
DOI: http://dx.doi.org/10.26483/ijarcs.v16i4.7306

Volume 16, No. 4, July-August 2025

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2023-2025, IJARCS All Rights Reserved 118

ISSN No. 0976-5697

DEVOPS AND CONTINUOUS DELIVERY ADOPTION: TRENDS, CHALLENGES,

AND BEST PRACTICES IN MODERN SOFTWARE DEVELOPMENT LIFE

CYCLE

Mahi Ratan Reddy Deva

Independent Researcher,USA

 ORCID : 0009-0009-0450-199X

Abstract—Efficient software development and deployment methods possess high market value due to the rapid advancement of digital technology.

The Revolutionary approaches through DevOps and Continuous Delivery (CD) help to make more fast and dependable software releases by

collaborating between the development and operations teams. This paper then goes on to provide an analysis of these challenges, categorizing

them into organizational and cultural barriers and technical problems including testing inefficiencies, infrastructure management and security

concerns. Additionally, there are best practices for implementing successful DevOps and CI/CD; which includes frequent code commits, automated

testing, cleaning environments, and continuous monitoring to make reliability and efficiency. This paper also offers a comparative literature review

of rudimentary key studies of DevOps methodologies' impact on software development. It examines critical success factors (CSFs), DevOps

maturity models, and the role of automation in optimizing CI/CD pipelines. The analysis reveals significant research gaps in AI-driven automation,

standardized DevOps frameworks, and the need for empirical validation of proposed methodologies in real-world enterprise settings. Addressing

these gaps can further enhance the adoption and sustainability of DevOps practices, ensuring seamless software development and deployment

processes.

Keywords—DevOps, Continuous Delivery, Cloud Computing, Software Development Life Cycle (SDLC).

I. INTRODUCTION

The growth of new-age technologies and other
advancements have led to software becoming more of a focal
aspect of various enterprise that requires faster time to market
and better quality. Such kind of demands cannot be met in the
traditional software development models that are discreet, which
increases the time is takes to deploy software. DevOps and
Continuous Delivery (CD) have become well-distinguished
techniques or strategies of maintaining continuity and
automating the development process to shrink the gap between
development and operations. These have reoriented the SDLC
and streamlined it, and the advantages of doing so include
encouraging more collaboration and improving the levels of
automation and reliability that business can sustain in a
competitive environment. DevOps can be described as a system
of software development and system administration where the
two teams work together to facilitate integration and delivery of
software builds [1]. The foundation established by Continuous
Integration allows Continuous Delivery to create automated
pipelines for software releases that minimize manual
involvement during the process. Organizations who use CI/CD
pipelines to detect and resolve problems early will gain better
software quality together with faster time-to-market. The power
to release software updates rapidly gives organizations a vital
strategic market advantage since modern business success
depends on digital delivery.

The adoption of DevOps and Continuous Delivery is driven
by cloud computing[2], microservices, and AI-driven
automation, enabling scalable and efficient software
deployment[3]. Cloud native architectures make architecture
more flexible, microservice makes the component more modular
and fault tolerant. Testing, anomaly detection, enrollment in
infrastructure management are all easier with the help of AI and
ML which makes it more reliable. DevSecOps is a logical
evolution from DevOps, where security is a cornerstone and is

infused in each stage of SDLC via automated scanning,
compliance enforcement as well as threat detection. Given the
tight regulations to come in force, organizations must deploy
security first methods of DevOps to keep systems secured, data
kept safe and their delivery pipelines streamlined.

Resource management on hardware and software can
become complex and creating a DevOps culture can be
challenging in large and established enterprises. To be
successful, collaboration has to be fostered, CI/CD pipelines[4],
has to be established, cloud native architectures has to be
utilized, and security has to be integrated across the development
lifecycle. The practices are standardized and observability tools
are used to improve efficiency and reliability. As digital
transformation advances, refining DevOps strategies and
embracing emerging technologies will be key to sustaining long-
term success.

A. Structure of Paper

This paper is structured into several key sections: Section II
provides the fundamentals of DevOps in software development,
including its principles. Section III discusses the role of CI and
CD, along with emerging trends and automation. Section IV
presents the challenges associated with adopting DevOps and
continuous delivery. Best practices for DevOps and continuous
delivery are covered in Section V. Section VI presents the
background research, while Section VII provides the conclusion
and future work.

II. FUNDAMENTALS OF DEVOPS IN SOFTWARE

DEVELOPMENT

Development and operations are combined into a set of
processes called DevOps. DevOps requires a collection of tools
to carry out the integration and combination tasks. Development,
testing, and operations are all handled by a single team known
as DevOps. There is no break throughout the whole product

Mahi Ratan Reddy Deva, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 118-124

© 2023-2025, IJARCS All Rights Reserved 119

lifecycle with DevOps[5]. These four aspects make up DevOps:
collaboration, automation, measurement, and monitoring.
Expanding upon the agile methodology, DevOps focusses on
software operations[6][7]. An important part of DevOps is the
emphasis on continuous integration and software delivery.
Reduced product release delay is another important goal of
automation. DevOps enhances cooperation and communication,
as well as rapid and continuous delivery, frequent upgrades,
dependability, and more. The phases of creating, releasing, and
maintaining software applications are all part of the DevOps
software development Life Cycle (SDLC)[8]. A more
collaborative and iterative approach to software delivery is
advocated by DevOps, in contrast to conventional software
program development models that may include distinct testing,
operations, and development levels. Figure 1 demonstrates the
DevOps SDLC at its most advanced stage:

Fig. 1. DevOps Software Development Life Cycle

• Plan: Companies Specify Assignment Objectives,
Requirements, And Schedules At The Planning Stage.
In Order To Guarantee Alignment And Shared
Knowledge Of Project Aims, This Diploma Entails
Cooperation Between Operations, Improvement, And
Other Stakeholders.

• Code: Producing, Evaluating, And Revising Source
Code Constitute The Code Segment. High Quality
Standards As A Part Of Devops Are Things Such As
Code Reviews, Version Control As Well As Automated
Testing For A Guarantee Of Good Code Quality And
Code Maintainability.

• Build: During The Build Phase, Code Compilation,
Packaging, And Deployment Organization Also Takes
Place. Teams Can Learn Their Issues Sooner, In The
Development Cycle By Automating The Build Process
And Using Automation Tools And CI Servers.

• Test: A Part Of The Check Section Includes Running
Automated Tests To Test Code Modifications And To
Confirm The Software Is Bug Free. Devops Advocates
Continuous Testing, Tests Are Placed Into The
Development Cycle And Automatically Executed Each
Time The Code Is Modified.

• Deploy: During Setup Stage, The Code Changes Are
Driven To Staging Or Production Environment.
Continuous Deployment (CD) Allows Us To Reliably
And Quickly Update An Application With
Automatically Performed Deployment Process.

• Operate: Carryout Phase Involves Metrics Collection,
Incident And Failure Response And Application
Performance Monitoring. Devops Highly Stresses On
Continuous Monitoring And Feedback Loop To Find
And Fix Problems In Real Time To Make Its
Environments Extremely Available And Reliable.

• Monitor: Reading Metrics And Comments To Become
Aware Of Improvement Opportunities Is Part Of The

Presentation Phase. Embracing A Mindset Of Constant
Analysis And Experimentation, Devops Encourages
Organizations To Repeat Their Practices And
Continuously Improve.

The goal of DevOps is to help software development teams
create higher-quality software products more quickly by
combining the various stages of the process into an iterative
workflow. In order to better adapt to changing requirements and
provide value to consumers, teams may take use of the DevOps
SDLC's emphasis on collaboration, automation, and continuous
feedback.

A. DevOps Principles

The practical method of DevOps still requires a shift in an
organization's thinking and culture [9]. Figure 2 shows some of
the basic elements that back up this concept.

Fig. 2. Principles of DevOps

• Customer focus: This means you would have to create
an organizational culture that is focused on meeting
customers' needs by reviewing performance and
identifying processes that can be automated.

• Complete ownership: Complete ownership means that
the wall doesn't exist between teams, and the DevOps
team as a whole is responsible for every stage of product
development and the quality of the end deliverable.

• Systems thinking: This is another one of the key
principles of DevOps that calls for people to change
their mindset around development and operations.
Instead of working in silos, the approach helps teams see
the bigger

• Picture: This helps better the team productivity, ensures
clear understanding of what needs to be fixed, lowers the
response time, and betters the product efficiency.

• Continuous improvement: Continuous betterment of
the process and product is the next core DevOps
principle. With the teams working together focusing on
one goal and continuously improving, it becomes easy.
This aids teams in being adaptable in the face of change,
even in the face of setbacks.

• Automation: Automation of processes, new code
training, and infrastructure configuration is essential for
firms to eliminate redundancy and overwork.

• Communication and Collaboration: A culture of open
communication and collaboration across the
development, operations, and security teams is
promoted by DevOps. Effective communication reduces
misunderstandings, accelerates problem-solving, and
enhances productivity. Collaboration tools like Slack,
Microsoft Teams, and Jira streamline workflows,
ensuring alignment on goals and priorities.

• Focus on Results: DevOps emphasizes delivering
business value rather than just completing tasks. Key

Mahi Ratan Reddy Deva, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 118-124

© 2023-2025, IJARCS All Rights Reserved 120

performance indicators (KPIs) for teams include
customer satisfaction, MTTR, deployment frequency,
and change lead time. Organizations may enhance end-
user experiences, launch products more quickly, and
boost quality by constantly optimizing processes and
eliminating bottlenecks.

III. THE ROLE OF CONTINUOUS INTEGRATION

AND CONTINUOUS DELIVERY (CI/CD)

development teams cannot execute without, it helps create,
test and deploy apps in an efficient manner[10]. Business
developers get encouraged to do Continuous Integration (CI)
regularly to start automatic testing with each code submission.
Improvements in software quality and a decrease in defect risk
may be achieved by the early detection and resolution of
integration problems using this procedure. The fact that different
developers may safely edit the same codebase at the same time
is another way in which CI encourages teamwork. CD automates
deployment procedures to guarantee that tested code remains
continuously ready for deployment according to CI
principles[11]. The quick market reaction capabilities of
businesses result from CD's elimination of traditional release
cycle delays brought on by conventional practices. CD uses
automation to strengthen software releases through testing and
deployment techniques together with infrastructure
provisioning. Software development workflows become
smoother through CI/CD while they enable DevOps principles
and create programming conditions that are more
responsive[12]. The practices achieve faster delivery of software
alongside operational process optimization while guaranteeing
excellent product quality. The competitive digital market
requires companies to use CI/CD practices to achieve continuous
innovation. Continuous Deployment (CD) and Continuous
Integration (CI) are two methods for delivering software that are
at odds with one another. There is a difference in the methods
and results, despite the fact that both prioritize automation and
quality. Below Table 1 is a comparison of their key features:

Table 1: Clash Between CI/CD

Element Continuous

Integration

Continuous

Deployment

Automation Involves

completely

automated

integration, build,

and testing

processes with

quick feedback

Fully automated

deployment to

production, with no

manual intervention

Trigger Occurs

immediately after

the developer

checks in new code

Deliveries happen

when the team feels

the code is ready to be

shipped to production

Testing Unit tests and

business logic tests

are required to

ensure code quality

Automated testing is

required for every

new feature or bug fix

CI Server Requires a CI

server to monitor

the repository and

trigger builds

Requires a CI

foundation to enable

automated

deployments

Test

Coverage

The test suite must

cover enough of the

code base to catch

issues early

The test suite must

also cover enough of

the code base to

ensure quality before

production

Merge

Frequency

Changes are

merged at least

once a day to the

main branch

Every time a change

is ready, it is merged

and deployed

instantly; this

happens often

throughout the day.

Feature

Flags

Feature flags are

not typically used in

CI workflows

Feature flags are not

typically used in CI

workflows

A. Devops Trends: CI/CD Automation

Continuous Integration/Continuous Delivery (CI/CD)
automation is a key component of DevOps methodologies that
has recently garnered a lot of attention [13]. Organizations may
improve code quality, speed up software delivery, and foster
better cooperation between the development and operations
teams by automating the CI/CD process. The following
noteworthy CI/CD automation trends are shown in Figure 3.

Fig. 3. DevOps trends in CI/CD automation

1) Shift-Left Testing

The focus of shift-left testing is on early and continuous
testing from the very beginning of the software development
lifecycle at the very beginning[14]. Organizations may enhance
their ability to detect and resolve problems faster and decrease
the likelihood of errors reaching production by automating
testing and incorporating it into the CI/CD pipeline.

2) Infrastructure as Code (IaC)

The term "Infrastructure as Code" refers to a methodology
that let's programmatically automate and manage infrastructure
resources. It is possible to deploy both application code and
infrastructure settings using IaC, which allows for version
control, testing, and deployment of both [15]. To provide
consistent and repeatable provisioning and management of
infrastructure resources, CI/CD automation solutions interact
with IaC frameworks like Terraform or AWS CloudFormation.

3) Cloud-Native CI/CD

CI/CD pipelines are changing to accommodate cloud-native
apps as more and more organizations use cloud computing and
containerization technologies. When developing, deploying, and
orchestrating containerized applications, popular tools include
Kubernetes and Docker. Automation solutions for CI and
CD are evolving to meet the specific needs of cloud-native
settings, paving the way for smooth interaction with serverless
platforms, orchestrators, and container registries.

4) Machine Learning/AI in CI/CD

CI/CD automation is using ML and AI approaches to
optimize software delivery in multiple areas[16]. As an example,
algorithms powered by AI can evaluate the quality of code, spot
trends, and suggest ways to make it better[17]. Anomalies in

Mahi Ratan Reddy Deva, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 118-124

© 2023-2025, IJARCS All Rights Reserved 121

CI/CD pipelines may be anticipated and detected with the use of
ML models, allowing for the early detection of such problems.

5) Low-Code/No-Code CI/CD

The trend towards low-code and no-code development
platforms has spread to continuous integration and delivery
automation tools. To make CI/CD pipeline setup and
configuration easier, these systems provide visual interfaces and
pre-built connectors. This reduces the need for lengthy code or
scripting. Facilitating automation and expediting application
delivery, low-code/no-code CI/CD technologies enable non-
technical stakeholders to become involved.

IV. CHALLENGES IN ADOPTING DEVOPS AND

CONTINUOUS DELIVERY

Many difficulties were mentioned by respondents during the
year-long process of implementing DevOps. These are the parts
of DevOps that either did not help the implementation run as
smoothly as planned or increased the likelihood that the
objectives of DevOps would not be achieved[18]. The primary
problem locations (rectangular boundaries) and associated
problems are summarized in Figure 4. The lines show proposed
influence relationships[19]

Fig. 4. Challenges related to DevOps Adoption

A. Organizational and Cultural Barriers

This difficulty frequently arises when upper-level
management is resistant to change and doesn't understand
DevOps principles. People may be hesitant to embrace DevOps
approaches due to a lack of knowledge and understanding. The
development and operations teams also often have different
conceptual frameworks. This chasm may get in the way of
efficient teamwork and the introduction of continuous
deployment and development procedures[20]. The solution to
this problem lies in encouraging teamwork and lifelong
education. The lack of a continuous development environment,
which includes continuous integration and testing—essential for
smooth implementation—is another big obstacle in DevOps
adoption. This may be overcome by giving these practices top
priority and by investing in automation and efficiency-
supporting tools and technology.

B. Technical Challenges in Implementation

The following are some of the technological hurdles that
come with implementing devops and continuous delivery:

• Lack of Automation: The whole DevOps process
might be difficult to automate. Manual processes that
operate without automation tend to result in increased
expenses and delays and produce mistakes [21].

• Security: Continuous delivery faces the formidable
obstacle of security[22]. The deployment of safe code
and settings is becoming more critical as code is moved
swiftly from development to production.

• Testing: An important aspect of continuous delivery is
testing. Production may be impacted by bugs and other
problems that were not adequately tested.

• Integration: The incorporation of many tools and
procedures is necessary for continuous delivery.
Building and maintaining dependable connections
across technologies may be a challenge for
organizations.

• Infrastructure: The continuous delivery procedure
relies heavily on infrastructure. In order to succeed,
teams need dependable, scalable, and secure
infrastructure.

V. BEST PRACTICES FOR SUCCESSFUL DEVOPS

AND CONTINUOUS DELIVERY IMPLEMENTATION

DevOps CI/CD best practices make the process of building,
testing, and releasing software efficient and deliver more
quickly[23]. DevOps CI/CD services involve delivering and
getting timely feedback on the latest changes and therefore it
pays to analyze your feedback data to refine your
process[24][25]. Here, provide CI/CD best practices in Figure 5
that help align DevOps with business goals.

Fig. 5. Best Practices of DevOps CI/CD

A. Commit Early, Commit Often

Frequent and small commits improve collaboration and
reduce integration issues. Storing source code, configuration
files, scripts, and libraries in version control enables seamless
continuous integration. Each commit triggers automated tests,
providing immediate feedback and ensuring code quality.
Breaking tasks into smaller chunks further facilitates adoption
and minimizes conflicts.

B. Keep Builds Green

A stable CI/CD pipeline ensures that code remains in a
deployable state. Developers should prioritize fixing broken
builds immediately to prevent cascading failures. Running local
tests before committing changes helps maintain build integrity.
A strong DevOps culture fosters collaboration in
troubleshooting issues, preventing delays, and ensuring
continuous improvement.

C. Build Only Once

Rebuilding software at different stages introduces
inconsistencies. Instead, the same build artifact should move
through all pipeline stages to ensure reliability. Builds must be
environment-agnostic, with variables and configurations

Mahi Ratan Reddy Deva, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 118-124

© 2023-2025, IJARCS All Rights Reserved 122

handled separately. Storing artifacts in a central repository rather
than source control ensures proper versioning and
reproducibility.

D. Streamline Tests

Effective CI/CD pipelines balance speed and test coverage.
Fast unit tests should run first to detect immediate errors,
followed by integration and system tests[26]. Performance,
security, and UI tests add deeper validation before manual
acceptance testing. Structuring tests hierarchically ensures rapid
feedback while maintaining software quality.

E. Clean Environments

Maintaining pre-production environments over time leads to
inconsistencies, affecting test reliability. Regular cleanup
ensures a controlled testing setup, reducing drift between
environments. Containers and Infrastructure-as-Code (IaC)
enable scalable and repeatable environments, supporting parallel
testing and faster releases.

F. CI/CD is Mandatory

Skipping CI/CD processes for urgent fixes can introduce
undetected issues. Adhering strictly to the pipeline ensures every
change is tested and traceable. Automated testing at every stage
eliminates last-minute surprises, improving debugging and
maintaining deployment reliability. Communicating CI/CD
benefits to stakeholders secures organizational support.

G. Monitor and Measure

Tracking CI/CD pipeline metrics helps identify performance
bottlenecks and optimize workflows[27]. Analyzing build
frequency, test execution time, and failure rates informs
infrastructure scaling and parallelization strategies. Continuous
monitoring ensures efficient resource utilization and enhances
overall development speed.

H. Make It a Team Effort

Successful DevOps adoption relies on a strong culture of
collaboration. Breaking down silos between development,
operations, and testing teams fosters transparency and shared
responsibility. Encouraging cross-functional expertise enhances
pipeline efficiency, driving continuous delivery success.

VI. LITERATURE OF REVIEW

This section presents the background research on DevOps
and CI/CD integration for software development. This Table 2
presents a comparative analysis of key studies on DevOps,
focusing on their objectives, applied techniques and methods,
findings, and limitations or future research directions.

Nayak et al. (2024) discuss the key aspects to be considered
in the verification and validation processes, that can be
engineered to limit the impact on the carbon consumption. they
also bring focus to the need for the right trade-off between
automated test execution and targeted continuous testing and
provide a measurement / formula to help calculate the positive
impact that Green CT bring into enterprises. they also cover the
need to continuously manage and optimize out test corpus as a

part of test management activities. This is an essential
governance aspect that will ensure that green IT across test
processes is sustainable[28].

Jayakody and Wijayanayake. (2023) focused on
investigating DevOps CSFs in order to assess their application
to IS development. They identified CSFs by using a
comprehensive literature review. Interviewing DevOps
practitioners helped to corroborate these characteristics while
discovering additional common CSFs in the software
development sector. Last but not least, the study offers a
conceptual model for DevOps CSFs, which serves as a roadmap
for maximizing DevOps' advantages while lowering the barriers
to improving IS success[29]

Mowad, Fawareh and Hassan (2022) emphasizes the use of
DevOps's CI and CD approach to bridge the gap between
developers and operators. In addition, it demonstrates how CI
may serve as a bridge between CDs. The paper provides an
overview of DevOps and examines the methods, tactics,
concerns, and procedures that have been found in relation to the
adoption and execution of ongoing practices. their case studies
demonstrate the merits of CI/CD as a tool for software engineers.
Also, the article introduces DevOps as a fresh approach to bridge
the gap between the two departments of software development
and operations[30].

Offerman et al. (2022) gather data on how organizations’
performance is impacted by DevOps methods and technologies.
They found 14 DevOps practices with 47 sub-practices after
doing a thorough literature search. They used these principles as
a basis for a worldwide survey that they ran to gauge DevOps
maturity and learn about their practical implications. With 50%
of participants reporting that practices are implemented
'always,''most of the time,' or 'nearly half of the time,' they
discovered that 13 out of 14 DevOps techniques are embraced
among 123 respondents from 11 different sectors[31].

Toh, Sahibuddin and Bakar (2021) pinpoint the challenges
and concerns with the use of DevOps practices that may enhance
the CD process. The DevOps and Continuous Delivery were
found via a literature review. This research's methodology relies
on filtering internet artefacts from the Scopus database.
Accordingly, 96 internet artefacts were located for more
investigation. Consequently, the success of DevOps adoption in
Continuous Delivery depends on four important adoption
variables[32].

Toh and Sahibuddin (2019) seeks to enhance the CD process
by investigating the benefits and drawbacks of adopting
DevOps. The benefits and challenges of DevOps and
Continuous Delivery, as well as their adoption, have been
identified using a qualitative online survey. They have gathered
and analyzed the input from 13 respondents. The results of the
study indicate that four major DevOps practices should be
explored and refined into a standard set of guidelines for the
industry[33].

Table 2: Summary of Research on DevOps Practices, Challenges, and Advancements

Author Objectives Technology Findings Limitations/Future

Work

Nayak et al. Explore Green

Continuous Testing

(CT) and its impact

Automated test execution,

Continuous Testing (CT),

Test Corpus Optimization,

Emphasizes trade-offs in

automated vs. continuous

testing; highlights

governance for

Further validation of

proposed

measurement/formula

Mahi Ratan Reddy Deva, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 118-124

© 2023-2025, IJARCS All Rights Reserved 123

on carbon

consumption

Carbon Impact

Measurement Formula

sustainable Green IT in

testing

in real-world enterprise

settings

Jayakody &

Wijayanayake

Identify Critical

Success Factors

(CSFs) for DevOps

in IS development

Expert Interviews, CSF

Identification, Conceptual

Model Development

Develops a conceptual

model for DevOps CSFs;

identifies key factors

affecting DevOps success

Empirical validation

needed for wider

industry applicability

Mowad,

Fawareh &

Hassan

Analyze CI/CD

methodologies in

DevOps for reducing

the developer-

operator gap

CI/CD Implementation,

Case Study Analysis,

DevOps Strategy

Evaluation

Demonstrates CI/CD

benefits; positions

DevOps as a model

bridging development

and operations

Case studies limited in
scope; future work
should explore
scalability and long-
term impacts

Offerman et

al.

Study DevOps

practices' impact on

organizational

performance

DevOps Maturity

Assessment, Global

Survey (123 respondents),

Data-Driven Analysis

Identifies 14 DevOps

practices and their

maturity levels across

industries

Requires industry-
specific analysis to
tailor
recommendations

Toh,

Sahibuddin &

Bakar

Identify challenges in

DevOps adoption for

Continuous Delivery

(CD)

Data Filtering, DevOps

Adoption Factor

Identification, Continuous

Delivery Process

Optimization

Identifies four key

adoption factors critical

to DevOps success

Needs empirical
validation of factors in
real-world DevOps
environments

Toh &

Sahibuddin

Investigate

advantages and

limitations of

DevOps adoption in

CD

Web-Based Survey,

DevOps Practice

Evaluation, Adoption

Framework Design

Highlights four critical

DevOps practices for

successful adoption

Limited sample size;

more extensive industry

surveys required

VII. CONCLUSION

The adoption of DevOps and Continuous Delivery (CD) has
revolutionized modern software development, enabling faster,
more efficient, and reliable deployments. However,
organizations face significant challenges in their
implementation, including cultural resistance, technical
complexities, security vulnerabilities, and scalability constraints.
Overcoming these barriers requires a strategic approach that
fosters a DevOps culture, implements robust CI/CD pipelines,
automates infrastructure, optimizes monitoring, and integrates
security through DevSecOps. However, as identified in this
study, several challenges hinder seamless adoption, including
organizational resistance, lack of automation, security concerns,
testing complexities, integration difficulties, and infrastructure
constraints. Addressing these challenges requires a strong
cultural shift, continuous learning, investment in automation
tools, and a commitment to best practices such as frequent
commits, maintaining stable builds, streamlining testing, and
enforcing CI/CD as a mandatory process. Furthermore, the
literature review highlights various research contributions
toward optimizing DevOps adoption. Studies emphasize the
importance of critical success factors, DevOps maturity
assessments, and strategic frameworks for overcoming technical
and organizational hurdles. However, gaps remain in empirical
validation, scalability, and industry-specific optimizations,
necessitating further research and real-world evaluations. In
conclusion, successful DevOps and CD implementation requires
a holistic approach that integrates technology, processes, and
organizational culture. Future research should focus on refining
best practices, developing standardized DevOps adoption
models, and exploring AI-driven automation to further enhance
efficiency and security in DevOps pipelines.

REFERENCES

[1] J. Cui, “The Role of DevOps in Enhancing Enterprise

Software Delivery Success through R & D Efficiency and

Source Code Management .,” 2024.

[2] S. Murri, S. Chinta, S. Jain, and T. Adimulam,

“Advancing Cloud Data Architectures: A Deep Dive into

Scalability, Security, and Intelligent Data Management

for Next-Generation Applications,” Well Test. J., vol. 33,

no. 2, pp. 619–644, 2024, [Online]. Available:

https://welltestingjournal.com/index.php/WT/article/vie

w/128

[3] I. A. Mohammed, “An Empirical Study of the Importance

of Devops Strategies and Approaches in Information

Management Systems,” SSRN Electron. J., vol. 5, no. 1,

pp. 12–16, 2015.

[4] A. Goyal, “Optimising Cloud-Based CI/CD Pipelines:

Techniques for Rapid Software Deployment,” Tech. Int.

J. Eng. Res., vol. 11, no. 11, pp. 896–904, 2024.

[5] M. Gokarna and R. Singh, “DevOps: A Historical Review

and Future Works,” Proc. - IEEE 2021 Int. Conf. Comput.

Commun. Intell. Syst. ICCCIS 2021, vol. 2001, pp. 366–

371, 2021, doi: 10.1109/ICCCIS51004.2021.9397235.

[6] A. Klint and V. Åkerström, “Continuous Delivery :

Challenges , Best Practices , and Important Metrics,”

Lund University, 2020.

[7] A. Goyal, “Scaling Agile Practices with Quantum

Computing for Multi-Vendor Engineering Solutions in

Global Markets,” Int. J. Curr. Eng. Technol., vol. 12, no.

06, 2022, doi: : https://doi.org/10.14741/ijcet/v.12.6.10.

[8] A. Goyal, “Optimising Software Lifecycle Management

through Predictive Maintenance : Insights and Best

Practices,” Int. J. Sci. Res. Arch., vol. 07, no. 02, pp. 693–

702, 2022.

[9] R. T. Yarlagadda, “Understanding DevOps & bridging the

gap from continuous integration to continuous delivery,”

J. Emerg. Technol. Innov. Res., vol. 5, no. 2, 2018.

[10] B. Boddu, “DevOps for Database Administration: Best

Practices and Case Studies,”

https://jsaer.com/download/vol-7-iss-3-

Mahi Ratan Reddy Deva, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 118-124

© 2023-2025, IJARCS All Rights Reserved 124

2020/JSAER2020-7-3-337-342.pdf, vol. 7, no. 3, p. 5,

2020.

[11] Yasmine Ska and Habeebullah Hussaini Syed, “A Study

and Analysis of Continuous Delivery, Continuous

Integration in Software Development Environment,”

Researchgate, vol. 6, no. September, pp. 96–107, 2019.

[12] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous

Integration, Delivery and Deployment: A Systematic

Review on Approaches, Tools, Challenges and Practices,”

IEEE Access. 2017. doi:

10.1109/ACCESS.2017.2685629.

[13] U. Zdun, E. Wittern, and P. Leitner, “Emerging Trends,

Challenges, and Experiences in DevOps and Microservice

APIs,” IEEE Softw., 2020, doi:

10.1109/MS.2019.2947982.

[14] J. A. V. M. K. Jayakody and W. M. J. I. Wijayanayake,

“Devops Adoption in Information Systems Projects; A

Systematic Literature Review,” Int. J. Softw. Eng. Appl.,

vol. 13, no. 3, pp. 39–53, May 2022, doi:

10.5121/ijsea.2022.13304.

[15] M. Raquibul Hasan, M. Sifuddin Ansary, and N. Biz,

“Cloud Infrastructure Automation Through IaC

(Infrastructure as Code),” Int. J. Comput., 2023.

[16] O. C. Oyeniran, A. O. Adewusi, and A. G. Adeleke, “AI-

driven devops : Leveraging machine learning for

automated software deployment and maintenance,” no.

December 2023, 2024, doi: 10.51594/estj.v4i6.1552.

[17] S. R. Thota, S. Arora, and S. Gupta, “Al-Driven

Automated Software Documentation Generation for

Enhanced Development Productivity,” in 2024

International Conference on Data Science and Network

Security (ICDSNS), 2024, pp. 1–7. doi:

10.1109/ICDSNS62112.2024.10691221.

[18] R. K. Gupta, “Challenges in Adopting Continuous

Delivery and DevOps in a Globally Distributed Product

Team A case study of a healthcare organization,” 2019

ACM/IEEE 14th Int. Conf. Glob. Softw. Eng., pp. 30–34,

doi: 10.1109/ICGSE.2019.00020.

[19] M. Senapathi, J. Buchan, and H. Osman, “DevOps

Capabilities, Practices, and Challenges,” in Proceedings

of the 22nd International Conference on Evaluation and

Assessment in Software Engineering 2018, New York,

NY, USA: ACM, Jun. 2018, pp. 57–67. doi:

10.1145/3210459.3210465.

[20] R. A. A. Haddad, “Overcoming Challenges in DevOps

Adoption : Insights from Case Studies,” J. Electr. Syst.,

vol. 20, no. 10, 2024.

[21] M. Afzal, U. Hameed, S. Z. Ahmed, M. W. Iqbal, S. Arif,

and U. Haseeb, “Adoption of Continuous Delivery in

Devops: Future Challenges Adoption of Continuous

Delivery in Devops: Future Challenges Maria Afzal,” J.

Jilin Univ. (Engineering Technol. Ed., vol. 42, no. April,

pp. 273–292, 2023, doi: 10.17605/OSF.IO/6NYPX.

[22] V. N. Boddapati et al., “Data migration in the cloud

database: A review of vendor solutions and challenges,”

Int. J. Comput. Artif. Intell., vol. 3, no. 2, pp. 96–101, Jul.

2022, doi: 10.33545/27076571.2022.v3.i2a.110.

[23] T. Offerman, R. Blinde, C. J. Stettina, and J. Visser, “A

Study of Adoption and Effects of DevOps Practices,” in

2022 IEEE 28th International Conference on Engineering,

Technology and Innovation (ICE/ITMC) & 31st

International Association For Management of Technology

(IAMOT) Joint Conference, IEEE, Jun. 2022, pp. 1–9.

doi: 10.1109/ICE/ITMC-IAMOT55089.2022.10033313.

[24] J. O. Ogala, “A Complete Guide to DevOps Best

Practices,” Int. J. Comput. Sci. Inf. Secur., vol. 20, no. 2,

2022, doi: 10.5281/zenodo.6376787.

[25] D. S. Battina, “Best Practices for Ensuring Security in

Devops : A Case Study,” SSRN Electron. J., vol. 4, no. 11,

pp. 38–45, 2017.

[26] Z. Rahman, X. Yi, S. T. Mehedi, R. Islam, and A. Kelarev,

“Blockchain Applicability for the Internet of Things:

Performance and Scalability Challenges and Solutions,”

Electronics, vol. 11, no. 9, p. 1416, Apr. 2022, doi:

10.3390/electronics11091416.

[27] P. Sekhar Emmanni, “Implementing CI / CD Pipelines for

Enhanced Efficiency in IT Projects,” Int. J. Sci. Res., vol.

9, no. 9, pp. 1616–1619, Sep. 2020, doi:

10.21275/SR24402001528.

[28] K. Nayak, S. Route, M. Sundararajan, A. Jain, and S. R,

“Sustainable Continuous Testing in DevOps Pipeline,” in

2024 1st International Conference on Communications

and Computer Science (InCCCS), IEEE, May 2024, pp.

1–6. doi: 10.1109/InCCCS60947.2024.10593566.

[29] J. A. V. M. K. Jayakody and W. M. J. I. Wijayanayake,

“Critical success factors for DevOps adoption in

information systems development,” Int. J. Inf. Syst. Proj.

Manag., vol. 11, no. 3, pp. 60–82, Oct. 2023, doi:

10.12821/ijispm110304.

[30] A. M. Mowad, H. Fawareh, and M. A. Hassan, “Effect of

Using Continuous Integration (CI) and Continuous

Delivery (CD) Deployment in DevOps to reduce the Gap

between Developer and Operation,” in Proceedings - 2022

23rd International Arab Conference on Information

Technology, ACIT 2022, 2022. doi:

10.1109/ACIT57182.2022.9994139.

[31] T. Offerman, R. Blinde, C. J. Stettina, and J. Visser, “A

Study of Adoption and Effects of DevOps Practices,” in

2022 IEEE 28th International Conference on Engineering,

Technology and Innovation (ICE/ITMC) & 31st

International Association For Management of Technology

(IAMOT) Joint Conference, 2022, pp. 1–9. doi:

10.1109/ICE/ITMC-IAMOT55089.2022.10033313.

[32] M. Z. Toh, S. Sahibuddin, and R. A. Bakar, “A Review on

DevOps Adoption in Continuous Delivery Process,” in

2021 International Conference on Software Engineering

& Computer Systems and 4th International Conference on

Computational Science and Information Management

(ICSECS-ICOCSIM), 2021, pp. 98–103. doi:

10.1109/ICSECS52883.2021.00025.

[33] M. Z. Toh, S. Sahibuddin, and M. N. Mahrin, “Adoption

Issues in DevOps from the Perspective of Continuous

Delivery Pipeline,” in 8th International Conference on

Software and Computer Applications, 2019, pp. 173–177.

doi: 10.1145/3316615.331661.

