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Abstract: Skin cancer is a common cancer with a large count of patients diagnosed annually. Early diagnosis and correct classification of skin 

lesions may increase the likelihood of cure before it turns malignant and the cancer metastasises. In this study we have trained the system using 

the International Skin Imaging Collaboration (ISIC) curated datasets of a huge number of gold-standard lesion diagnosed training images from 

patients with different skin disease conditions. Convolutional neural networks are used in this study because of their superior performance in 

medical imaging. Various architecture models and data augmentation strategies are investigated to alleviate dataset imbalances and improve 

model resilience. The comparative study of model performance demonstrates the superiority of InceptionV3 model in terms of validation 

accuracy and computational efficiency. 
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I. INTRODUCTION 

Skin cancer is one of the prevalent types of cancer 
worldwide, affecting millions of individuals annually. 
According to the World Health Organization (WHO), skin 
cancer accounted for approximately 1.5 million new cases in 
2022, making it a significant global health concern [1]. The 
disease is broadly classified into melanoma and non-
melanoma skin cancers, with melanoma being more 
aggressive. The incidences of skin cancer continue to rise, 
particularly in regions with high sun exposure [2]. Given the 
increasing burden of skin cancer, early detection and 
preventive measures are crucial for reducing morbidity and 
mortality. The advances in medical imaging techniques and 
Deep Learning algorithms have significantly improved 
dermatology-specific medical image classification, 
particularly in identifying skin cancers from dermoscopic or 
macroscopic images [3]. Skin lesion classification is a 
complex task that requires the analysis of various features 
and patterns within the images. Convolutional Neural 
Network (CNN) has demonstrated superior performance in 
image analysis tasks, including skin lesion classification, 
owing to their ability to automatically learn and extract 
relevant features from images. CNN can effectively capture 
spatial relationships within the image data, enabling accurate 
differentiation between benign and malignant skin lesions. 
Compared to traditional machine learning algorithms, CNNs 
have shown higher accuracy and generalizability in skin 
lesion classification tasks [4]. However, there are several 
challenges to automated skin cancer classification, such as 
the imbalance in the distribution of skin disease photographs 
used for training, the robustness and cross-domain flexibility 
of the model, and limited data availability. This study was 
undertaken to create a reliable and efficient method for 
diagnosing skin cancer using a variety of pre-trained CNN 
application models and data augmentation techniques. The 
aim was to enhance skin cancer detection accuracy, support 

therapeutic decision-making, and provide better access to 
specialized medical knowledge. 

II. MATERIALS AND METHODS 

The dataset used for this work was obtained from the 
International Skin Imaging Collaboration (ISIC), which is a 
partnership between academia and industry aimed at 
advancing the application of digital skin imaging to reduce 
melanoma mortality [5]. This image collection represents a 
valuable resource for researchers and developers in the field 
of dermatology and machine learning. This dataset includes 
various skin conditions and diseases, including Actinic 
keratosis, Basal cell carcinoma, Dermatofibroma, Melanoma, 
Nevus, Pigmented benign keratosis, Seborrheic keratosis, 
Squamous cell carcinoma, and Vascular lesion. Such a 
diverse and large dataset of skin lesion images is crucial for 
the development and training of computer-aided diagnosis 
(CAD) systems [6]. Accurate classification of skin lesions as 
malignant or benign by CAD systems can help improve the 
accuracy and efficiency of clinical diagnoses and ultimately 
reduce morbidity and mortality associated with skin cancer. 
The dataset employed in this study includes 60,507 images of 
both benign and malignant oncological diseases collected 
from various ISIC challenges held between 2016 and 2020 
[7]. The ISIC metadata provided information about the 
diagnosis and clinical characteristics of the skin lesions 
depicted in the images, including disease type, anatomical 
site, and clinical subtype. Table 1 shows the skin lesion 
categories and number of images available for each category 
of skin lesions [5]. 

Convolutional Neural Network (CNN) is a type of 
artificial neural network that is commonly used in image and 
video recognition tasks. CNNs are particularly effective in 
image recognition tasks because they can learn to identify 
local patterns and structures within an image such as edges, 
corners and other features regardless of their position within 
the image [8]. This is achieved by using numerous layers in 
the architecture of CNN. Convolutional Layer applies a set of 
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filters or kernels (Horizontal Edge filter, Vertical Edge filter 
etc.) to the input data. Each filter is convolved with the input 
data to generate a feature map that focuses on specific 
features. Padding is a technique used in CNN to add extra 
pixels around the border of the input data before convolution. 
This can be useful for preserving the spatial resolution of the 
feature maps produced by the convolutional layers. When a 
convolutional filter is applied to the input data, it slides over 
the data and produces an output feature map that is smaller 
than the input data. Without padding, the filter will not be 
able to fully cover the edge pixels of the input data, resulting 
in a loss of spatial resolution in the output feature maps.  In 
the case of ‘Valid’ padding, no padding is added to the input 
data and the filter is only applied to the parts of the input that 
completely overlap with the filter.  For 'Same' padding, the 
input data is zero-padded to ensure that the output feature 
maps have the same spatial dimensions. Pooling layers are 
used to minimize the size of feature maps. It reduces the 
number of parameters to learn and the amount of 
computation required in the network. The pooling layer 
summarizes the features present in the region of the feature 
map generated by the convolutional layers. The flatten layer 
is generally added after the convolutional and pooling layers 
to convert the high-dimensional feature maps produced by 
the convolutional and pooling layers into a one-dimensional 
vector that can be fed into a fully connected neural network 
layer. The flatten layer reshapes the feature maps into a 
single long vector by stacking the values of each feature map 
together. Fully connected layers are typically used at the end 
of the network to make predictions based on the high-level 
features extracted by the earlier convolutional and pooling 
layers. The fully connected layer takes the flattened feature 
vector produced by the previous layer and applies a set of 
weights to each element of the vector. The weights are 
learned during the training process and are used to make 
predictions based on the features extracted by the earlier 
layers. The output of the fully connected layer is typically 
passed through a non-linear activation function, such as a 
ReLU (Rectified Linear Unit), to introduce non-linearity into 
the network. This helps in improving the network’s 
capability to recognize and learn the patterns from input data. 
Different models have different number of layers and number 
of trainable parameters. In this case, if the CNN is being used 
to classify skin lesion images into 8 different classes, the 
fully connected layer would have 8 neurons, one for each 
class. 

Table I.  Number of images present per class in ISIC dataset 

Type of Lesion Image Count Sample Image 

Actinic Keratosis 1,064 

 
Basal Cell Carcinoma 3,323 

 
Benign Keratosis 2,624 

 
Melanoma 5,333 

 

Nevus 18,068 

 
Seborrheic Keratosis 1,761 

 
Squamous Cell Carcinoma 628 

 
Unknown 27,706 

 
Total 60,507  

 
Keras Applications are designed to facilitate the use of 

deep learning algorithms in real-world applications, such as 
medical imaging, by providing pre-trained models that can 
be utilized to solve specific tasks [9]. These models are based 
on cutting-edge architectures and have been trained on large-
scale datasets, yielding improved results. Keras Applications 
were utilized as the backbone of the skin cancer diagnosis 
algorithm, enabling the development of a robust and 
trustworthy method for identifying skin cancer [10]. The pre-
trained weights provided by these models allowed for faster 
training and fine-tuning, while the use of transfer learning 
enabled the model to learn from the ISIC dataset and achieve 
high accuracy.  The study employed InceptionV3, 
InceptionResNetV2, ResNet50V2 and MobileNetV2 models 
to classify skin lesion images [11-14].  

The first step of the process involved downloading an 
image dataset of benign and malignant oncological 
conditions from ISIC and sorting them according to ISIC 
classification into 7 different classes and 1 unknown class 
using metadata [5-6]. The images in different classes were 
found to be unequally divided. 6000 images per class were 
used for the final dataset.  Data augmentation techniques 
such as cropping, rotating, resizing, translating, and flipping 
were used to address the class imbalance using the 
ImageDataGenerator tool in Python Keras module. 
Reshaping the images was necessary to address the issue of 
size disparity, which was also achieved using the 
ImageDataGenerator tool. After balancing and reshaping the 
images, the final dataset of 48000 images was divided into 
80% training and 20% test data. Pre-trained models of Keras 
were trained on the training data. The trained models were 
validated using the test data to understand prediction trends 
and monitor accuracy. Reliable models were saved following 
training and validation, and these saved models were then 
used to make predictions. 

III. RESULTS AND DISCUSSION 

The study utilized TensorFlow's Keras API, a high-level 
deep learning framework designed for building and training 
neural networks efficiently. Keras simplifies model 
development by providing pre-built layers, optimizers, and 
data preprocessing tools, making it suitable for skin lesion 
classification task. The performance of four deep learning 
models- InceptionV3, InceptionResNetV2, ResNet50V2 and 
MobileNetV2 was evaluated using key metrics such as 
accuracy, precision, recall, F1-score and AUC-ROC. These 
metrics are mathematically evaluated using the following 
formulas: 
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Accuracy = (TP+TN) / (TP+TN+FP+FN)                     (1) 
      Precision = TP / (TP+FP)                                             (2) 

Recall=TP/ (TP+FN)                                                      (3) 
F1 = 2×(Precision×Recall)/ (Precision+Recall)             (4) 
Loss =  - ∑ ylogŷ                                                            (5) 
where, TP-True Positive; TN- True Negative; FP- False 

Positive and FN- False Negative. 
 
Accuracy measures the proportion of correctly classified 

samples. Precision indicates how many predicted positives 
are actually correct. Recall (Sensitivity) shows how well the 
model identifies actual positives. F1 Score combines 
precision and recall using the harmonic mean. It balances 
precision and recall. It ensures that both precision and recall 
must be high for the F1 score to be high. AUC-ROC (Area 
Under Curve - Receiver Operating Characteristic) evaluates 
the model’s ability to distinguish between classes. It is 
computed from the ROC curve, which plots True Positive 
Rate (TPR) vs. False Positive Rate (FPR). Model Loss 
quantifies the error during training for classification. In (5), y 
is the true label and ŷ is the predicted probability. 

The results obtained from these models and the run time 
of the respective models and some sample predictions are 
shown and discussed below. Table 2 indicates the training 
accuracy, validation accuracy and the code runtime between 
defining the class weights, combining base model with top 
layers, training, saving the best model after performance 
evaluation and fitting. The codes were executed on 

Anaconda distribution v22 (Python 3.9) on i5 processor 
desktop with 16GB RAM and Windows 10 Operating 
System.    

Table II.  Model accuracy and runtime 

Model Name Accuracy Validation 

Accuracy 
Runtime 

(hr:min:sec) 

InceptionV3 94.39% 59.04% 18:07:38 

InceptionResNetV2 93.97% 57.80% 28:06:44 

ResNet50V2 95.91% 56.47% 24:55:37 

MobileNetV2 95.20% 48.70% 2:35:32 

 
The MobileNetV2 model had least runtime but the 

validation accuracy was poor. InceptionV3 model gave 
comparable accuracy with less runtime than the remaining 
two models.   

Fig. 1 is a combined plot of the InceptionV3 model 
indicating various performance metrics progression over the 
epochs during training and validation. The model training 
accuracy reaches 0.94 while the loss reduces to 0. AUC 
reaches a value of 0.99. Precision and recall values are 0.97 
indicating good performance of the model. F1-score is also 
very high at 0.97. 

 

 
 

Figure 1: Training and validation of InceptionV3 model: Accuracy, Loss, AUC, Precision, Recall and F1-score 

Fig. 2 is the confusion matrix that shows the number of 
predicted vs. true label for all the skin lesion images belonging 
to the eight different classes.  

 
Similar calculations for performance metrics were carried 

out for the other models namely, InceptionResNetV2, 
ResNet50V2 and MobileNetV2. The performance matrics plots 
are not shown and discussed here in the text to avoid 
redundancy. However, the codes, results and plots can be 
shared upon request. 
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Figure 2: Confusion matrix for the InceptionV3 model 

 

IV. CONCLUSION 

The performance of four deep learning models 
InceptionV3, InceptionResNetV2, ResNet50V2 and 
MobileNetV2 was evaluated for skin lesion classification, 
focusing on key metrics. Among the tested models, 
InceptionV3 model achieved the highest classification accuracy 
of 94% indicating superior feature extraction capabilities. 
ResNet50V2 model gave higher accuracy but lower training 
accuracy with a higher runtime. InceptionResNet50V2 model 
had lower accuracy with highest runtime. Meanwhile, 
MobileNetV2, known for its lightweight architecture, provided 
faster inference in the shortest time but the training accuracy 
turned out to be the lowest. This model appears to be a 
promising candidate for real-time clinical applications. The 
study showed a significant improvement in skin lesion type 
detection precision, indicating the potential of deep learning 
algorithms in improving diagnosis and treatment decision-
making. Early diagnosis of malignant lesions may be helpful in 
cure and preventing further stages of the disease. While deep 
learning models enhance early skin cancer detection, 
challenges such as data variability, misclassification, and 
computational complexity remain. Future research should focus 
on optimizing model efficiency, expanding diverse datasets, 
increasing the number of training images for different lesion 
types and further improvement in diagnostic reliability. The 
advancements in deep learning techniques and high-quality 
medical imaging will support clinicians in more accurate 
decision-making benefitting the patient care. Additionally, 
expanding the collection of publicly available datasets will 

enable researchers to develop more robust models and improve 
generalizability across different populations and ethnic groups. 
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