (1965), pp. 23-41.

[13] L. Bachmair, H. Ganzinger: Resolution theorem proving.
In A. Robinson, A. Voronkov (eds.), Handbook of
Automated Reasoning, Vol. I, Elsevier Science,
Amsterdam (2001), pp. 19-99.

[14] Ruo Ando, Yoshiyasu Takefuji: A new perspective of

paramodulation complexity by solving massive 8 puzzles.
CoRR abs/2012.08231 (2020)

80

