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Abstract: The amount of data produced by intelligent devices has grown significantly with the emergence of the Internet of Things (IoT) systems 

and other technologies. To analyze and store this data, cloud computing offers limitless processing and storage capacity. However, it suffers from 

a lack of geographic awareness, excessive energy usage, and high transmission delay. Additionally, it is not suitable for handling this data since 

the generated data is delay-sensitive. Therefore, the fog paradigm has been developed, which enables data to be analyzed in the proximity of IoT 

systems. However, its capacity constraints make it unsuitable for analyzing massive amounts of data. To ensure the efficient completion of delay-

sensitive tasks and handle the massive amount of data generated, it is essential to integrate the fog and cloud paradigms with a common goal. This 

article proposes an effective Resource Allocation (RA) technique to utilize fog and cloud resources for completing delay-sensitive tasks and 

handling the massive amount of data generated by IoT devices. Initially, tasks in the arrival queue are categorized and assigned to appropriate 

resources in the cloud and fog layers based on the task guarantee ratio. A Deep Neural Network (DNN) classifier is then applied to historical 

allocation data to categorize new arriving tasks and assign suitable resources for execution in their respective layers. Besides, the optimal resource 

allocation in the fog and cloud layers is achieved using the Groupers and Moray Eels (GME) optimization algorithm, which effectively reduces 

the system's execution time and latency. Extensive simulations demonstrate that the DNN-GME algorithm outperforms existing algorithms in IoT-

fog-cloud settings. 
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I. INTRODUCTION 

The proliferation of IoT devices has revolutionized 
modern information and communication technologies [1]. 
Beyond commonplace devices like smartphones and tablets, 
the Internet of Things has extended network connections to a 
wide range of smart equipment, including televisions, 
wearables, cars, and security cameras. This increase has led to 
an increasing number of IoT applications that produce massive 
data streams with critical latency requirements [2]. It is 
anticipated that there will be more than 75 billion connected 
IoT devices by 2025, indicating the market's explosive growth 
[3]. Additionally, according to IDC projections on the amount 
of data that IoT devices will generate, they will produce 73.1 
ZB of data [4]. Multiple computing technologies, such as 
cloud, fog, and edge computing, with different 
communication protocols for improved connection, have 
become more and more necessary to tackle this situation [5]. 

Cloud computing is seen by smaller businesses as a 
powerful data management tool that can effectively store the 
massive amounts of data generated by IoT devices [6]. Due to 
the vast distance between IoT devices and cloud data centers, 
the process of moving massive and diverse data volumes to 
consolidated cloud settings results in latency and longer 
reaction times [7]. To meet the latency requirements of 
Internet of Things systems, cloud data center restrictions were 
successfully addressed by the creation of fog computing. By 
implementing network-edge services that shorten the distance 
between IoT data origin locations, fog computing expands the 
capabilities of cloud computing [8]. Fog devices are close 
together because they reduce processing time, which improves 
processing speed and speeds up application response times 
while using less bandwidth [9]. Fog devices continue to have 

less processing power and storage than cloud networks. Since 
its early success, fog computing has experienced consistent 
advancements through academic investigations and industry 
applications. Both cloud and fog computing have unique 
advantages and disadvantages that make it impossible for 
them to fully meet the needs of data-intensive Internet of 
Things applications [10]. To build an effective computing 
environment, fog and cloud models must be combined. 
Managing resources between fog and cloud for Internet of 
Things applications is difficult due to the variety and poor 
coupling of fog devices [11–12]. Consequently, a successful 
IoT-fog-cloud system requires an enhanced RA technique that 
takes fog and cloud problems into account. 

To take advantage of fog and cloud paradigms, several 
research studies on RA based on optimization techniques and 
other methodologies have emerged in recent decades [13–15]. 
Tasks are distributed across available fog resources based on 
response times, bandwidth, and processing speed rates. Any 
unassigned tasks will be sent to the cloud for completion until 
there are no more free resources on the fog layer. However, 
due to fog resource limits and fog-based allocation of time-
insensitive activities based on arrival time, these strategies 
cause time-sensitive jobs to queue after time-insensitive tasks 
for cloud processing. In fog systems, time-sensitive activities 
are typically severely hampered by the lack of resources. 

This study proposes an efficient resource allocation system 
for utilizing fog and cloud resources to execute delay-sensitive 
operations and handle the massive volume of data created by 
individuals. There are two steps involved in assigning 
resources to tasks. First, the task guarantee ratio on the cloud 
and fog layers is used to categorize each task in the arrival 
queue. Appropriate resources are assigned to the categorized 
tasks according to their class layer using a GME optimization 
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method. Second, a DNN classifier is used to categorize 
recently arriving tasks and match them with appropriate 
resources for execution in the layer of their respective classes 
based on prior allocation history data. With this strategy, 
delay-sensitive operations will benefit from the fog's faster 
response and higher Quality of Service (QoS), while 
computation- and data-intensive tasks will benefit from the 
cloud's infinite processing and storage capacity. Accordingly, 
the suggested technique can greatly reduce scheduling time 
and enhance overall system performance by shortening 
resource search period in both the fog and cloud levels. 

A. Main Objectives and Contributions 

The primary goals of this work can be described below: 

• Create an RA framework that optimizes workload 
allocation between fog and cloud resources. 

• To reduce task execution time, latency, and task 
failure owing to inadequate resource allocation while 
considering the job's deadline.  

• Reduce total resource allocation time by categorizing 
activities based on historical RA history. 

The following are the contributions made by this paper:  

• To guarantee the best possible workload allocation 
across fog and cloud resources, the DNN classifier is 
first introduced based on the task guarantee ratio. It 
also minimizes the system overhead caused by a 
complete search for the suitable layers and resources 
for task execution.  

• To create the best possible RA that minimizes the 
overall system execution time and latency, the RA 
problem is formulated as a multi-objective 
optimization dilemma and solved by introducing the 
GME optimization algorithm, drawing inspiration 
from the associative hunting between groupers and 
moray eels. 

The subsequent portions are prepared in the following 
manner: Section 2 includes the related works. Section 3 
discusses the proposed technique, while Section 4 
demonstrates its efficacy. Section 5 highlights the findings and 
outlines further improvements. 

II. LITERATURE SURVEY 

This section provides a survey of current research on 
resource management and scheduling systems in fog and 
cloud computing environments. In [16], a layer fit technique 
was created to evenly distribute tasks across the fog and cloud 
based on their priorities. Additionally, the Modified Harris 
Hawks Optimization (MHHO) algorithm was used to assign 
the best available resource to a task inside a layer while 
meeting QoS criteria. However, it has high energy usage and 
an execution period. 

In fog-IoT systems, Periasamy et al. [17] created the 
Efficient RA and Management with Energy Efficiency 
(ERAM-EE) technique. IoT devices were assigned to fog 
nodes via resource blocks based on the channel gain matrix of 
the interconnected networks. Initially, a single fog node was 
mapped to every IoT device via a single resource block by 
determining its maximum channel gain. Subsequently, the 
remaining resource blocks were mapped to fog nodes that had 
not yet been assigned, so they could be offloaded later. 
However, the algorithm's primary flaw was the dynamic and 
diverse nature of IoT devices. Additionally, the network 
efficiency may be impacted by CPU memory and processing 
power limitations. 

Based on the workloads produced by a collection of nodes 
at the network edge, a load-aware RA method was presented 
for heterogeneous fog networks that minimizes execution 
period and latency by effectively utilizing fog resources [18]. 
During RA, the amount of data produced by the cluster of 
nodes was taken into account. However, the algorithm's 
resilience was limited because it only addressed rate factor 
sensing for RA tasks. An IoT task scheduling method utilizing 
the Multi-Objective Moth-Flame Optimization (MOMFO) 
algorithm was presented in [19]. It decreased task request 
completion times, throughput, and energy consumption, 
thereby improving the quality of fog-cloud computing-based 
IoT services. However, energy consumption has remained 
high.  

A hybrid Particle Swarm Optimization with Simulated 
Annealing and Load Balancing (PSOSA-LB) approach was 
developed in [20] to optimize resource allocation in the fog-
cloud scenario. The PSO velocity update was combined with 
a load imbalance adjustment factor that guided particles 
toward solutions that maximized an equitable workload 
distribution among available resources. However, because the 
LB method relies on constant monitoring of cloud and fog 
resource status, communication cost was high. 

An energy-conscious task offloading and LB method for 
time-sensitive IoT fog cloud applications was presented [21]. 
By examining resource variety in conjunction with system 
parameters like network bandwidth, job size and resource 
consumption, and latency limitations, the fuzzy logic system 
was able to find offloading target layers. A Binary Linear-
Weight JAYA (BLWJAYA) method was used to schedule the 
incoming IoT queries and assign them to cloud and fog nodes. 
However, it has high computational overhead and complexity. 

To categorize the requests and identify the target layers for 
processing in fog-cloud systems, Srichandan et al. [22] 
introduced the Adaptive Neuro-Fuzzy Inference System 
(ANFIS). Additionally, such requests were scheduled at the 
target layer using a Chaotic Honey Badger Algorithm 
(CHBA). To improve the convergence of HBA, an 
Opposition-based Learning (OBL) scheme was used in 
conjunction with a chaotic mapping function. However, it is 
challenging to forecast the loads of each compute node to 
schedule requests on available nodes. 

An Optimized LB (OLB) method was created by Ala'anzy 
et al. [23] that modifies resource allocation by taking into 
account processing power and traffic volumes at every fog 
node. However, it takes a long time to execute and consumes 
a lot of energy. In [24], a Dynamic Energy-and-Latency-
Aware Task (DELTa) scheduling for fog-cloud environment. 
A multi-level queue technique was applied to prioritize tasks 
and find the suitable node for offloading. Then, the DELTa 
technique was used to effectively schedule tasks onto the 
chosen nodes for execution. However, it may struggle in large-
scale, dynamic, and heterogeneous settings. A One-to-One-
based optimizer with priority and LB (O2O-LB) method was 
developed [25] for fog-cloud settings. However, its latency 
and reaction time are high. The techniques discussed above 
are summarized in Table 1, which includes the assessment 
metrics used, the benefits, and drawbacks of the suggested 
approach. 

The present research reveals that many solutions manage 
RA within IoT-fog-cloud architecture; however, numerous 
issues, such as excessive energy utilization, latency, and poor 
performance in real-world applications or heterogeneous 
environments, persist. Existing models fail to account for job 
categorization and appropriate resource management when 
workloads change. This disadvantage necessitates the creation 



A. Priyadharshini et al, International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 167-178 

 

© 2024-2027, IJARCS All Rights Reserved       169 

of an effective task categorization algorithm using RA. The 
primary goal of this research is to present a novel DNN-GME 
method that improves resource usage and network stability 
across IoT, fog, and cloud paradigms. 

III. PPROPOSED METHODOLOGY 

This section provides an in-depth methodology for the 
proposed DNN-GME algorithm. Fig. 1 depicts the visual 

layout of this suggested system, including the task creators, 
the task categorizer, the resource distributor, the fog layer, and 
the cloud layer resources. Initially, user-created tasks are 
placed in the arrival queue and classified as cloud or fog. 
Tasks categorized as cloud are implemented by cloud 

Table I.  Summary of Existing RA Techniques in IoT-Fog-Cloud Systems 

Ref. 

No. 
Techniques Merits Demerits Assessment metrics 

[16] MHHO It lessens the oversaturation in the 

fog layer because of increasing 

requirement for resources. 

Energy consumption and execution cost remained high. Mean makespan, execution 

cost, and energy consumption 

[17] ERAM-EE It reduces the bandwidth 

consumption, response period, 

and latency. 

A primary constraint lies in the heterogeneous and dynamic 

nature of IoT systems. Also, CPU memory and processing 

power constraints limit the network performance in 

heterogeneous IoT scenarios. 

Energy efficiency, processing 

time, and response time 

[18] Load-aware 

RA method 

It achieves low execution cost and 

latency compared to the classical 

fog and cloud paradigms. 

It requires more parameters in the RA procedure to enhance the 

algorithm’s robustness. 

Network consumption, 

latency, and execution cost 

[19] MOMFO It enhances the resource usage 

significantly. 

It has low throughput and high energy consumption. Makespan, throughput, 

energy consumption, and 

resource usage 

[20] PSOSA-LB It reduces the execution period, 

energy consumption, latency, and 

load imbalance effectively. 

It is based on continual monitoring of fog and cloud resource 

conditions, which results in significant communication 

overhead. This can be problematic in situations with low 

bandwidth or considerable communication delays between the 

fog and cloud levels. 

Execution time, energy 

consumption, latency, and 

load imbalance 

[21] BLWJAYA It minimizes the latency and 

energy consumption while 

increasing the resource usage. 

It has high complexity and computation overhead. Resource utilization, latency, 

energy consumption, and load 

balancing rate 

[22] ANFIS, 

CHBA, and 

OBL 

It achieves better resource usage. The latency and energy consumption were high. Makespan, service delay, 

delay violation, service cost, 

resource usage, and energy 

consumption 

[23] OLB It yields greater adaptability and 

network efficiency. 

It needs to integrate machine learning algorithm to further 

improve decision making procedures within the fog layer. 

Latency, network usage, 

execution time, energy 

consumption 

[24] DELTa It enhances the tasks processing 

efficiency when reducing energy 

usage and increasing resource 

use. 

It may struggle in large-scale, dynamic, and heterogeneous 

settings. Also, it solely focuses on independent tasks, which 

may impact execution efficiency and scheduling in practical 

cases. 

Makespan, service latency, 

energy consumption, and 

resource utilization 

[25] O2O-PLB It consistently sustains low 

latency and faster response 

periods in high dependability and 

low-delay applications. 

Its suitability in real-world applications was low because the 

constant resource load threshold value was not suitable for real-

time data. 

Response time, latency, load 

imbalance, and task failure 

rate 

 
 

 
 

Figure 1.  Visual Layout of Proposed DNN-GME-Based RA Algorithm 
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resources, and tasks categorized as fog are implemented by 
fog resources at the fog layer. The categorizer then sends the 
categorized tasks to the resource distributor, who allocates 
resources on either the cloud or fog layer. Two steps are 
involved in the task categorization process: (i) the tasks in the 

arrival queue are categorized based on the task guarantee ratio 
in the first step, and (ii) the newly arrived tasks are categorized 
using the DNN classifier based on the data from the allocation 
history in the second step. 

A. System Model 

The proposed system paradigm may efficiently handle IoT 
device data in a hierarchically organized IoT-fog-cloud 
context. As seen in Fig. 2, the model is composed of three 
primary layers: edge, fog, and cloud. Because each component 
layer takes advantage of its characteristics, this IoT-fog-cloud 
architecture offers an efficient way to handle the intricate 
activities of the IoT system. Additionally, it facilitates more 
efficient data processing by reducing latency and improving 
resource utilization. 

 

Figure 2.  IoT-Fog-Cloud System Model 

Depending on processing demands, the edge layer—which 
consists of sensors, actuators, and intelligent wearables—
creates task requests and sends them to the fog or cloud layer. 
Servers or transitional devices, such as fog nodes, are located 
closer to the network edge at the fog layer to provide local 
processing and storage capabilities. Numerous data centers at 
the cloud layer are capable of providing substantial storage 
and processing capacity, along with sophisticated data 
processing capabilities. To identify the proper processing 
layer and allocate resources to tasks, respectively, tasks 
generated by an edge device are transmitted from the task 
categorizer and resource distributor. While time-insensitive 
activities are transferred to the cloud queue, time-sensitive 
jobs are delivered to the fog queue. 

B. Task Classification  

The process of categorizing user tasks and allocating them to 

the proper layer queues (cloud or fog) for execution is covered 

in this section. Tasks are ranked according to their QoS 

requirements and the processing power of each layer's 

available resources. Assume 𝑉 = {𝑣1, … , 𝑣𝑛} is a group of 𝑛 

Virtual Machines (VMs) in the cloud. If 𝑣𝑖 , 𝑖 ∈ [1,2, … , 𝑛] is 

the 𝑖𝑡ℎ VM, then 𝑣𝑖 has 3 attributes, denoted as 〈𝑣𝑖
𝑝, 𝑣𝑖

𝑚, 𝑣𝑖
𝐵〉, 

where 𝑣𝑖
𝑝

 is the CPU processing power, 𝑣𝑖
𝑚  is the memory, 

and 𝑣𝑖
𝐵 is the bandwidth resources. As well, 𝐹 = {𝑓1, … , 𝑓𝑚} 

is the group of fog nodes in the fog layer. If 𝑓𝑖 , 𝑖 ∈ [1,2, … , 𝑚] 
is the 𝑖𝑡ℎ  fog node, then 𝑓𝑖  has 3 attributes, denoted as 

〈𝑓𝑖
𝑝, 𝑓𝑖

𝑚, 𝑓𝑖
𝐵〉, signifying the CPU processing power, memory, 

and bandwidth resources, respectively.   
Consider 𝒯 = {𝚝1, … , 𝚝𝑘} is a set of 𝑘 tasks in the system 

arrival queue. Each task 𝚝𝑖 , 𝑖 ∈ [1,2, … , 𝑘] is the 𝑖𝑡ℎ  task in 

the queue, 𝚝𝑖  has also 3 attributes denoted as 〈𝚝𝑖
𝑝, 𝚝𝑖

𝑚, 𝚝𝑖
𝑑〉, 

signifying the processing requirements of the task, data 
storage, and task deadline, respectively. A resource is 
supposed to complete a task and return the results of that 
execution to the user before the task's deadline passes. A task 
is successful if it is returned to the user before the deadline; 
otherwise, it is unsuccessful. 

1) Task Guarantee Ratio Categorization 
The task classifier arranges the tasks according to their 

processing needs in the first categorization stage. A task group 
is made up of functions having comparable processing needs. 
The task classifier uses the following formula to determine 
each group's task guarantee ratio on the cloud layer and the 
ratio on the fog layer: 

𝜓𝐶 = min ∑ ∑ (
𝚝𝑖

𝑝
,𝚝𝑖

𝑚

𝑣
𝑖
𝑝

,𝑣𝑖
𝐵 )𝑛

1
𝑘
1             (1) 

   𝜓𝐹 = min ∑ ∑ (
𝚝𝑖

𝑝
,𝚝𝑖

𝑚

𝑓
𝑖
𝑝

,𝑓𝑖
𝐵)𝑛

1
𝑘
1               (2) 

The classifier then uses the 𝜓𝐶  and 𝜓𝐹 values to determine 
if each set of tasks is a cloud or fog. A task group is 
categorized as a cloud task if its 𝜓𝐹 value falls between 0.6 
and 1, indicating that it involves more processing and data. 
The task group is categorized as a fog task if the 𝜓𝐹 value falls 
between 0.1 and 0.5. Since the layer's waiting queue will have 
more tasks since there aren't enough cloud resources to handle 
every kind of task instantly, the system is predicted to 
experience more task failures when 𝜓𝐶  is greater than 1. The 
resource allocator receives the categorized tasks and chooses 
the optimal resource for each task within its class layer. Based 
on the allocation history data, the classifier uses the DNN 
algorithm to categorize new tasks as they come in. 

2) Deep Neural Network Classifier 

For a task 𝚝𝑖 with attribute set 𝑋 = {𝑥1, 𝑥2, 𝑥3} signifying 
task processing requirements, memory, and task deadline. 
Consider 𝑀 is the collection of task class 𝜌𝑖 , 𝑖 = 1,2, … , 𝑀. 
To categorize the tasks with their corresponding classes, the 
DNN classifier is constructed. The DNN is a descendant of the 
traditional Artificial Neural Network (ANN). The three levels 
of the DNN architecture, including the input, hidden, and 
output layers, are depicted in Fig. 3. 

The network receives the pre-processed input data from 
the input layer. The neural network's input neuron count is 
equal to the dataset's input features. So, the input layer with 𝐷 
inputs is represented as: 

     𝑋 = {𝑥1, … , 𝑥𝐷}                   (3) 
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In (3), 𝐷 ∈ [1,2, … , 𝑘] . Since the DNN permits the 
addition of several hidden layers, the next layer is the hidden 
layer. The input 𝑋  is mapped by the hidden layer using a 

bias(𝑏𝑗) and random weights (𝑤𝑖). So, inputs for the hidden 

layer are written as: 

 

Figure 3.  Task Categorization Using DNN Classifier 

                        ℎ𝑗 = ∑ 𝑤𝑖𝑥𝑖𝑖 + 𝑏𝑗                (4) 

In (4), 𝑗 ∈ [1, … , 𝑙] is the number of hidden units in the 
DNN. A nonlinear activation function is linked to each hidden 
layer. A Rectified Linear Unit (ReLU) has improved 
performance and sped up the DNNs' training procedure. The 
elimination of the disappearing and inflating gradient issue 
was ReLU's primary innovation. Consequently, the hidden 
layer's output is stated as follows: 

ℎ = 𝑓(ℎ𝑗)    (5) 

Where 𝑓(ℎ𝑗) = 𝑅𝑒𝐿𝑈(ℎ𝑗)   (6) 

The output layer generates the DNN's outputs by 
processing the inputs from the hidden layer to the output 
layer's activation function. For task categorization, the output 
layer's nonlinear activation function, such as softmax, is used. 

It transforms inputs into a class of probabilities (𝜎(𝑋)𝑗) . 

Thus, the DNN's output is written as: 

𝜎(𝑋)𝑗 =
𝑒

𝑋𝑗

∑ 𝑒
𝑋𝑗𝑙

𝑗=1

    (7) 

In (7), 𝑋 represents a vector of inputs to the output layer, and 

𝑗 ∈ [1, … , 𝑙] is the number of output units. 
With this DNN configuration, the inputs to their 

corresponding class output (for example, cloud 1 and fog 0) 
are used to train the network. A large training dataset is used 
to train the DNN, and to reduce training mistakes, the weight 
of each input link is changed repeatedly. To train the network 
more quickly and effectively, the Adam optimizer adjusts the 
model parameters of the DNN. During training with the 
learning algorithm, these tuning parameters, also referred to as 
hyperparameters, are employed to regulate optimization 
functions and model selection.  These hyperparameters 
determine whether the model overfits or underfits during the 
learning phase. The task categorization using DNN classifier 
is summarized in Algorithm 1. 
Algorithm 1: DNN-Based Task Categorization 

Input: Collection of new uncategorized tasks and allocation 
history data 
Output: Task class labels 

1. Begin 
2. 𝒇𝒐𝒓(𝑒𝑎𝑐ℎ 𝑢𝑛𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒𝑑 𝑡𝑎𝑠𝑘 𝚝𝑖) 
3.   Create task 𝚝𝑖’s attribute vector 𝑋 = {𝑥1, 𝑥2, 𝑥3}; 
4.   Construct DNN classifier; 

a. Initialize input layer, hidden layers, and 
output layer; 

b. Initialize bias 𝑏 and weights 𝑤; 
c. Set learning rate, training epochs, activation 

function, and batch size; 
5.   𝒇𝒐𝒓(𝑒𝑎𝑐ℎ 𝑒𝑝𝑜𝑐ℎ) 
6.     𝒇𝒐𝒓(𝑒𝑎𝑐ℎ 𝑏𝑎𝑡𝑐ℎ) 
7.       Obtain 𝜎(𝑋)𝑗 with forward propagation; 

8.       Compute the loss function 𝐿 =
1

𝑘
∑ (𝜎(𝑋)𝑗 −𝑘

𝑖=1

𝜎(𝑋)𝑗
̂ )

2
; 

9.       Update bias and weight values; 
10.     𝒆𝒏𝒅 𝒇𝒐𝒓 
11.   𝒆𝒏𝒅 𝒇𝒐𝒓 
12. 𝒆𝒏𝒅 𝒇𝒐𝒓 
13. Return task class labels 
14. End 

C. Problem Formulation for Resource Allocation 

This section describes the modeling of task execution time 
and the delay that occurs between submission and the user 
receiving the execution result. The system is supposed to 
optimize the time and delay model as QoS parameters. The 
time and delay models are used to construct an objective 
function that has to be reduced. 

1) Task Execution Time Model 
The overall time required by the computing resource to 

finish a task's execution is known as the task's execution time 
on that resource. For 𝒯 = {𝚝1, … , 𝚝𝑘}  to be executed by 
resources within a layer (either fog or cloud), each task 𝚝𝑖 , 𝑖 ∈
[1,2, … , 𝑘]  has 〈𝚝𝑖

𝑝, 𝚝𝑖
𝑚, 𝚝𝑖

𝑑〉 . Assume 𝑅 = {𝑟1, … , 𝑟𝑛}  is the 

collection of resources on the layer which the task collection 
𝒯  is to be executed. Each resource 𝑟𝑗 , 𝑗 ∈ [1,2, … , 𝑛]  has 3 

attributes denoted as 〈𝑟𝑖
𝑝, 𝑟𝑖

𝑚, 𝑟𝑖
𝐵〉 , signifying the CPU 

processing power, memory, and bandwidth resources, 
respectively. 

The execution period of the 𝒯  on the collection of 
resources within the corresponding layer is determined by 

            𝐸𝑇 = ∑ ∑ (
𝚝𝑖

𝑝

𝑟
𝑗
𝑝)𝑛

𝑗=1
𝑘
𝑖=1                          (8) 

2) Task Delay Model 
One of the crucial factors that must be taken into account, 

particularly while working on activities that are sensitive to 
delays, is the latency between the start and end times of jobs. 
The difference between the task's arrival and end times is 
known as the dwell time. Three delays are taken into account 
in this model: waiting, transmission, and execution delays, 
which occur when a job takes longer than expected to 
complete from the moment of arrival. Before being assigned 
to a layer resource for execution, a task is initially queued up 
when it is submitted to the system. For 𝚝𝑖  from 𝒯  to be 
executed by a layer resource, the waiting time (𝚝𝑖

𝑤) of the 
tasks is determined as the difference between the arrival time 
(𝚝𝑖

𝑎) and the start time (𝚝𝑖
𝑠) of the tasks as: 

𝚝𝑖
𝑤 = 𝚝𝑖

𝑠 − 𝚝𝑖
𝑎    (9) 
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When a task is allocated to a cloud or fog processing layer, 
it must be sent to the layer via a wireless channel. 
Transmission from the edge layer to the fog or cloud layer 
causes a delay in the process. Compared to the cloud layer, 
which is located far from the edge, fog layer resources are 
closer to the end user and hence need less transmission. With 
a processing capacity of 𝜓𝐶 , the entire cloud computing data 
center is regarded as a distributed computing node in this 

study. Consequently, the task transmission latency (𝚝𝑖
𝑙)  is 

determined by 

𝚝𝑖
𝑙 =

𝚝𝑖
𝑚

𝜆𝑙
+ 𝛼                 (10) 

In (10), 𝜆𝑙  is the layer power and 𝛼  is the network 
overhead factor.  

A task's anticipated execution time can be met after its 
processing capacity has been allotted. An increased processing 
capacity quota to the task may shorter the task execution time, 
resulting in an execution delay. For 𝚝𝑖 from 𝒯 to be executed 

by a layer resource, the execution delay (𝚝𝑖
𝑒𝑑) is determined 

as the fraction of tasks needed CPU and task assigned CPU: 

𝚝𝑖
𝑒𝑑 = 1 −

𝚝𝑖
𝑝

𝑟
𝑗
𝑝   (11) 

The total delay of 𝚝𝑖 from its time it enters the system until 
it is finished is determined by 

𝚝𝑖
𝑡𝑒𝑑 = 𝚝𝑖

𝑤 + 𝚝𝑖
𝑙 + 𝚝𝑖

𝑒𝑑  (12) 

Therefore, minimizing the total execution time and delay 
of a task resource allocation 𝑥 is the task allocation objective 
in this study, which is provided in (13). 

𝑓(𝑥) = min(∑ 𝐸𝑇𝑘
𝑖=1 × 0.5 + ∑ 𝚝𝑖

𝑡𝑒𝑑𝑘
𝑖=1 × 0.5)     (13) 

D. Resource Allocation Using GME Optimization 

Algorithm 

This section describes the GME optimization algorithm to 
assign resources to tasks within the fog and cloud layer 
according to their corresponding classes. GME resembles the 
associative hunting behavior of groupers and moray eels [26]. 
Compared to the other nature-inspired optimization 
algorithms, like MOMFO, MHHO, etc., this GME 
optimization algorithm performs associative hunting to 
achieve a great trade-off between exploration and exploitation. 
Therefore, this GME algorithm is chosen in this study for 
optimal RA. Many animals, including chimps and lions, have 
cooperated while hunting. Cooperative hunting amongst 
animals of different species, known as associative hunting, is 
exceedingly unusual. Groupers and moray eels have 
complementary hunting strategies. Cooperation is thus 
mutually advantageous since it improves the chances of both 
species successfully acquiring prey. When the two predators 
collaborate, their hunting strategies complement one another, 
resulting in a multi-predator onslaught that is tough to avoid. 
The great level of cooperation between the two species 
distinguishes this hunting example from that of groups of 
animals of the same species.  

The flock in GME is composed of an even number of 
search agents (i.e., different task-resource assignments 
throughput the cloud and fog layers), allowing for easy 
splitting into pairs. Each pair consists of two individuals: 

grouper fish and moray eels. Each individual serves a distinct 
purpose when the couple collaborates to capture the target. 
The grouper fish and moray eels work in four stages of 
hunting: Primary Search (PS), Pair Association (PA), 
Encircling Search (ES), and Attacking and Capturing (AC).  

A population of possible solutions (i.e., particular 
configuration of task-resource assignments) is generated 
stochastically within the specified upper and lower boundaries 
of the issue (i.e., the maximum and minimum values of tasks 
and their requirements). The fitness function's best value 
represents the best candidate solution, while the worst value 
represents the worst search agent. The optimization process 
iteratively updates the population and takes into account the 
best solution found so far, aiming to converge towards an 
optimum solution. The first phase, PS, involves grouper fish 
searching for prey. The next step is selecting an eel to follow 
and hunt the prey amid the rocks. The PA phase completes the 
work, and the ES phase uses the same method. The last stage, 
AC, occurs when one of the two individuals, the moray eel or 
the grouper fish, catches the prey. Each stage is explained 
briefly below. 

1) Primary Search 
Groupers are aquatic creatures that can move quickly 

through water by propelling themselves forward and adjusting 
their fin direction. They are primarily used for exploration 
during the search phase in nature-inspired optimization 
methods, where search agents traverse the search space at 
random. A successful prey search enhances the algorithm's 
exploring capabilities. Groupers use a zig-zag swimming style 
to traverse a broad region while tracking potential dangers. 
During this phase, they search for food and move in a zig-zag 
pattern, assigning each fish a random location before starting. 
This zig-zag motion occurs when no three consecutive places 
of movement are in a rising or decreasing sequence. Fig. 4 
demonstrates several variations of the zig-zag motion by a 
grouper fish in the search space. 

A zigzag motion happens when no three consecutive 
places of the movement are in a rising or decreasing sequence. 
In other words, if the motion array comprises three entries 
(ℎ𝑖 , ℎ𝑖+1, ℎ𝑖+2)  such that ℎ𝑖 < ℎ𝑖+1 < ℎ𝑖+2  or ℎ𝑖 > ℎ𝑖+1 >
ℎ𝑖+2 , the motion is not zigzagged. Under the statement, 𝑃 
denotes the total number of iterations in the PS, ES, and AC. 

 

Figure 4.  Zig-Zag Motion of Grouper Fish in the Search Space 

So, the respective values of the number of iterations for 
PS, ES, and AC represented as 𝑃𝑠𝑒𝑎𝑟𝑐ℎ, 𝑃𝐸𝑛𝑐, and 𝑃𝐴𝐶 , which 
are determined by 

𝑃𝑠𝑒𝑎𝑟𝑐ℎ = ⌊
𝑃

3
⌋   (14) 

𝑃𝐸𝑛𝑐 = ⌊
𝑝

3
⌋   (15) 

𝑃𝐴𝐶 = ⌊𝑃 − 2 ×
𝑃

3
⌋  (16) 
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Consider 𝑆 is the cluster of 𝑁 available search agents (i.e., 

groupers and moray eels), these are initially split into two 

equivalent clusters of groupers and eels. So, the number of 

agents in each cluster is determined by 

  𝑛 =
𝑁

2
                  (17) 

The cluster of groupers and eels is represented by 𝐺 =
{𝑔1, 𝑔2, … , 𝑔𝑛}  and 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} , respectively. The 
following process involves randomly distributing groupers 
and eels in the search space using (18), ensuring their positions 
align with the specified lower and upper bounds. 

𝑋𝑖𝑗
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝚕𝑗 + 𝑟𝑎𝑛𝑑(𝚞𝑗 − 𝚕𝑗), 𝑖 = 1, … , 𝑁; 𝑗 = 1, …, (18) 

In (18), 𝑋𝑖𝑗
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 represents the initial location of 𝑖𝑡ℎ search 

agent of 𝑗𝑡ℎ dimension, 𝚞𝑗 and 𝚕𝑗 denote the upper and lower 

margins of the search space, respectively, 𝑁 is the number of 
search agents, 𝐷 is the total amount of dimensions, and 𝑟𝑎𝑛𝑑 
is an arbitrary vector that pursues a uniform distribution, with 
values ranging from 0 to 1. 

After that, the objective function (as defined in (13)) is 
computed for each grouper. The groupers start moving in a 
zigzag pattern to find the prey (best solution). The zigzag 
movement helps the groupers to explore new regions in the 
search space, hence increasing the algorithm's exploration 
potential. At the end of this phase, the optimal location for 
each grouper is determined using the objective function. 

Consider 𝑋⃗𝑔𝑚𝑗
𝑖 = {𝑋𝑔𝑚1

𝑖 , 𝑋𝑔𝑚2
𝑖 , … , 𝑋𝑔𝑚𝑄

𝑖 }  is the location 

vector of the 𝑚𝑡ℎ grouper in the 𝑖𝑡ℎ iteration, where 1 ≤ 𝑖 ≤
𝑝𝑠𝑒𝑎𝑟𝑐ℎ, 1 ≤ 𝑗 ≤ 𝑄, and 1 ≤ 𝑚 ≤ 𝑛, 𝑛 is the total quantity of 
groupers, and 𝑝𝑠𝑒𝑎𝑟𝑐ℎ is the total amount of search iterations. 
During this stage, groupers update their location vectors after 
each hop, and their corresponding objective function is 
evaluated to determine their proximity to the possible prey. 
The updated position of a grouper is defined in (19), which 
depends on the number of hops (𝑛), with even hops resulting 
in an arbitrary location greater than the current location but not 
exceeding the search space's maximum boundary, and odd 
hops resulting in an arbitrary location less than the current 
location but greater than or equal to the search space's 
minimum boundary. Thus, the optimal location of each 
grouper is determined by the location vector that yields the 
maximum value of the objective function compared to 
locations created across all hops of the iteration. 

𝑋𝑔𝑚𝑗
ℎ𝑜𝑝+1 =

{
𝑟𝑎𝑛𝑑(𝑋), 𝑋𝑔𝑚𝑗

ℎ𝑜𝑝 < 𝑋 ≤ max(𝑋𝑔𝑚𝑗) ;  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑟𝑎𝑛𝑑(𝑋), min(𝑋𝑔𝑚𝑗) ≤ 𝑋 < 𝑋𝑔𝑚𝑗
ℎ𝑜𝑝 ;  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

   (19) 

2) Pair Association 
Groupers are predators known for their quick bursts of 

speed, but their large size and unwieldy shape prevent them 
from catching animals hiding in narrow crevices. They use a 
novel strategy of seeking out moray eels to flush out their prey. 
Groupers and moray eels have different predatory abilities, 
with groupers using ambush tactics and moray eels 
maneuvering through coral reef openings. They work together 
to patrol a larger hunting area, operating in the upper water 
column and navigating the reef depths. When trapped, the prey 
has two options: remain hidden until the moray eel finds it or 
swim in the water, where the grouper's teeth await. 

The search process involves a series of phases, starting 
with the PS phase, where search agents are randomly 
distributed within the search domain. The objective function 
values are calculated and recorded. The PA phase occurs after 
the PS, where cooperation between groupers and eels allows 
them to discover new areas. The grouper's intelligence and 
learning ability enable it to choose the best eel for hunting. 
Pair identification occurs between groupers and eels, using 
random associations, distance-based associations, and 
objective function associations. The ES phase follows, where 
search agents move towards their best position. This AC stage 
sees search agents converge towards the optimal solution. 

3) Encircling Search 
During the search phase, paired eels encircle the prey, 

moving independently to explore new areas. They use an 
underwater shimmying dance called the Grouper to eel 
Encircling Signal (GES) to signal their desire to hunt in 
groups. They may even perform an underwater headstand to 
show the prey's hiding place. If the eel ignores the signal, 
groupers aggressively approach the moray, forcing it to chase 
the fish out of its hiding place. The moray then attacks the 
prey, sharing the meal, benefiting from their associative 
hunting techniques. 

The location vector of 𝑚𝑡ℎ  grouper in 𝑄 -dimensional 

space is denoted as 𝑋⃗𝑔𝑚𝑗 = {𝑥𝑔𝑚1, 𝑥𝑔𝑚2, … , 𝑥𝑔𝑚𝑄}  and the 

location vector of 𝑚𝑡ℎ eel in 𝑄-dimensional space is denoted 

as 𝑋⃗𝑒𝑚𝑗 = {𝑥𝑒𝑚1, 𝑥𝑒𝑚2, … , 𝑥𝑒𝑚𝑄}. The best solution for a prey 

is found in the region bounded by the grouper and the eel. In 
an 𝑛-dimensional space, (20) is utilized to compute the prey 
location according to the differences between the coordinates 
of a grouper and an eel in each dimension. 

∆𝑥𝑚𝑗 = 𝑋𝑒𝑚𝑗 − 𝑋𝑔𝑚𝑗                  (20) 

The distance between the grouper and the eel 

(𝑑𝑔𝑟𝑜𝑢𝑝𝑒𝑟−𝑒𝑒𝑙) is then calculated by 

𝑑𝑔𝑟𝑜𝑢𝑝𝑒𝑟−𝑒𝑒𝑙 = √∑ (∆𝑥𝑚𝑗)
2𝑄

𝑗=1            (21) 

Moreover, the coordinates of the prey in each dimension 
are determined as: 

𝑐𝑚𝑗 = 𝑋𝑔𝑚𝑗 +
𝐿

𝑑𝑔𝑟𝑜𝑢𝑝𝑒𝑟−𝑒𝑒𝑙
(∆𝑥𝑚𝑗)            (22) 

In (22), 𝑐𝑚𝑗  is the coordinates of 𝑚𝑡ℎ  prey in each 

dimension, 𝑋𝑔𝑚𝑗  is the location of a grouper, 𝑋𝑒𝑚𝑗 is the 

location of an eel, and 𝐿 represents the distance between the 
grouper and prey. During the ES stage, groupers and eel move 
towards the prey in their own ways, as displayed in Fig. 5. The 
logarithmic spiral is the primary location update method for 
groupers. The distance between groupers and potential prey is 
calculated by 

𝑑 = |𝑋⃗𝑝𝑟𝑒𝑦_𝑚(𝑖) − 𝑋⃗𝑔𝑚(𝑖)|  (23) 

The location of a grouper is updated multiple times in an 
iteration based on the number of hops (ℎ). The location with 
the best fitness value is the initial location in the second 
iteration, and so on until the determined number of iterations 

in the ES stage. The updated location depends on 𝑑, constant 
𝑘 that measures the shape properties of the logarithmic spiral, 
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the estimated position of the 𝑚𝑡ℎ  prey at iteration 

𝑖 (𝑋⃗𝑝𝑟𝑒𝑦_𝑚(𝑖)) , 𝑤 , the number of encircling iterations 

(𝑃𝑒𝑛𝑐𝑟𝑖𝑐𝑙𝑒), and ℎ.  This is represented by 

𝑋⃗𝑔𝑚(ℎ + 1) = 𝑑 × 𝑒𝑘𝑤 cos(2𝜋𝑤) + 𝑋⃗𝑝𝑟𝑒𝑦_𝑚(𝑖) (24) 

𝑤 = 1 −
2×ℎ

𝑃𝑒𝑛𝑐𝑟𝑖𝑐𝑙𝑒
    (25) 

Sine waves, found in nature and easy to handle 
mathematically, are the primary position update mechanism 

for moray eels during the ES phase. They can create any 
arbitrary wave shape, making them a significant shape in 
nature. The eel moves in a sinusoidal wave, updating its 
position multiple times in iterations. 

 
The distance between the eel and prey, is computed as: 

𝜆(𝑖) = |𝑋⃗𝑒𝑚(𝑖) − 𝑋⃗𝑝𝑟𝑒𝑦_𝑚(𝑖)|  (26) 

After that, the wave amplitude 𝜂⃗(𝑖) is calculated by  

 

Figure 5.  Encircling Strategy of Grouper and Eel 

multiplying 𝜆(𝑖) by an arbitrary factor 𝜉, ranging from 0 to 1. 

𝜂⃗(𝑖) = 𝜆(𝑖) × 𝜉    (27) 

The distance between the eel and the prey is split into hops. 
So, the distance between the current and next hop is 
determined as: 

𝑑ℎ𝑜𝑝𝑠 =
2𝜋

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑝𝑠
   (28) 

The locations of the eels are updated as follows: 

𝑋𝑒
𝑖+1 = 𝛼 × 𝜂⃗(𝑖) × sin(𝑔) + 𝑋𝑒

𝑖   (29) 

In (29), 𝛼 is an arbitrary value ranging between 0 and 1. 
After the current iteration is completed, the best location of the 
eel from all hops is chosen as the initial location of the next 
iteration. 

4) Attacking and Catching 
At the AC phase, all search agents, whether groupers or 

eels, participate in the attack on the prey after accurately 
surrounding its location. In 2D space, the hypothesis relies on 
forming a circle around the prey, where the prey is located in 
the center of the circle. 

The process of forming a circle around a predicted prey 
involves first assuming the location of the agent with the best 
fitness function as the prey's location. The distance between 
the prey and all other agents is then calculated. A circle is then 
formed, with the radius (𝑅) representing the distance between 
the prey and the farthest agent. The radius of the next circle is 
determined by 

𝑅𝑖+1 = (1 − 𝜇) × 𝑅𝑖   (30) 

In (30), 𝑅 = {1,2, … , 𝐴𝐵 − 1}, where 𝐴𝐵 is the number of 
attack balls, and 𝜇 represents the shrinking ratio. The search 

agent will be dispersed at random within the second circle 
after its radius has been established. The search agents 
approach the target more closely with each repetition of the 
attack. The agents capture the prey in the final iteration of the 
procedure, which continues until the number of assaulting 
iterations is reached. The pseudocode for the GME 
optimization algorithm for RA in IoT-Fog-Cloud paradigm is 
given in Algorithm 2. 

 
Algorithm 2: GME Optimization-Based RA Technique 
Input: Tasks 𝒯 , including cloud and fog layer tasks, and 
resources 𝑅 
Output: Best assignment of tasks to resources 

1. Begin 

2. 𝒇𝒐𝒓(𝑒𝑎𝑐ℎ 𝚝𝑘 ∈ 𝒯 𝑎𝑛𝑑 𝚛𝑗 ∈ 𝑅) 

3.   Calculate the execution time and delay using (8) & 
(12), respectively; 

4.   Define the objective function 𝑓(𝑥) by (13); 
  //GME Optimization Algorithm 
5.   Initialize the set of 𝑁  available search agents 

(groupers and eel); 
6.   //PS stage 
7.   Initialize the total number iterations 𝑃𝑠𝑒𝑎𝑟𝑐ℎ and the 

number of movements in the iteration (ℎ𝑜𝑝); 
8.   𝒇𝒐𝒓(𝑖 = 1: 𝑃𝑠𝑒𝑎𝑟𝑐ℎ) 
9.     Split the search agents into two equivalent clusters 

of grouper and eels; 
10.     Arbitrarily circulate the groupers across the search 

space; 
11.     Determine the objective function 𝑓(𝑥)  for all 

groupers; 
12.     Each grouper starts to travel in the form of zig-zag 

motion; 
13.     Determine the new location for all groupers 

according to the motion in the iteration using (19); 
14.     Compute the new objective function; 
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15.     Choose the ideal location of the grouper from 
every hop in the current iteration to be the initial 
location of next iteration; 

16.     Allocate the ideal location for all groupers 
according to their fitness values; 

17.     Descending order the groupers based on the 
highest fitness value; 

18.     Arbitrarily circulate the moray eels in the search 
space and determine the fitness value for all eels; 

19.   𝒆𝒏𝒅 𝒇𝒐𝒓 
20.   //PA & ES Stage 
21.   Initialize the set of available search agents of 

groupers and eels, total number of encircling 
iterations 𝑃𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒 , ideal location vector for all 𝑗𝑡ℎ 
groupers from the PS stage, ℎ number of hops for the 
grouper’s motion, and constant 𝑘; 

22.   𝒇𝒐𝒓(𝑖 = 1: 𝑃𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒) 

23.     Determine the position of the 𝑚𝑡ℎ prey by (20)-
(21); 

24.     Compute the distance between the grouper and 
prey by (22); 

25.     Determine the new location for all groupers and 
fitness value for the hop location; 

26.     Choose the ideal location of the grouper from all 
hops in the current iteration to be the optimal location 
and initial location of next iteration; 

27.     Update the ideal location for all groupers 
according to the fitness value; 

28.     Determine the wavelength and wave amplitude 
using (26) & (27), respectively; 

29.     Split the distance between the eel and prey based 
on the number of hops; 

30.     Determine the new location for all eels using (28); 
31.     Compute the fitness value for all locations; 
32.     Choose the ideal location with the highest fitness 

value to be the initial location of the next iteration; 
33.      Update the optimal location for every eel 

according to the fitness value; 
34.   𝒆𝒏𝒅 𝒇𝒐𝒓 
35.   //AC Stage 
36.   Initialize the total number of attacking iterations 

𝑃𝐴𝐶 , number of attack balls 𝐴𝐵 , where 𝐴𝐵 = 𝑃𝐴𝐶 , 
the ideal locations of groupers and eels from the ES 
stage, and shrinking ratio 𝜇; 

37.   𝒇𝒐𝒓(𝑖 = 1: 𝑃𝐴𝐶) 
38.     Compute the location of search agent, which has 

the optimal fitness value to be the position of the 
predicted prey; 

39.     Determine the distance between the predicted prey 
and each other agent; 

40.     Determine the distance between the prey and the 
farthest agent and assign the radius 𝑅 of the circle, 
where the prey is positioned in the circle centroid; 

41.     Arbitrarily circulate the agents within the circle 
and compute the fitness value for all search agents; 

42.     Choose the search agent with the best fitness value 
to be the prey in the next iteration; 

43.     Calculate the radius of the next circles using (30); 
44.     Form the circle and locate the prey in the circle 

centroid; 
45.     Arbitrarily circulate the search agents within it; 
46.     Determine the fitness value for the search agents; 
47.     Choose the search agents with the optimal fitness 

value to be the prey (i.e., optimal assignment of tasks 
to resource); 

48.   𝒆𝒏𝒅 𝒇𝒐𝒓 

49. 𝒆𝒏𝒅 𝒇𝒐𝒓 
50. Return the best assignment of tasks to resources; 
51. End 

IV. SIMULATION RESULTS 

This section presents the experimental details and 
effectiveness of the suggested DNN-GME algorithm. The 
iFogSim simulator is used to implement the suggested 
approach. The traditional Java-based CloudSim simulator's 
features are expanded by the iFogSim simulator to enable the 
modeling of fog resources. The iFogSim Simulator has been 
widely used to simulate fog and cloud resources, applications, 
and a defined service deployment strategy that determines 
how the services are handled on the devices. A simulation-
based performance assessment is carried out using the 
iFogSim simulator to compare the suggested algorithm with 
other algorithms, such as MOMFO [19], ERAM-EE [17], 
ANFIS-CHBA-OBL [22], and DELTa [24], to assess the 
performance of the suggested scheduling framework. The 
uniform deployment of IoT devices at the edge of the fog-
cloud network is the basis for the uniform generation of user 
tasks in the simulation scenarios of the suggested and current 
algorithms. As shown in Table 2, processing speed, memory, 
and bandwidth are responsible for the processing resources in 
both the fog and cloud levels. By using the task requirements 
and resource capabilities, the classifier determines whether 
each job should be completed in the fog or on the cloud. The 
GME optimization technique generates optimal resource 
allocation while minimizing latency, execution time, and task 
failure rate.  

Table II.  Resource and Task Attributes 

Resour

ce type 

No. 

of 

nod

es 

CPU 

(MIPS) 

Memory 

(GB) 

Bandwidt

h (Mbps) 

Latency 

(ms) 

Fog  50 500-2000 1-8 1-10 1-10 

Cloud 10 5000-

10000 

16-32 50-100 20-50 

Task 

type 

No. 

of 

task

s 

CPU 

requireme

nts 

(MIPS) 

Memory 

requireme

nts (MB) 

Bandwidt

h 

requireme

nts (Mbps) 

Latency 

constrai

nts (ms) 

Fog 150

0 

100-1000 300-500 2-8 2-8 

Cloud 150

0 

2000-5000 500-1000 20-70 20-40 

Table 3 shows the parameters for the DNN-GME method 
for resource allocation. At various periods, IoT devices create 
tasks that must be identified and allocated resources for 
execution. At each time interval, the number of tasks created 
in each category is raised by 500, while the system's 
performance is monitored. The devices create a total of 3000 
tasks, which are then sent to the task categorizer in batches 
through the arrival queue. 

Table III.  Parameter Configurations for DNN-GME Algorithm 

Algorithm Parameters Values 

DNN 

No. of input layer neurons  

No. of hidden layers 2 

No. of neurons in hidden layer 

1 

32 

No. of neurons in hidden layer 

2 

64 

No. of output layer neurons 2 

Activation function ReLU 

Learning cycle 500 epochs 

Loss function Mean square error 
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Optimizer (i.e., learning 

scheme) 

Adam 

Batch size 100 

GME 

Optimization 

No. of agents 100 

Total no. of iterations 200 

No. of hops in the grouper’s 

motion 

3 

No. of hops in the eel’s motion 3 

Constant 𝑘 Each agent has 

separate value 

Factor 𝜉 [0,1] 

Arbitrary value 𝛼 0.3 

Shrinking ratio 𝜇 0.2 

A. Response Time 

It represents the time required for each task to be 
completed within the fog-cloud network. It is determined by 

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝑇 + 𝑃                 (31) 

In (31), the amount of time required for data to be 
transmitted from edge devices to fog nodes is known as the 
transmission time (T). The time it takes for the fog nodes to 
process the data they have received is known as the processing 
time (P). 

Fig. 6 depicts the performance evaluation of different 
scheduling algorithms in terms of response times for different 
numbers of tasks. The suggested DNN-GME has a lower 
response time, indicating its usefulness in dealing with varied 
workloads with minimal delay. For 500 tasks, it decreases 
response time by 66%, 57.5%, 43.33%, and 29.17% compared 
to the ERAM-EE, DELTa, MOMFO, and ANFIS-CHBA-
OBL. Furthermore, when the task size is extended to 3000, the 
response time is lowered by 24.7%, 20.89%, 13.79%, and 
8.76% compared to the same algorithms, respectively. As a 
result, the DNN-GME algorithm demonstrates its efficacy in 
delay-sensitive circumstances by regulating RA and task 
scheduling simultaneously as the number of tasks rises. 

 

 

Figure 6.  Response Time vs. No. of Tasks 

B. Latency 

It is the sum of processing and transmission latencies 
observed in the IoT-fog-cloud network. It is determined by 
(12). The delay for both suggested and current algorithms is 
shown in Fig. 7. Although the DNN-GME progressively 
increases the latency as the task load grows, it consistently has 
the lowest latency compared to other methods, indicating its 
adaptability and dependability to carry out time-sensitive tasks 
in fog-cloud computing environments 

 

 

Figure 7.  Latency vs. No. of Tasks 

 In comparison to the ERAM-EE, DELTa, MOMFO, and 
ANFIS-CHBA-OBL, it lowers latency by 70.97%, 64%, 
52.63%, and 30.779% for 500 tasks, respectively. Also, 
compared to the identical algorithms, the latency is decreased 
by 30.71%, 23.62%, 16.38%, and 10.19% when the task load 
is increased to 3000. For applications requiring low latency in 
dispersed fog-cloud environments, the suggested DNN-GME 
may therefore be appropriate. 

Fig. 8 shows the delay of 3000 tasks submitted to the 
system for execution. The number of tasks increased, as did 
their delay. It can be seen that the cloud only had the greatest 
rise in latency. This is the effect of increased network traffic 
between the channels. The fog-only scenario had the lowest 
latency when compared to the other deployment scenarios, 
including cloud-only and fog+cloud. However, as compared 
to other current scheduling methods, the suggested solution 
significantly reduces the system's total latency. 

 

Figure 8.  Latency for 3000 Tasks in Different Deployment Scenarios 

C. Load Imbalance 

It assesses the unequal allocation of tasks across fog and 
cloud resources. 

Fig. 9 displays the load imbalance ratios between the 
proposed and current algorithms. The suggested DNN-GME 
maintains minimum load imbalances, which reach 2.5% at 
peak workload circumstances. The findings show that DNN-
GME successfully distributes tasks among resources for all 
task counts. Under 500 tasks, the DNN-GME reduces load 
imbalance by 55.56%, 46.67%, 38.46%, and 20%, compared 
to the ERAM-EE, DELTa, MOMFO, and ANFIS-CHBA-
OBL, respectively. Furthermore, increasing the task to 3000 
reduces it by up to 28.57%, 21.88%, 16.67%, and 10.71% 
when compared to the same algorithms. So, the suggested 
DNN-GME is the ideal option for cases requiring fair resource 
allocation to avoid bottlenecks. 
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Figure 9.  Load Imbalance vs. No. of Tasks 

4.4 Task Failure Rate 
It is the percentage of tasks that fail to perform efficiently 

due to resource and computational constraints. Fig. 10 shows 
how proposed and current algorithms handle failure rates 
when processing tasks ranging from 500 to 3000. The 
suggested DNN-GME outperforms all other algorithms tested 
in terms of task processing reliability. When operating with 
2000 tasks, the DNN-GME decreases failure rates by 56%, 
47.62%, 35.29%, and 21.43% compared to ERAM-EE, 
DELTa, MOMFO, and ANFIS-CHBA-OBL. For 3000 tasks, 
it is lowered up to 31.91%, 27.27%, 20%, and 11.11% when 
compared to the identical algorithms. The gains in these data 
demonstrate the usefulness of DNN-GME, which reduces 
reaction time and latency while balancing resource 
consumption and attaining high job completion rates in IoT-
fog-cloud environments. 

Task failures reported by the various algorithms for 3000 
tasks in various conditions, including fog-only, cloud-only, 
and fog+cloud, are displayed in Fig. 11. Task failures recorded 
by all techniques have grown in tandem with the quantity of 
tasks.  

 

 

Figure 10.  Task Failure Rate vs. No. of Tasks 

 

Figure 11.  Number of Tasks Failed for 3000 Tasks in Different 

Deployment Scenarios 

This demonstrates how increasing the number of tasks 
raises resource consumption and, consequently, task failure. It 
is evident that, across all deployment situations, the suggested 
algorithm saw the least increase in task failure compared to 
alternative algorithms. In particular, it performs better in 
fog+cloud situations than in fog-only and cloud-only 
situations. For example, compared to the fog-only and cloud-
only cases, it lowers the number of tasks that fail by 68.82% 
and 71%, respectively. 
4.5 Execution Time 

It is calculated by (8). Fig. 12 depicts the execution time 
for 3000 tasks under various scheduling techniques and 
deployment situations. Both the proposed and existing 
methods showed considerable increases in execution timeThe 
rise is due to the increased demand for resources caused by the 
tasks. Compared to all cases, the fog-only exhibits the greatest 
increase in execution time, indicating that the increased 
number of tasks has overburdened the fog layer. According to 
the results, the suggested algorithm has the shortest execution  

 

Figure 12.  Execution Time for 3000 Tasks in Different Deployment 

Scenarios 

time for the fog+cloud scenario compared to the other 
deployment situations and existing algorithms 

 

V. CONCLUSION 

This study presents an effective RA framework to employ 
cloud and fog resources to execute delay-sensitive operations 
and handle the massive amount of data created by end users. 
At first, using the GME optimization method, the tasks in the 
arrival queue were categorized according to the task guarantee 
ratio on the cloud and fog layers, and appropriate resources 
were assigned in the layers of their corresponding classes. 
Then, to categorize recently arriving tasks and match them 
with appropriate resources for execution in the layer of their 
respective classes, the DNN classifier was applied to prior 
allocation history data. Using classifiers to categorize the 
following tasks can help the system allocate resources more 
accurately when executing a massive quantity of tasks. 
Additionally, by using historical data to anticipate the layer 
and resource of newly incoming tasks, the system overhead 
caused by the optimal resource search time may be decreased. 
Finally, the simulation findings prove that the proposed DNN-
GME algorithm outperformed earlier scheduling algorithms, 
such that the DNN-GME has 125 ms response time, 97 ms 
latency, 2.5% load imbalance, 3.2% task failure rate, and 85 s 
execution time for 3000 tasks. It is clear from the performance 
shown by the suggested algorithm that not all tasks can be 
completed with the fog alone without the cloud, and vice 
versa. 
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