
DOI: http://dx.doi.org/10.26483/ijarcs.v16i3.7291

Volume 16, No. 3, May-June 2025

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2024-2027, IJARCS All Rights Reserved 167

ISSN No. 0976-5697

AN EFFICIENT HYBRID FRAMEWORK FOR OPTIMAL RESOURCE

ALLOCATION IN IOT-FOG-CLOUD SYSTEM

A. Priyadharshini

Ph.D. Research Scholar
Department of Computer Science

Rathinam College of Arts and Science

Coimbatore-641021, Tamil Nadu, India

S. Dhinakaran

Assistant Professor
 Department of Computer Science

Rathinam College of Arts and Science

Coimbatore-641021, Tamil Nadu, India

Abstract: The amount of data produced by intelligent devices has grown significantly with the emergence of the Internet of Things (IoT) systems

and other technologies. To analyze and store this data, cloud computing offers limitless processing and storage capacity. However, it suffers from

a lack of geographic awareness, excessive energy usage, and high transmission delay. Additionally, it is not suitable for handling this data since

the generated data is delay-sensitive. Therefore, the fog paradigm has been developed, which enables data to be analyzed in the proximity of IoT

systems. However, its capacity constraints make it unsuitable for analyzing massive amounts of data. To ensure the efficient completion of delay-

sensitive tasks and handle the massive amount of data generated, it is essential to integrate the fog and cloud paradigms with a common goal. This

article proposes an effective Resource Allocation (RA) technique to utilize fog and cloud resources for completing delay-sensitive tasks and

handling the massive amount of data generated by IoT devices. Initially, tasks in the arrival queue are categorized and assigned to appropriate

resources in the cloud and fog layers based on the task guarantee ratio. A Deep Neural Network (DNN) classifier is then applied to historical

allocation data to categorize new arriving tasks and assign suitable resources for execution in their respective layers. Besides, the optimal resource

allocation in the fog and cloud layers is achieved using the Groupers and Moray Eels (GME) optimization algorithm, which effectively reduces

the system's execution time and latency. Extensive simulations demonstrate that the DNN-GME algorithm outperforms existing algorithms in IoT-

fog-cloud settings.

Keywords: IoT, cloud computing, fog computing, resource allocation, task classification, DNN, groupers and moray eels

I. INTRODUCTION

The proliferation of IoT devices has revolutionized
modern information and communication technologies [1].
Beyond commonplace devices like smartphones and tablets,
the Internet of Things has extended network connections to a
wide range of smart equipment, including televisions,
wearables, cars, and security cameras. This increase has led to
an increasing number of IoT applications that produce massive
data streams with critical latency requirements [2]. It is
anticipated that there will be more than 75 billion connected
IoT devices by 2025, indicating the market's explosive growth
[3]. Additionally, according to IDC projections on the amount
of data that IoT devices will generate, they will produce 73.1
ZB of data [4]. Multiple computing technologies, such as
cloud, fog, and edge computing, with different
communication protocols for improved connection, have
become more and more necessary to tackle this situation [5].

Cloud computing is seen by smaller businesses as a
powerful data management tool that can effectively store the
massive amounts of data generated by IoT devices [6]. Due to
the vast distance between IoT devices and cloud data centers,
the process of moving massive and diverse data volumes to
consolidated cloud settings results in latency and longer
reaction times [7]. To meet the latency requirements of
Internet of Things systems, cloud data center restrictions were
successfully addressed by the creation of fog computing. By
implementing network-edge services that shorten the distance
between IoT data origin locations, fog computing expands the
capabilities of cloud computing [8]. Fog devices are close
together because they reduce processing time, which improves
processing speed and speeds up application response times
while using less bandwidth [9]. Fog devices continue to have

less processing power and storage than cloud networks. Since
its early success, fog computing has experienced consistent
advancements through academic investigations and industry
applications. Both cloud and fog computing have unique
advantages and disadvantages that make it impossible for
them to fully meet the needs of data-intensive Internet of
Things applications [10]. To build an effective computing
environment, fog and cloud models must be combined.
Managing resources between fog and cloud for Internet of
Things applications is difficult due to the variety and poor
coupling of fog devices [11–12]. Consequently, a successful
IoT-fog-cloud system requires an enhanced RA technique that
takes fog and cloud problems into account.

To take advantage of fog and cloud paradigms, several
research studies on RA based on optimization techniques and
other methodologies have emerged in recent decades [13–15].
Tasks are distributed across available fog resources based on
response times, bandwidth, and processing speed rates. Any
unassigned tasks will be sent to the cloud for completion until
there are no more free resources on the fog layer. However,
due to fog resource limits and fog-based allocation of time-
insensitive activities based on arrival time, these strategies
cause time-sensitive jobs to queue after time-insensitive tasks
for cloud processing. In fog systems, time-sensitive activities
are typically severely hampered by the lack of resources.

This study proposes an efficient resource allocation system
for utilizing fog and cloud resources to execute delay-sensitive
operations and handle the massive volume of data created by
individuals. There are two steps involved in assigning
resources to tasks. First, the task guarantee ratio on the cloud
and fog layers is used to categorize each task in the arrival
queue. Appropriate resources are assigned to the categorized
tasks according to their class layer using a GME optimization

A. Priyadharshini et al, International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 167-178

© 2024-2027, IJARCS All Rights Reserved 168

method. Second, a DNN classifier is used to categorize
recently arriving tasks and match them with appropriate
resources for execution in the layer of their respective classes
based on prior allocation history data. With this strategy,
delay-sensitive operations will benefit from the fog's faster
response and higher Quality of Service (QoS), while
computation- and data-intensive tasks will benefit from the
cloud's infinite processing and storage capacity. Accordingly,
the suggested technique can greatly reduce scheduling time
and enhance overall system performance by shortening
resource search period in both the fog and cloud levels.

A. Main Objectives and Contributions

The primary goals of this work can be described below:

• Create an RA framework that optimizes workload
allocation between fog and cloud resources.

• To reduce task execution time, latency, and task
failure owing to inadequate resource allocation while
considering the job's deadline.

• Reduce total resource allocation time by categorizing
activities based on historical RA history.

The following are the contributions made by this paper:

• To guarantee the best possible workload allocation
across fog and cloud resources, the DNN classifier is
first introduced based on the task guarantee ratio. It
also minimizes the system overhead caused by a
complete search for the suitable layers and resources
for task execution.

• To create the best possible RA that minimizes the
overall system execution time and latency, the RA
problem is formulated as a multi-objective
optimization dilemma and solved by introducing the
GME optimization algorithm, drawing inspiration
from the associative hunting between groupers and
moray eels.

The subsequent portions are prepared in the following
manner: Section 2 includes the related works. Section 3
discusses the proposed technique, while Section 4
demonstrates its efficacy. Section 5 highlights the findings and
outlines further improvements.

II. LITERATURE SURVEY

This section provides a survey of current research on
resource management and scheduling systems in fog and
cloud computing environments. In [16], a layer fit technique
was created to evenly distribute tasks across the fog and cloud
based on their priorities. Additionally, the Modified Harris
Hawks Optimization (MHHO) algorithm was used to assign
the best available resource to a task inside a layer while
meeting QoS criteria. However, it has high energy usage and
an execution period.

In fog-IoT systems, Periasamy et al. [17] created the
Efficient RA and Management with Energy Efficiency
(ERAM-EE) technique. IoT devices were assigned to fog
nodes via resource blocks based on the channel gain matrix of
the interconnected networks. Initially, a single fog node was
mapped to every IoT device via a single resource block by
determining its maximum channel gain. Subsequently, the
remaining resource blocks were mapped to fog nodes that had
not yet been assigned, so they could be offloaded later.
However, the algorithm's primary flaw was the dynamic and
diverse nature of IoT devices. Additionally, the network
efficiency may be impacted by CPU memory and processing
power limitations.

Based on the workloads produced by a collection of nodes
at the network edge, a load-aware RA method was presented
for heterogeneous fog networks that minimizes execution
period and latency by effectively utilizing fog resources [18].
During RA, the amount of data produced by the cluster of
nodes was taken into account. However, the algorithm's
resilience was limited because it only addressed rate factor
sensing for RA tasks. An IoT task scheduling method utilizing
the Multi-Objective Moth-Flame Optimization (MOMFO)
algorithm was presented in [19]. It decreased task request
completion times, throughput, and energy consumption,
thereby improving the quality of fog-cloud computing-based
IoT services. However, energy consumption has remained
high.

A hybrid Particle Swarm Optimization with Simulated
Annealing and Load Balancing (PSOSA-LB) approach was
developed in [20] to optimize resource allocation in the fog-
cloud scenario. The PSO velocity update was combined with
a load imbalance adjustment factor that guided particles
toward solutions that maximized an equitable workload
distribution among available resources. However, because the
LB method relies on constant monitoring of cloud and fog
resource status, communication cost was high.

An energy-conscious task offloading and LB method for
time-sensitive IoT fog cloud applications was presented [21].
By examining resource variety in conjunction with system
parameters like network bandwidth, job size and resource
consumption, and latency limitations, the fuzzy logic system
was able to find offloading target layers. A Binary Linear-
Weight JAYA (BLWJAYA) method was used to schedule the
incoming IoT queries and assign them to cloud and fog nodes.
However, it has high computational overhead and complexity.

To categorize the requests and identify the target layers for
processing in fog-cloud systems, Srichandan et al. [22]
introduced the Adaptive Neuro-Fuzzy Inference System
(ANFIS). Additionally, such requests were scheduled at the
target layer using a Chaotic Honey Badger Algorithm
(CHBA). To improve the convergence of HBA, an
Opposition-based Learning (OBL) scheme was used in
conjunction with a chaotic mapping function. However, it is
challenging to forecast the loads of each compute node to
schedule requests on available nodes.

An Optimized LB (OLB) method was created by Ala'anzy
et al. [23] that modifies resource allocation by taking into
account processing power and traffic volumes at every fog
node. However, it takes a long time to execute and consumes
a lot of energy. In [24], a Dynamic Energy-and-Latency-
Aware Task (DELTa) scheduling for fog-cloud environment.
A multi-level queue technique was applied to prioritize tasks
and find the suitable node for offloading. Then, the DELTa
technique was used to effectively schedule tasks onto the
chosen nodes for execution. However, it may struggle in large-
scale, dynamic, and heterogeneous settings. A One-to-One-
based optimizer with priority and LB (O2O-LB) method was
developed [25] for fog-cloud settings. However, its latency
and reaction time are high. The techniques discussed above
are summarized in Table 1, which includes the assessment
metrics used, the benefits, and drawbacks of the suggested
approach.

The present research reveals that many solutions manage
RA within IoT-fog-cloud architecture; however, numerous
issues, such as excessive energy utilization, latency, and poor
performance in real-world applications or heterogeneous
environments, persist. Existing models fail to account for job
categorization and appropriate resource management when
workloads change. This disadvantage necessitates the creation

A. Priyadharshini et al, International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 167-178

© 2024-2027, IJARCS All Rights Reserved 169

of an effective task categorization algorithm using RA. The
primary goal of this research is to present a novel DNN-GME
method that improves resource usage and network stability
across IoT, fog, and cloud paradigms.

III. PPROPOSED METHODOLOGY

This section provides an in-depth methodology for the
proposed DNN-GME algorithm. Fig. 1 depicts the visual

layout of this suggested system, including the task creators,
the task categorizer, the resource distributor, the fog layer, and
the cloud layer resources. Initially, user-created tasks are
placed in the arrival queue and classified as cloud or fog.
Tasks categorized as cloud are implemented by cloud

Table I. Summary of Existing RA Techniques in IoT-Fog-Cloud Systems

Ref.

No.
Techniques Merits Demerits Assessment metrics

[16] MHHO It lessens the oversaturation in the

fog layer because of increasing

requirement for resources.

Energy consumption and execution cost remained high. Mean makespan, execution

cost, and energy consumption

[17] ERAM-EE It reduces the bandwidth

consumption, response period,

and latency.

A primary constraint lies in the heterogeneous and dynamic

nature of IoT systems. Also, CPU memory and processing

power constraints limit the network performance in

heterogeneous IoT scenarios.

Energy efficiency, processing

time, and response time

[18] Load-aware

RA method

It achieves low execution cost and

latency compared to the classical

fog and cloud paradigms.

It requires more parameters in the RA procedure to enhance the

algorithm’s robustness.

Network consumption,

latency, and execution cost

[19] MOMFO It enhances the resource usage

significantly.

It has low throughput and high energy consumption. Makespan, throughput,

energy consumption, and

resource usage

[20] PSOSA-LB It reduces the execution period,

energy consumption, latency, and

load imbalance effectively.

It is based on continual monitoring of fog and cloud resource

conditions, which results in significant communication

overhead. This can be problematic in situations with low

bandwidth or considerable communication delays between the

fog and cloud levels.

Execution time, energy

consumption, latency, and

load imbalance

[21] BLWJAYA It minimizes the latency and

energy consumption while

increasing the resource usage.

It has high complexity and computation overhead. Resource utilization, latency,

energy consumption, and load

balancing rate

[22] ANFIS,

CHBA, and

OBL

It achieves better resource usage. The latency and energy consumption were high. Makespan, service delay,

delay violation, service cost,

resource usage, and energy

consumption

[23] OLB It yields greater adaptability and

network efficiency.

It needs to integrate machine learning algorithm to further

improve decision making procedures within the fog layer.

Latency, network usage,

execution time, energy

consumption

[24] DELTa It enhances the tasks processing

efficiency when reducing energy

usage and increasing resource

use.

It may struggle in large-scale, dynamic, and heterogeneous

settings. Also, it solely focuses on independent tasks, which

may impact execution efficiency and scheduling in practical

cases.

Makespan, service latency,

energy consumption, and

resource utilization

[25] O2O-PLB It consistently sustains low

latency and faster response

periods in high dependability and

low-delay applications.

Its suitability in real-world applications was low because the

constant resource load threshold value was not suitable for real-

time data.

Response time, latency, load

imbalance, and task failure

rate

Figure 1. Visual Layout of Proposed DNN-GME-Based RA Algorithm

A. Priyadharshini et al, International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 167-178

© 2024-2027, IJARCS All Rights Reserved 170

resources, and tasks categorized as fog are implemented by
fog resources at the fog layer. The categorizer then sends the
categorized tasks to the resource distributor, who allocates
resources on either the cloud or fog layer. Two steps are
involved in the task categorization process: (i) the tasks in the

arrival queue are categorized based on the task guarantee ratio
in the first step, and (ii) the newly arrived tasks are categorized
using the DNN classifier based on the data from the allocation
history in the second step.

A. System Model

The proposed system paradigm may efficiently handle IoT
device data in a hierarchically organized IoT-fog-cloud
context. As seen in Fig. 2, the model is composed of three
primary layers: edge, fog, and cloud. Because each component
layer takes advantage of its characteristics, this IoT-fog-cloud
architecture offers an efficient way to handle the intricate
activities of the IoT system. Additionally, it facilitates more
efficient data processing by reducing latency and improving
resource utilization.

Figure 2. IoT-Fog-Cloud System Model

Depending on processing demands, the edge layer—which
consists of sensors, actuators, and intelligent wearables—
creates task requests and sends them to the fog or cloud layer.
Servers or transitional devices, such as fog nodes, are located
closer to the network edge at the fog layer to provide local
processing and storage capabilities. Numerous data centers at
the cloud layer are capable of providing substantial storage
and processing capacity, along with sophisticated data
processing capabilities. To identify the proper processing
layer and allocate resources to tasks, respectively, tasks
generated by an edge device are transmitted from the task
categorizer and resource distributor. While time-insensitive
activities are transferred to the cloud queue, time-sensitive
jobs are delivered to the fog queue.

B. Task Classification

The process of categorizing user tasks and allocating them to

the proper layer queues (cloud or fog) for execution is covered

in this section. Tasks are ranked according to their QoS

requirements and the processing power of each layer's

available resources. Assume 𝑉 = {𝑣1, … , 𝑣𝑛} is a group of 𝑛

Virtual Machines (VMs) in the cloud. If 𝑣𝑖 , 𝑖 ∈ [1,2, … , 𝑛] is

the 𝑖𝑡ℎ VM, then 𝑣𝑖 has 3 attributes, denoted as 〈𝑣𝑖
𝑝, 𝑣𝑖

𝑚, 𝑣𝑖
𝐵〉,

where 𝑣𝑖
𝑝

 is the CPU processing power, 𝑣𝑖
𝑚 is the memory,

and 𝑣𝑖
𝐵 is the bandwidth resources. As well, 𝐹 = {𝑓1, … , 𝑓𝑚}

is the group of fog nodes in the fog layer. If 𝑓𝑖 , 𝑖 ∈ [1,2, … , 𝑚]
is the 𝑖𝑡ℎ fog node, then 𝑓𝑖 has 3 attributes, denoted as

〈𝑓𝑖
𝑝, 𝑓𝑖

𝑚, 𝑓𝑖
𝐵〉, signifying the CPU processing power, memory,

and bandwidth resources, respectively.
Consider 𝒯 = {𝚝1, … , 𝚝𝑘} is a set of 𝑘 tasks in the system

arrival queue. Each task 𝚝𝑖 , 𝑖 ∈ [1,2, … , 𝑘] is the 𝑖𝑡ℎ task in

the queue, 𝚝𝑖 has also 3 attributes denoted as 〈𝚝𝑖
𝑝, 𝚝𝑖

𝑚, 𝚝𝑖
𝑑〉,

signifying the processing requirements of the task, data
storage, and task deadline, respectively. A resource is
supposed to complete a task and return the results of that
execution to the user before the task's deadline passes. A task
is successful if it is returned to the user before the deadline;
otherwise, it is unsuccessful.

1) Task Guarantee Ratio Categorization
The task classifier arranges the tasks according to their

processing needs in the first categorization stage. A task group
is made up of functions having comparable processing needs.
The task classifier uses the following formula to determine
each group's task guarantee ratio on the cloud layer and the
ratio on the fog layer:

𝜓𝐶 = min ∑ ∑ (
𝚝𝑖

𝑝
,𝚝𝑖

𝑚

𝑣
𝑖
𝑝

,𝑣𝑖
𝐵)𝑛

1
𝑘
1 (1)

 𝜓𝐹 = min ∑ ∑ (
𝚝𝑖

𝑝
,𝚝𝑖

𝑚

𝑓
𝑖
𝑝

,𝑓𝑖
𝐵)𝑛

1
𝑘
1 (2)

The classifier then uses the 𝜓𝐶 and 𝜓𝐹 values to determine
if each set of tasks is a cloud or fog. A task group is
categorized as a cloud task if its 𝜓𝐹 value falls between 0.6
and 1, indicating that it involves more processing and data.
The task group is categorized as a fog task if the 𝜓𝐹 value falls
between 0.1 and 0.5. Since the layer's waiting queue will have
more tasks since there aren't enough cloud resources to handle
every kind of task instantly, the system is predicted to
experience more task failures when 𝜓𝐶 is greater than 1. The
resource allocator receives the categorized tasks and chooses
the optimal resource for each task within its class layer. Based
on the allocation history data, the classifier uses the DNN
algorithm to categorize new tasks as they come in.

2) Deep Neural Network Classifier

For a task 𝚝𝑖 with attribute set 𝑋 = {𝑥1, 𝑥2, 𝑥3} signifying
task processing requirements, memory, and task deadline.
Consider 𝑀 is the collection of task class 𝜌𝑖 , 𝑖 = 1,2, … , 𝑀.
To categorize the tasks with their corresponding classes, the
DNN classifier is constructed. The DNN is a descendant of the
traditional Artificial Neural Network (ANN). The three levels
of the DNN architecture, including the input, hidden, and
output layers, are depicted in Fig. 3.

The network receives the pre-processed input data from
the input layer. The neural network's input neuron count is
equal to the dataset's input features. So, the input layer with 𝐷
inputs is represented as:

 𝑋 = {𝑥1, … , 𝑥𝐷} (3)

A. Priyadharshini et al, International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 167-178

© 2024-2027, IJARCS All Rights Reserved 171

In (3), 𝐷 ∈ [1,2, … , 𝑘] . Since the DNN permits the
addition of several hidden layers, the next layer is the hidden
layer. The input 𝑋 is mapped by the hidden layer using a

bias(𝑏𝑗) and random weights (𝑤𝑖). So, inputs for the hidden

layer are written as:

Figure 3. Task Categorization Using DNN Classifier

 ℎ𝑗 = ∑ 𝑤𝑖𝑥𝑖𝑖 + 𝑏𝑗 (4)

In (4), 𝑗 ∈ [1, … , 𝑙] is the number of hidden units in the
DNN. A nonlinear activation function is linked to each hidden
layer. A Rectified Linear Unit (ReLU) has improved
performance and sped up the DNNs' training procedure. The
elimination of the disappearing and inflating gradient issue
was ReLU's primary innovation. Consequently, the hidden
layer's output is stated as follows:

ℎ = 𝑓(ℎ𝑗) (5)

Where 𝑓(ℎ𝑗) = 𝑅𝑒𝐿𝑈(ℎ𝑗) (6)

The output layer generates the DNN's outputs by
processing the inputs from the hidden layer to the output
layer's activation function. For task categorization, the output
layer's nonlinear activation function, such as softmax, is used.

It transforms inputs into a class of probabilities (𝜎(𝑋)𝑗) .

Thus, the DNN's output is written as:

𝜎(𝑋)𝑗 =
𝑒

𝑋𝑗

∑ 𝑒
𝑋𝑗𝑙

𝑗=1

 (7)

In (7), 𝑋 represents a vector of inputs to the output layer, and

𝑗 ∈ [1, … , 𝑙] is the number of output units.
With this DNN configuration, the inputs to their

corresponding class output (for example, cloud 1 and fog 0)
are used to train the network. A large training dataset is used
to train the DNN, and to reduce training mistakes, the weight
of each input link is changed repeatedly. To train the network
more quickly and effectively, the Adam optimizer adjusts the
model parameters of the DNN. During training with the
learning algorithm, these tuning parameters, also referred to as
hyperparameters, are employed to regulate optimization
functions and model selection. These hyperparameters
determine whether the model overfits or underfits during the
learning phase. The task categorization using DNN classifier
is summarized in Algorithm 1.
Algorithm 1: DNN-Based Task Categorization

Input: Collection of new uncategorized tasks and allocation
history data
Output: Task class labels

1. Begin
2. 𝒇𝒐𝒓(𝑒𝑎𝑐ℎ 𝑢𝑛𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒𝑑 𝑡𝑎𝑠𝑘 𝚝𝑖)
3. Create task 𝚝𝑖’s attribute vector 𝑋 = {𝑥1, 𝑥2, 𝑥3};
4. Construct DNN classifier;

a. Initialize input layer, hidden layers, and
output layer;

b. Initialize bias 𝑏 and weights 𝑤;
c. Set learning rate, training epochs, activation

function, and batch size;
5. 𝒇𝒐𝒓(𝑒𝑎𝑐ℎ 𝑒𝑝𝑜𝑐ℎ)
6. 𝒇𝒐𝒓(𝑒𝑎𝑐ℎ 𝑏𝑎𝑡𝑐ℎ)
7. Obtain 𝜎(𝑋)𝑗 with forward propagation;

8. Compute the loss function 𝐿 =
1

𝑘
∑ (𝜎(𝑋)𝑗 −𝑘

𝑖=1

𝜎(𝑋)𝑗
̂)

2
;

9. Update bias and weight values;
10. 𝒆𝒏𝒅 𝒇𝒐𝒓
11. 𝒆𝒏𝒅 𝒇𝒐𝒓
12. 𝒆𝒏𝒅 𝒇𝒐𝒓
13. Return task class labels
14. End

C. Problem Formulation for Resource Allocation

This section describes the modeling of task execution time
and the delay that occurs between submission and the user
receiving the execution result. The system is supposed to
optimize the time and delay model as QoS parameters. The
time and delay models are used to construct an objective
function that has to be reduced.

1) Task Execution Time Model
The overall time required by the computing resource to

finish a task's execution is known as the task's execution time
on that resource. For 𝒯 = {𝚝1, … , 𝚝𝑘} to be executed by
resources within a layer (either fog or cloud), each task 𝚝𝑖 , 𝑖 ∈
[1,2, … , 𝑘] has 〈𝚝𝑖

𝑝, 𝚝𝑖
𝑚, 𝚝𝑖

𝑑〉 . Assume 𝑅 = {𝑟1, … , 𝑟𝑛} is the

collection of resources on the layer which the task collection
𝒯 is to be executed. Each resource 𝑟𝑗 , 𝑗 ∈ [1,2, … , 𝑛] has 3

attributes denoted as 〈𝑟𝑖
𝑝, 𝑟𝑖

𝑚, 𝑟𝑖
𝐵〉 , signifying the CPU

processing power, memory, and bandwidth resources,
respectively.

The execution period of the 𝒯 on the collection of
resources within the corresponding layer is determined by

 𝐸𝑇 = ∑ ∑ (
𝚝𝑖

𝑝

𝑟
𝑗
𝑝)𝑛

𝑗=1
𝑘
𝑖=1 (8)

2) Task Delay Model
One of the crucial factors that must be taken into account,

particularly while working on activities that are sensitive to
delays, is the latency between the start and end times of jobs.
The difference between the task's arrival and end times is
known as the dwell time. Three delays are taken into account
in this model: waiting, transmission, and execution delays,
which occur when a job takes longer than expected to
complete from the moment of arrival. Before being assigned
to a layer resource for execution, a task is initially queued up
when it is submitted to the system. For 𝚝𝑖 from 𝒯 to be
executed by a layer resource, the waiting time (𝚝𝑖

𝑤) of the
tasks is determined as the difference between the arrival time
(𝚝𝑖

𝑎) and the start time (𝚝𝑖
𝑠) of the tasks as:

𝚝𝑖
𝑤 = 𝚝𝑖

𝑠 − 𝚝𝑖
𝑎 (9)

A. Priyadharshini et al, International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 167-178

© 2024-2027, IJARCS All Rights Reserved 172

When a task is allocated to a cloud or fog processing layer,
it must be sent to the layer via a wireless channel.
Transmission from the edge layer to the fog or cloud layer
causes a delay in the process. Compared to the cloud layer,
which is located far from the edge, fog layer resources are
closer to the end user and hence need less transmission. With
a processing capacity of 𝜓𝐶 , the entire cloud computing data
center is regarded as a distributed computing node in this

study. Consequently, the task transmission latency (𝚝𝑖
𝑙) is

determined by

𝚝𝑖
𝑙 =

𝚝𝑖
𝑚

𝜆𝑙
+ 𝛼 (10)

In (10), 𝜆𝑙 is the layer power and 𝛼 is the network
overhead factor.

A task's anticipated execution time can be met after its
processing capacity has been allotted. An increased processing
capacity quota to the task may shorter the task execution time,
resulting in an execution delay. For 𝚝𝑖 from 𝒯 to be executed

by a layer resource, the execution delay (𝚝𝑖
𝑒𝑑) is determined

as the fraction of tasks needed CPU and task assigned CPU:

𝚝𝑖
𝑒𝑑 = 1 −

𝚝𝑖
𝑝

𝑟
𝑗
𝑝 (11)

The total delay of 𝚝𝑖 from its time it enters the system until
it is finished is determined by

𝚝𝑖
𝑡𝑒𝑑 = 𝚝𝑖

𝑤 + 𝚝𝑖
𝑙 + 𝚝𝑖

𝑒𝑑 (12)

Therefore, minimizing the total execution time and delay
of a task resource allocation 𝑥 is the task allocation objective
in this study, which is provided in (13).

𝑓(𝑥) = min(∑ 𝐸𝑇𝑘
𝑖=1 × 0.5 + ∑ 𝚝𝑖

𝑡𝑒𝑑𝑘
𝑖=1 × 0.5) (13)

D. Resource Allocation Using GME Optimization

Algorithm

This section describes the GME optimization algorithm to
assign resources to tasks within the fog and cloud layer
according to their corresponding classes. GME resembles the
associative hunting behavior of groupers and moray eels [26].
Compared to the other nature-inspired optimization
algorithms, like MOMFO, MHHO, etc., this GME
optimization algorithm performs associative hunting to
achieve a great trade-off between exploration and exploitation.
Therefore, this GME algorithm is chosen in this study for
optimal RA. Many animals, including chimps and lions, have
cooperated while hunting. Cooperative hunting amongst
animals of different species, known as associative hunting, is
exceedingly unusual. Groupers and moray eels have
complementary hunting strategies. Cooperation is thus
mutually advantageous since it improves the chances of both
species successfully acquiring prey. When the two predators
collaborate, their hunting strategies complement one another,
resulting in a multi-predator onslaught that is tough to avoid.
The great level of cooperation between the two species
distinguishes this hunting example from that of groups of
animals of the same species.

The flock in GME is composed of an even number of
search agents (i.e., different task-resource assignments
throughput the cloud and fog layers), allowing for easy
splitting into pairs. Each pair consists of two individuals:

grouper fish and moray eels. Each individual serves a distinct
purpose when the couple collaborates to capture the target.
The grouper fish and moray eels work in four stages of
hunting: Primary Search (PS), Pair Association (PA),
Encircling Search (ES), and Attacking and Capturing (AC).

A population of possible solutions (i.e., particular
configuration of task-resource assignments) is generated
stochastically within the specified upper and lower boundaries
of the issue (i.e., the maximum and minimum values of tasks
and their requirements). The fitness function's best value
represents the best candidate solution, while the worst value
represents the worst search agent. The optimization process
iteratively updates the population and takes into account the
best solution found so far, aiming to converge towards an
optimum solution. The first phase, PS, involves grouper fish
searching for prey. The next step is selecting an eel to follow
and hunt the prey amid the rocks. The PA phase completes the
work, and the ES phase uses the same method. The last stage,
AC, occurs when one of the two individuals, the moray eel or
the grouper fish, catches the prey. Each stage is explained
briefly below.

1) Primary Search
Groupers are aquatic creatures that can move quickly

through water by propelling themselves forward and adjusting
their fin direction. They are primarily used for exploration
during the search phase in nature-inspired optimization
methods, where search agents traverse the search space at
random. A successful prey search enhances the algorithm's
exploring capabilities. Groupers use a zig-zag swimming style
to traverse a broad region while tracking potential dangers.
During this phase, they search for food and move in a zig-zag
pattern, assigning each fish a random location before starting.
This zig-zag motion occurs when no three consecutive places
of movement are in a rising or decreasing sequence. Fig. 4
demonstrates several variations of the zig-zag motion by a
grouper fish in the search space.

A zigzag motion happens when no three consecutive
places of the movement are in a rising or decreasing sequence.
In other words, if the motion array comprises three entries
(ℎ𝑖 , ℎ𝑖+1, ℎ𝑖+2) such that ℎ𝑖 < ℎ𝑖+1 < ℎ𝑖+2 or ℎ𝑖 > ℎ𝑖+1 >
ℎ𝑖+2 , the motion is not zigzagged. Under the statement, 𝑃
denotes the total number of iterations in the PS, ES, and AC.

Figure 4. Zig-Zag Motion of Grouper Fish in the Search Space

So, the respective values of the number of iterations for
PS, ES, and AC represented as 𝑃𝑠𝑒𝑎𝑟𝑐ℎ, 𝑃𝐸𝑛𝑐, and 𝑃𝐴𝐶 , which
are determined by

𝑃𝑠𝑒𝑎𝑟𝑐ℎ = ⌊
𝑃

3
⌋ (14)

𝑃𝐸𝑛𝑐 = ⌊
𝑝

3
⌋ (15)

𝑃𝐴𝐶 = ⌊𝑃 − 2 ×
𝑃

3
⌋ (16)

A. Priyadharshini et al, International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 167-178

© 2024-2027, IJARCS All Rights Reserved 173

Consider 𝑆 is the cluster of 𝑁 available search agents (i.e.,

groupers and moray eels), these are initially split into two

equivalent clusters of groupers and eels. So, the number of

agents in each cluster is determined by

 𝑛 =
𝑁

2
 (17)

The cluster of groupers and eels is represented by 𝐺 =
{𝑔1, 𝑔2, … , 𝑔𝑛} and 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} , respectively. The
following process involves randomly distributing groupers
and eels in the search space using (18), ensuring their positions
align with the specified lower and upper bounds.

𝑋𝑖𝑗
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝚕𝑗 + 𝑟𝑎𝑛𝑑(𝚞𝑗 − 𝚕𝑗), 𝑖 = 1, … , 𝑁; 𝑗 = 1, …, (18)

In (18), 𝑋𝑖𝑗
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 represents the initial location of 𝑖𝑡ℎ search

agent of 𝑗𝑡ℎ dimension, 𝚞𝑗 and 𝚕𝑗 denote the upper and lower

margins of the search space, respectively, 𝑁 is the number of
search agents, 𝐷 is the total amount of dimensions, and 𝑟𝑎𝑛𝑑
is an arbitrary vector that pursues a uniform distribution, with
values ranging from 0 to 1.

After that, the objective function (as defined in (13)) is
computed for each grouper. The groupers start moving in a
zigzag pattern to find the prey (best solution). The zigzag
movement helps the groupers to explore new regions in the
search space, hence increasing the algorithm's exploration
potential. At the end of this phase, the optimal location for
each grouper is determined using the objective function.

Consider 𝑋⃗𝑔𝑚𝑗
𝑖 = {𝑋𝑔𝑚1

𝑖 , 𝑋𝑔𝑚2
𝑖 , … , 𝑋𝑔𝑚𝑄

𝑖 } is the location

vector of the 𝑚𝑡ℎ grouper in the 𝑖𝑡ℎ iteration, where 1 ≤ 𝑖 ≤
𝑝𝑠𝑒𝑎𝑟𝑐ℎ, 1 ≤ 𝑗 ≤ 𝑄, and 1 ≤ 𝑚 ≤ 𝑛, 𝑛 is the total quantity of
groupers, and 𝑝𝑠𝑒𝑎𝑟𝑐ℎ is the total amount of search iterations.
During this stage, groupers update their location vectors after
each hop, and their corresponding objective function is
evaluated to determine their proximity to the possible prey.
The updated position of a grouper is defined in (19), which
depends on the number of hops (𝑛), with even hops resulting
in an arbitrary location greater than the current location but not
exceeding the search space's maximum boundary, and odd
hops resulting in an arbitrary location less than the current
location but greater than or equal to the search space's
minimum boundary. Thus, the optimal location of each
grouper is determined by the location vector that yields the
maximum value of the objective function compared to
locations created across all hops of the iteration.

𝑋𝑔𝑚𝑗
ℎ𝑜𝑝+1 =

{
𝑟𝑎𝑛𝑑(𝑋), 𝑋𝑔𝑚𝑗

ℎ𝑜𝑝 < 𝑋 ≤ max(𝑋𝑔𝑚𝑗) ; 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑟𝑎𝑛𝑑(𝑋), min(𝑋𝑔𝑚𝑗) ≤ 𝑋 < 𝑋𝑔𝑚𝑗
ℎ𝑜𝑝 ; 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 (19)

2) Pair Association
Groupers are predators known for their quick bursts of

speed, but their large size and unwieldy shape prevent them
from catching animals hiding in narrow crevices. They use a
novel strategy of seeking out moray eels to flush out their prey.
Groupers and moray eels have different predatory abilities,
with groupers using ambush tactics and moray eels
maneuvering through coral reef openings. They work together
to patrol a larger hunting area, operating in the upper water
column and navigating the reef depths. When trapped, the prey
has two options: remain hidden until the moray eel finds it or
swim in the water, where the grouper's teeth await.

The search process involves a series of phases, starting
with the PS phase, where search agents are randomly
distributed within the search domain. The objective function
values are calculated and recorded. The PA phase occurs after
the PS, where cooperation between groupers and eels allows
them to discover new areas. The grouper's intelligence and
learning ability enable it to choose the best eel for hunting.
Pair identification occurs between groupers and eels, using
random associations, distance-based associations, and
objective function associations. The ES phase follows, where
search agents move towards their best position. This AC stage
sees search agents converge towards the optimal solution.

3) Encircling Search
During the search phase, paired eels encircle the prey,

moving independently to explore new areas. They use an
underwater shimmying dance called the Grouper to eel
Encircling Signal (GES) to signal their desire to hunt in
groups. They may even perform an underwater headstand to
show the prey's hiding place. If the eel ignores the signal,
groupers aggressively approach the moray, forcing it to chase
the fish out of its hiding place. The moray then attacks the
prey, sharing the meal, benefiting from their associative
hunting techniques.

The location vector of 𝑚𝑡ℎ grouper in 𝑄 -dimensional

space is denoted as 𝑋⃗𝑔𝑚𝑗 = {𝑥𝑔𝑚1, 𝑥𝑔𝑚2, … , 𝑥𝑔𝑚𝑄} and the

location vector of 𝑚𝑡ℎ eel in 𝑄-dimensional space is denoted

as 𝑋⃗𝑒𝑚𝑗 = {𝑥𝑒𝑚1, 𝑥𝑒𝑚2, … , 𝑥𝑒𝑚𝑄}. The best solution for a prey

is found in the region bounded by the grouper and the eel. In
an 𝑛-dimensional space, (20) is utilized to compute the prey
location according to the differences between the coordinates
of a grouper and an eel in each dimension.

∆𝑥𝑚𝑗 = 𝑋𝑒𝑚𝑗 − 𝑋𝑔𝑚𝑗 (20)

The distance between the grouper and the eel

(𝑑𝑔𝑟𝑜𝑢𝑝𝑒𝑟−𝑒𝑒𝑙) is then calculated by

𝑑𝑔𝑟𝑜𝑢𝑝𝑒𝑟−𝑒𝑒𝑙 = √∑ (∆𝑥𝑚𝑗)
2𝑄

𝑗=1 (21)

Moreover, the coordinates of the prey in each dimension
are determined as:

𝑐𝑚𝑗 = 𝑋𝑔𝑚𝑗 +
𝐿

𝑑𝑔𝑟𝑜𝑢𝑝𝑒𝑟−𝑒𝑒𝑙
(∆𝑥𝑚𝑗) (22)

In (22), 𝑐𝑚𝑗 is the coordinates of 𝑚𝑡ℎ prey in each

dimension, 𝑋𝑔𝑚𝑗 is the location of a grouper, 𝑋𝑒𝑚𝑗 is the

location of an eel, and 𝐿 represents the distance between the
grouper and prey. During the ES stage, groupers and eel move
towards the prey in their own ways, as displayed in Fig. 5. The
logarithmic spiral is the primary location update method for
groupers. The distance between groupers and potential prey is
calculated by

𝑑 = |𝑋⃗𝑝𝑟𝑒𝑦_𝑚(𝑖) − 𝑋⃗𝑔𝑚(𝑖)| (23)

The location of a grouper is updated multiple times in an
iteration based on the number of hops (ℎ). The location with
the best fitness value is the initial location in the second
iteration, and so on until the determined number of iterations

in the ES stage. The updated location depends on 𝑑, constant
𝑘 that measures the shape properties of the logarithmic spiral,

A. Priyadharshini et al, International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 167-178

© 2024-2027, IJARCS All Rights Reserved 174

the estimated position of the 𝑚𝑡ℎ prey at iteration

𝑖 (𝑋⃗𝑝𝑟𝑒𝑦_𝑚(𝑖)) , 𝑤 , the number of encircling iterations

(𝑃𝑒𝑛𝑐𝑟𝑖𝑐𝑙𝑒), and ℎ. This is represented by

𝑋⃗𝑔𝑚(ℎ + 1) = 𝑑 × 𝑒𝑘𝑤 cos(2𝜋𝑤) + 𝑋⃗𝑝𝑟𝑒𝑦_𝑚(𝑖) (24)

𝑤 = 1 −
2×ℎ

𝑃𝑒𝑛𝑐𝑟𝑖𝑐𝑙𝑒
 (25)

Sine waves, found in nature and easy to handle
mathematically, are the primary position update mechanism

for moray eels during the ES phase. They can create any
arbitrary wave shape, making them a significant shape in
nature. The eel moves in a sinusoidal wave, updating its
position multiple times in iterations.

The distance between the eel and prey, is computed as:

𝜆(𝑖) = |𝑋⃗𝑒𝑚(𝑖) − 𝑋⃗𝑝𝑟𝑒𝑦_𝑚(𝑖)| (26)

After that, the wave amplitude 𝜂⃗(𝑖) is calculated by

Figure 5. Encircling Strategy of Grouper and Eel

multiplying 𝜆(𝑖) by an arbitrary factor 𝜉, ranging from 0 to 1.

𝜂⃗(𝑖) = 𝜆(𝑖) × 𝜉 (27)

The distance between the eel and the prey is split into hops.
So, the distance between the current and next hop is
determined as:

𝑑ℎ𝑜𝑝𝑠 =
2𝜋

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑝𝑠
 (28)

The locations of the eels are updated as follows:

𝑋𝑒
𝑖+1 = 𝛼 × 𝜂⃗(𝑖) × sin(𝑔) + 𝑋𝑒

𝑖 (29)

In (29), 𝛼 is an arbitrary value ranging between 0 and 1.
After the current iteration is completed, the best location of the
eel from all hops is chosen as the initial location of the next
iteration.

4) Attacking and Catching
At the AC phase, all search agents, whether groupers or

eels, participate in the attack on the prey after accurately
surrounding its location. In 2D space, the hypothesis relies on
forming a circle around the prey, where the prey is located in
the center of the circle.

The process of forming a circle around a predicted prey
involves first assuming the location of the agent with the best
fitness function as the prey's location. The distance between
the prey and all other agents is then calculated. A circle is then
formed, with the radius (𝑅) representing the distance between
the prey and the farthest agent. The radius of the next circle is
determined by

𝑅𝑖+1 = (1 − 𝜇) × 𝑅𝑖 (30)

In (30), 𝑅 = {1,2, … , 𝐴𝐵 − 1}, where 𝐴𝐵 is the number of
attack balls, and 𝜇 represents the shrinking ratio. The search

agent will be dispersed at random within the second circle
after its radius has been established. The search agents
approach the target more closely with each repetition of the
attack. The agents capture the prey in the final iteration of the
procedure, which continues until the number of assaulting
iterations is reached. The pseudocode for the GME
optimization algorithm for RA in IoT-Fog-Cloud paradigm is
given in Algorithm 2.

Algorithm 2: GME Optimization-Based RA Technique
Input: Tasks 𝒯 , including cloud and fog layer tasks, and
resources 𝑅
Output: Best assignment of tasks to resources

1. Begin

2. 𝒇𝒐𝒓(𝑒𝑎𝑐ℎ 𝚝𝑘 ∈ 𝒯 𝑎𝑛𝑑 𝚛𝑗 ∈ 𝑅)

3. Calculate the execution time and delay using (8) &
(12), respectively;

4. Define the objective function 𝑓(𝑥) by (13);
 //GME Optimization Algorithm
5. Initialize the set of 𝑁 available search agents

(groupers and eel);
6. //PS stage
7. Initialize the total number iterations 𝑃𝑠𝑒𝑎𝑟𝑐ℎ and the

number of movements in the iteration (ℎ𝑜𝑝);
8. 𝒇𝒐𝒓(𝑖 = 1: 𝑃𝑠𝑒𝑎𝑟𝑐ℎ)
9. Split the search agents into two equivalent clusters

of grouper and eels;
10. Arbitrarily circulate the groupers across the search

space;
11. Determine the objective function 𝑓(𝑥) for all

groupers;
12. Each grouper starts to travel in the form of zig-zag

motion;
13. Determine the new location for all groupers

according to the motion in the iteration using (19);
14. Compute the new objective function;

A. Priyadharshini et al, International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 167-178

© 2024-2027, IJARCS All Rights Reserved 175

15. Choose the ideal location of the grouper from
every hop in the current iteration to be the initial
location of next iteration;

16. Allocate the ideal location for all groupers
according to their fitness values;

17. Descending order the groupers based on the
highest fitness value;

18. Arbitrarily circulate the moray eels in the search
space and determine the fitness value for all eels;

19. 𝒆𝒏𝒅 𝒇𝒐𝒓
20. //PA & ES Stage
21. Initialize the set of available search agents of

groupers and eels, total number of encircling
iterations 𝑃𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒 , ideal location vector for all 𝑗𝑡ℎ
groupers from the PS stage, ℎ number of hops for the
grouper’s motion, and constant 𝑘;

22. 𝒇𝒐𝒓(𝑖 = 1: 𝑃𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒)

23. Determine the position of the 𝑚𝑡ℎ prey by (20)-
(21);

24. Compute the distance between the grouper and
prey by (22);

25. Determine the new location for all groupers and
fitness value for the hop location;

26. Choose the ideal location of the grouper from all
hops in the current iteration to be the optimal location
and initial location of next iteration;

27. Update the ideal location for all groupers
according to the fitness value;

28. Determine the wavelength and wave amplitude
using (26) & (27), respectively;

29. Split the distance between the eel and prey based
on the number of hops;

30. Determine the new location for all eels using (28);
31. Compute the fitness value for all locations;
32. Choose the ideal location with the highest fitness

value to be the initial location of the next iteration;
33. Update the optimal location for every eel

according to the fitness value;
34. 𝒆𝒏𝒅 𝒇𝒐𝒓
35. //AC Stage
36. Initialize the total number of attacking iterations

𝑃𝐴𝐶 , number of attack balls 𝐴𝐵 , where 𝐴𝐵 = 𝑃𝐴𝐶 ,
the ideal locations of groupers and eels from the ES
stage, and shrinking ratio 𝜇;

37. 𝒇𝒐𝒓(𝑖 = 1: 𝑃𝐴𝐶)
38. Compute the location of search agent, which has

the optimal fitness value to be the position of the
predicted prey;

39. Determine the distance between the predicted prey
and each other agent;

40. Determine the distance between the prey and the
farthest agent and assign the radius 𝑅 of the circle,
where the prey is positioned in the circle centroid;

41. Arbitrarily circulate the agents within the circle
and compute the fitness value for all search agents;

42. Choose the search agent with the best fitness value
to be the prey in the next iteration;

43. Calculate the radius of the next circles using (30);
44. Form the circle and locate the prey in the circle

centroid;
45. Arbitrarily circulate the search agents within it;
46. Determine the fitness value for the search agents;
47. Choose the search agents with the optimal fitness

value to be the prey (i.e., optimal assignment of tasks
to resource);

48. 𝒆𝒏𝒅 𝒇𝒐𝒓

49. 𝒆𝒏𝒅 𝒇𝒐𝒓
50. Return the best assignment of tasks to resources;
51. End

IV. SIMULATION RESULTS

This section presents the experimental details and
effectiveness of the suggested DNN-GME algorithm. The
iFogSim simulator is used to implement the suggested
approach. The traditional Java-based CloudSim simulator's
features are expanded by the iFogSim simulator to enable the
modeling of fog resources. The iFogSim Simulator has been
widely used to simulate fog and cloud resources, applications,
and a defined service deployment strategy that determines
how the services are handled on the devices. A simulation-
based performance assessment is carried out using the
iFogSim simulator to compare the suggested algorithm with
other algorithms, such as MOMFO [19], ERAM-EE [17],
ANFIS-CHBA-OBL [22], and DELTa [24], to assess the
performance of the suggested scheduling framework. The
uniform deployment of IoT devices at the edge of the fog-
cloud network is the basis for the uniform generation of user
tasks in the simulation scenarios of the suggested and current
algorithms. As shown in Table 2, processing speed, memory,
and bandwidth are responsible for the processing resources in
both the fog and cloud levels. By using the task requirements
and resource capabilities, the classifier determines whether
each job should be completed in the fog or on the cloud. The
GME optimization technique generates optimal resource
allocation while minimizing latency, execution time, and task
failure rate.

Table II. Resource and Task Attributes

Resour

ce type

No.

of

nod

es

CPU

(MIPS)

Memory

(GB)

Bandwidt

h (Mbps)

Latency

(ms)

Fog 50 500-2000 1-8 1-10 1-10

Cloud 10 5000-

10000

16-32 50-100 20-50

Task

type

No.

of

task

s

CPU

requireme

nts

(MIPS)

Memory

requireme

nts (MB)

Bandwidt

h

requireme

nts (Mbps)

Latency

constrai

nts (ms)

Fog 150

0

100-1000 300-500 2-8 2-8

Cloud 150

0

2000-5000 500-1000 20-70 20-40

Table 3 shows the parameters for the DNN-GME method
for resource allocation. At various periods, IoT devices create
tasks that must be identified and allocated resources for
execution. At each time interval, the number of tasks created
in each category is raised by 500, while the system's
performance is monitored. The devices create a total of 3000
tasks, which are then sent to the task categorizer in batches
through the arrival queue.

Table III. Parameter Configurations for DNN-GME Algorithm

Algorithm Parameters Values

DNN

No. of input layer neurons

No. of hidden layers 2

No. of neurons in hidden layer

1

32

No. of neurons in hidden layer

2

64

No. of output layer neurons 2

Activation function ReLU

Learning cycle 500 epochs

Loss function Mean square error

A. Priyadharshini et al, International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 167-178

© 2024-2027, IJARCS All Rights Reserved 176

Optimizer (i.e., learning

scheme)

Adam

Batch size 100

GME

Optimization

No. of agents 100

Total no. of iterations 200

No. of hops in the grouper’s

motion

3

No. of hops in the eel’s motion 3

Constant 𝑘 Each agent has

separate value

Factor 𝜉 [0,1]

Arbitrary value 𝛼 0.3

Shrinking ratio 𝜇 0.2

A. Response Time

It represents the time required for each task to be
completed within the fog-cloud network. It is determined by

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝑇 + 𝑃 (31)

In (31), the amount of time required for data to be
transmitted from edge devices to fog nodes is known as the
transmission time (T). The time it takes for the fog nodes to
process the data they have received is known as the processing
time (P).

Fig. 6 depicts the performance evaluation of different
scheduling algorithms in terms of response times for different
numbers of tasks. The suggested DNN-GME has a lower
response time, indicating its usefulness in dealing with varied
workloads with minimal delay. For 500 tasks, it decreases
response time by 66%, 57.5%, 43.33%, and 29.17% compared
to the ERAM-EE, DELTa, MOMFO, and ANFIS-CHBA-
OBL. Furthermore, when the task size is extended to 3000, the
response time is lowered by 24.7%, 20.89%, 13.79%, and
8.76% compared to the same algorithms, respectively. As a
result, the DNN-GME algorithm demonstrates its efficacy in
delay-sensitive circumstances by regulating RA and task
scheduling simultaneously as the number of tasks rises.

Figure 6. Response Time vs. No. of Tasks

B. Latency

It is the sum of processing and transmission latencies
observed in the IoT-fog-cloud network. It is determined by
(12). The delay for both suggested and current algorithms is
shown in Fig. 7. Although the DNN-GME progressively
increases the latency as the task load grows, it consistently has
the lowest latency compared to other methods, indicating its
adaptability and dependability to carry out time-sensitive tasks
in fog-cloud computing environments

Figure 7. Latency vs. No. of Tasks

 In comparison to the ERAM-EE, DELTa, MOMFO, and
ANFIS-CHBA-OBL, it lowers latency by 70.97%, 64%,
52.63%, and 30.779% for 500 tasks, respectively. Also,
compared to the identical algorithms, the latency is decreased
by 30.71%, 23.62%, 16.38%, and 10.19% when the task load
is increased to 3000. For applications requiring low latency in
dispersed fog-cloud environments, the suggested DNN-GME
may therefore be appropriate.

Fig. 8 shows the delay of 3000 tasks submitted to the
system for execution. The number of tasks increased, as did
their delay. It can be seen that the cloud only had the greatest
rise in latency. This is the effect of increased network traffic
between the channels. The fog-only scenario had the lowest
latency when compared to the other deployment scenarios,
including cloud-only and fog+cloud. However, as compared
to other current scheduling methods, the suggested solution
significantly reduces the system's total latency.

Figure 8. Latency for 3000 Tasks in Different Deployment Scenarios

C. Load Imbalance

It assesses the unequal allocation of tasks across fog and
cloud resources.

Fig. 9 displays the load imbalance ratios between the
proposed and current algorithms. The suggested DNN-GME
maintains minimum load imbalances, which reach 2.5% at
peak workload circumstances. The findings show that DNN-
GME successfully distributes tasks among resources for all
task counts. Under 500 tasks, the DNN-GME reduces load
imbalance by 55.56%, 46.67%, 38.46%, and 20%, compared
to the ERAM-EE, DELTa, MOMFO, and ANFIS-CHBA-
OBL, respectively. Furthermore, increasing the task to 3000
reduces it by up to 28.57%, 21.88%, 16.67%, and 10.71%
when compared to the same algorithms. So, the suggested
DNN-GME is the ideal option for cases requiring fair resource
allocation to avoid bottlenecks.

A. Priyadharshini et al, International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 167-178

© 2024-2027, IJARCS All Rights Reserved 177

Figure 9. Load Imbalance vs. No. of Tasks

4.4 Task Failure Rate
It is the percentage of tasks that fail to perform efficiently

due to resource and computational constraints. Fig. 10 shows
how proposed and current algorithms handle failure rates
when processing tasks ranging from 500 to 3000. The
suggested DNN-GME outperforms all other algorithms tested
in terms of task processing reliability. When operating with
2000 tasks, the DNN-GME decreases failure rates by 56%,
47.62%, 35.29%, and 21.43% compared to ERAM-EE,
DELTa, MOMFO, and ANFIS-CHBA-OBL. For 3000 tasks,
it is lowered up to 31.91%, 27.27%, 20%, and 11.11% when
compared to the identical algorithms. The gains in these data
demonstrate the usefulness of DNN-GME, which reduces
reaction time and latency while balancing resource
consumption and attaining high job completion rates in IoT-
fog-cloud environments.

Task failures reported by the various algorithms for 3000
tasks in various conditions, including fog-only, cloud-only,
and fog+cloud, are displayed in Fig. 11. Task failures recorded
by all techniques have grown in tandem with the quantity of
tasks.

Figure 10. Task Failure Rate vs. No. of Tasks

Figure 11. Number of Tasks Failed for 3000 Tasks in Different

Deployment Scenarios

This demonstrates how increasing the number of tasks
raises resource consumption and, consequently, task failure. It
is evident that, across all deployment situations, the suggested
algorithm saw the least increase in task failure compared to
alternative algorithms. In particular, it performs better in
fog+cloud situations than in fog-only and cloud-only
situations. For example, compared to the fog-only and cloud-
only cases, it lowers the number of tasks that fail by 68.82%
and 71%, respectively.
4.5 Execution Time

It is calculated by (8). Fig. 12 depicts the execution time
for 3000 tasks under various scheduling techniques and
deployment situations. Both the proposed and existing
methods showed considerable increases in execution timeThe
rise is due to the increased demand for resources caused by the
tasks. Compared to all cases, the fog-only exhibits the greatest
increase in execution time, indicating that the increased
number of tasks has overburdened the fog layer. According to
the results, the suggested algorithm has the shortest execution

Figure 12. Execution Time for 3000 Tasks in Different Deployment

Scenarios

time for the fog+cloud scenario compared to the other
deployment situations and existing algorithms

V. CONCLUSION

This study presents an effective RA framework to employ
cloud and fog resources to execute delay-sensitive operations
and handle the massive amount of data created by end users.
At first, using the GME optimization method, the tasks in the
arrival queue were categorized according to the task guarantee
ratio on the cloud and fog layers, and appropriate resources
were assigned in the layers of their corresponding classes.
Then, to categorize recently arriving tasks and match them
with appropriate resources for execution in the layer of their
respective classes, the DNN classifier was applied to prior
allocation history data. Using classifiers to categorize the
following tasks can help the system allocate resources more
accurately when executing a massive quantity of tasks.
Additionally, by using historical data to anticipate the layer
and resource of newly incoming tasks, the system overhead
caused by the optimal resource search time may be decreased.
Finally, the simulation findings prove that the proposed DNN-
GME algorithm outperformed earlier scheduling algorithms,
such that the DNN-GME has 125 ms response time, 97 ms
latency, 2.5% load imbalance, 3.2% task failure rate, and 85 s
execution time for 3000 tasks. It is clear from the performance
shown by the suggested algorithm that not all tasks can be
completed with the fog alone without the cloud, and vice
versa.

A. Priyadharshini et al, International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 167-178

© 2024-2027, IJARCS All Rights Reserved 178

VI. REFERENCES

[1] A. Choudhary, "Internet of things: a comprehensive
overview, architectures, applications, simulation tools,
challenges and future directions," Disc. Int of Things,
vol. 4, no. 1, p. 31, 2024.

[2] D. Loconte, S. Ieva, A. Pinto, G. Loseto, F. Scioscia, and
M. Ruta, "Expanding the cloud-to-edge continuum to the
IoT in serverless federated learning," Future Gener.
Comput. Syst., vol. 155, pp. 447–462, 2024.

[3] J. S. Yalli, M. H. Hasan, and A. Badawi, "Internet of
things (IoT): origin, embedded technologies, smart
applications and its growth in the last decade," IEEE
Access, vol. 12, pp. 91357–91382, 2024.

[4] S. Z. Marshoodulla and G. Saha, "A survey of data
mining methodologies in the environment of IoT and it’s
variants," J. Netw. Comput. Appl., p. 103907, 2024.

[5] H. Kuchuk and E. Malokhvii, "Integration of IoT with
cloud, fog, and edge computing: a review," Adv. Inf.
Syst., vol. 8, no. 2, pp. 65–78, 2024.

[6] A. K. Y. Yanamala, "Emerging challenges in cloud
computing security: a comprehensive review," Int. J.
Adv. Eng. Technol. Innov., vol. 1, no. 4, pp. 448–479,
2024.

[7] N. K. Rajpoot, P. D. Singh, B. Pant, and V. Tripathi,
"The future of cloud computing: a paradigm shift with
fog computing," in Integration of Cloud Computing and
IoT, pp. 309–323.

[8] S. N. Srirama, "A decade of research in fog computing:
relevance, challenges, and future directions," Softw.
Pract. Exp., vol. 54, no. 1, pp. 3–23, 2024.

[9] T. Shwe and M. Aritsugi, "Optimizing data processing: a
comparative study of big data platforms in edge, fog, and
cloud layers," Appl. Sci., vol. 14, no. 1, p. 452, 2024.

[10] D. Alsadie, "Advancements in heuristic task scheduling
for IoT applications in fog-cloud computing: challenges
and prospects," PeerJ Comput. Sci., vol. 10, p. e2128,
2024.

[11] M. R. Rezaee, N. A. W. A. Hamid, M. Hussin, and Z. A.
Zukarnain, "Fog offloading and task management in IoT-
fog-cloud environment: review of algorithms, networks
and SDN application," IEEE Access, vol. 12, pp. 39058–
39080, 2024.

[12] E. Khezri, R. O. Yahya, H. Hassanzadeh, M. Mohaidat,
S. Ahmadi, and M. Trik, "DLJSF: data-locality aware job
scheduling IoT tasks in fog-cloud computing
environments," Results Eng., vol. 21, p. 101780, 2024.

[13] A. Mahapatra, K. Mishra, R. Pradhan, and S. K. Majhi,
"Next generation task offloading techniques in evolving
computing paradigms: comparative analysis, current
challenges, and future research perspectives," Arch.
Comput. Methods Eng., vol. 31, no. 3, pp. 1405–1474,
2024.

[14] W. C. Chuan, S. Manickam, E. Ashraf, and S.
Karuppayah, "Challenges and opportunities in fog
computing scheduling: a literature review," IEEE
Access, vol. 13, pp. 14702–14726, 2025.

[15] H. K. Apat, V. Goswami, B. Sahoo, R. K. Barik, and M.
J. Saikia, "Fog service placement optimization: a survey
of state-of-the-art strategies and techniques," Computers,
vol. 14, no. 3, p. 99, 2025.

[16] I. Z. Yakubu and M. Murali, "An efficient meta-heuristic
resource allocation with load balancing in IoT-fog-cloud
computing environment," J. Ambient Intell. Humaniz.
Comput., vol. 14, no. 3, pp. 2981–2992, 2023.

[17] P. Periasamy et al., "ERAM-EE: efficient resource
allocation and management strategies with energy
efficiency under fog–internet of things environments,"
Connection Sci., vol. 36, no. 1, p. 2350755, 2024.

[18] S. R. Hassan, A. U. Rehman, N. Alsharabi, S. Arain, A.
Quddus, and H. Hamam, "Design of load-aware resource
allocation for heterogeneous fog computing systems,"
PeerJ Comput. Sci., vol. 10, p. e1986, 2024.

[19] T. Salehnia, et al., "An optimal task scheduling method
in IoT-fog-cloud network using multi-objective moth-
flame algorithm," Multimed. Tools Appl., vol. 83, no.
12, pp. 34351–34372, 2024.

[20] M. B. Shaik, K. S. Reddy, K. Chokkanathan, S. A. A.
Biabani, P. Shanmugaraja, and D. D. Brabin, "A hybrid
particle swarm optimization and simulated annealing
with load balancing mechanism for resource allocation
in fog-cloud environments," IEEE Access, vol. 12, pp.
172439–172450, 2024.

[21] A. Mahapatra, S. K. Majhi, K. Mishra, R. Pradhan, D. C.
Rao, and S. K. Panda, "An energy-aware task offloading
and load balancing for latency-sensitive IoT applications
in the fog-cloud continuum," IEEE Access, vol. 12, pp.
14334–14349, 2024.

[22] S. K. Srichandan, S. K. Majhi, S. Jena, K. Mishra, and R.
Bhat, "A secure and distributed placement for quality of
service-aware IoT requests in fog-cloud of things: a
novel joint algorithmic approach," IEEE Access, vol. 12,
pp. 56730–56748, 2024.

[23] M. A. Ala’anzy, R. Zhanuzak, R. Akhmedov, N.
Mohamed, and J. Al-Jaroodi, "Dynamic load balancing
for enhanced network performance in IoT-enabled smart
healthcare with fog computing," IEEE Access, vol. 12,
pp. 188957–188975, 2024.

[24] A. Mahapatra, R. Pradhan, S. K. Majhi, and K. Mishra,
"DELTa: Dynamic Energy-and-Latency-aware Task
scheduling for Fog-Cloud Paradigm," IEEE Access, vol.
13, pp. 74617–74633, 2025.

[25] V. C. Bharathi, S. S. Abuthahir, M. Ayyavaraiah, G.
Arunkumar, U. Abdurrahman, and S. A. A. Biabani,
"O2O-PLB: a one-to-one-based optimizer with priority
and load balancing mechanism for resource allocation in
fog-cloud environments," IEEE Access, vol. 13, pp.
22146–22155, 2025.

[26] N. A. Mansour, M. S. Saraya, and A. I. Saleh, "Groupers
and moray eels (GME) optimization: a nature-inspired
metaheuristic algorithm for solving complex engineering
problems," Neural Comput. Appl., vol. 37, no. 1, pp. 63–
90, 2025.

