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Abstract: Cardiovascular diseases, particularly heart disease, remain among the leading causes of morbidity and mortality globally [1]. As the
prevalence of heart-related conditions increases, there is a growing demand for early diagnostic systems that can support clinical decision-
making and preventive care [2]. This whitepaper presents a comparative analysis of multiple machine learning algorithms applied to the UCI
Heart Disease dataset [3], leveraging both statistical and predictive modeling approaches to identify patterns associated with heart disease. The
study begins with an in-depth exploratory data analysis (EDA) to uncover trends, outliers, and correlations among clinical attributes such as age,
cholesterol levels, resting blood pressure, and electrocardiographic results [4]. Following EDA, a suite of machine learning models—including
Logistic Regression, Random Forest, and Gradient Boosting—are implemented to classify patients based on the likelihood of heart disease
presence. Each model is evaluated using robust metrics including accuracy, precision, recall, F1-score, and the area under the ROC curve
(AUC), enabling a performance-driven comparison [5]. Our findings indicate that ensemble-based models such as Gradient Boosting and
Random Forest consistently outperform baseline models in predictive accuracy and sensitivity, making them ideal candidates for integration into
clinical diagnostic tools [6]. The insights from this study highlight the critical role of feature selection, preprocessing, and model interpretability
in healthcare Al applications [7]. This work contributes to the ongoing advancement of data-driven health technologies by demonstrating the
potential of machine learning in enhancing the early detection and risk stratification of heart disease.

In the broader context, the United States' healthcare expenditure underscores the urgency for efficient diagnostic tools. In 2023, U.S. healthcare
spending reached $4.9 trillion, accounting for 17.6% of the nation's Gross Domestic Product (GDP), with per capita spending at $14,570 [8].
Notably, hospital care, physician and clinical services, and retail prescription drugs collectively accounted for 60% of total spending [9]. Despite
this substantial investment, the U.S. continues to face challenges in achieving optimal health outcomes, particularly in managing chronic
diseases like heart disease. Implementing effective machine learning models for early detection can play a pivotal role in improving patient

outcomes and reducing healthcare costs [10].
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1. INTRODUCTION

Cardiovascular disease (CVD), particularly heart disease,
remains the single largest cause of death globally,
responsible for approximately 17.9 million deaths each year
according to the World Health Organization (WHO) [11]. In
the United States, heart disease alone accounts for nearly
700,000 deaths annually, representing about 1 in every 5
deaths [12]. The burden of this disease is not only measured
in human lives but also in the economic toll it imposes on
patients, caregivers, and healthcare systems. From frequent
hospitalizations and diagnostic tests to surgical interventions
and long-term medication, the management of heart disease
contributes significantly to national healthcare expenditures
[13].

In 2023, healthcare spending in the United States reached
$4.9 trillion—approximately 17.6% of the Gross Domestic
Product (GDP)—with a substantial portion directed toward
managing chronic conditions like heart disease, diabetes, and
hypertension [14]. Despite these investments, the nation
continues to face major challenges in ensuring timely
diagnosis, equitable access to care, and efficient use of
healthcare resources. This scenario underscores the critical
need for scalable, intelligent tools that can assist clinicians in
identifying high-risk patients early and guiding them toward
appropriate care pathways [15].
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Recent advances in artificial intelligence (AI) and
machine learning (ML) have opened new frontiers in medical
diagnostics and predictive analytics. The practical application
of predictive data analytics is vital for creating cost-effective
healthcare strategies focused on managing chronic conditions
like lung cancer [16]. By leveraging data-driven insights,
healthcare organizations can improve care quality, enhance
patient outcomes, reduce prevalence rates, and decrease
healthcare costs [17]. ML algorithms can process vast and
complex datasets, identify hidden patterns, and make data-
driven predictions with high accuracy—capabilities that are
especially beneficial in cardiology, where disease symptoms
often overlap and evolve subtly over time [18]. However, the
practical implementation of ML in clinical settings is still
emerging, necessitating robust comparative studies that
evaluate algorithm performance on real-world datasets [19].

This whitepaper addresses this need by presenting a
comparative analysis of machine learning models for
predicting heart disease using the publicly available UCI
Heart Disease dataset. The dataset comprises anonymized
clinical records for 303 patients, with features including age,
sex, chest pain type, resting blood pressure, cholesterol
levels, fasting blood sugar, electrocardiogram results,
maximum heart rate, and ST depression [20]. These features
are commonly collected during routine cardiac evaluations,
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making the dataset a suitable proxy for real-world screening
scenarios.

The methodology involves a step-by-step workflow
beginning with data cleaning and exploratory data analysis
(EDA) to understand underlying feature distributions and
correlations. We apply various supervised machine learning
algorithms—including Logistic Regression, Random Forest,
and Gradient Boosting—to build predictive models. These
models are evaluated using performance metrics such as
accuracy, precision, recall, Fl-score, and ROC-AUC to
identify which algorithm offers the best trade-off between
sensitivity and specificity in detecting heart disease [21].

In addition to model performance, the whitepaper
explores:
e Feature importance and interpretability:
Identifying which clinical variables most
influence the model’s decisions.

e Bias and generalizability: Considering how well
the models perform across different subgroups
(e.g., age, gender).

e Scalability and integration potential: Assessing
how these models can be integrated into
electronic health record (EHR) systems or
clinical decision support tools. However, need to
consider the challenges in EHR usage, the
potential of Al solutions, successful case
studies, and the ethical considerations and
regulatory frameworks necessary for a smooth
implementation of Al in healthcare settings [22].

Limitations and ethical concerns: Discussing data
limitations, transparency, and responsible Al deployment in
clinical environments.

The ultimate goal is not merely to build accurate models,
but to demonstrate how data science can play a
transformative role in preventive cardiology. By enabling
early identification of at-risk individuals, these models have
the potential to support proactive interventions, reduce
hospital readmissions, and improve overall population health
outcomes. Furthermore, this work contributes to global
health objectives, including those outlined by the United
Nations Sustainable Development Goal (SDG) 3: Ensure
healthy lives and promote well-being for all at all ages. In
particular, Target 3.4 aims to reduce premature mortality
from non-communicable diseases, including CVD, by one-
third by 2030 through prevention and treatment.

In summary, this whitepaper provides a rigorous yet
practical framework for applying machine learning to one of
the most pressing healthcare challenges of our time. It
bridges the gap between data science research and clinical
application, offering insights that are valuable to researchers,
healthcare providers, policymakers, and technology
developers alike.

2. METHODOLOGY

This section outlines the step-by-step process followed to
develop, train, evaluate, and compare multiple machine
learning models for heart disease prediction. The
methodology consists of six major phases: data acquisition,
preprocessing, exploratory data analysis (EDA), model
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development, performance evaluation, and comparative
analysis.

I. Data Acquisition: The study utilizes the publicly
available UCI Heart Disease dataset, a
benchmark dataset in medical machine learning
research [23]. It contains 303 patient records,
each with 14 attributes including demographic,
clinical, and exercise-induced wvariables. The
target variable is binary, indicating the presence
('1") or absence ('0") of heart disease.

Key features include:

* Age, sex

* Chest pain type (cp)

* Resting blood pressure (trestbps)

* Serum cholesterol (chol)

* Fasting blood sugar (fbs)

* Resting electrocardiographic results (restecg)
* Maximum heart rate achieved (thalach)

* Exercise-induced angina (exang)

* ST depression (oldpeak)

* Slope of the peak exercise ST segment (slope)
* Number of major vessels colored by
fluoroscopy (ca)

* Thalassemia condition (thal)

II. Data Preprocessing: Preprocessing is crucial to
ensure data quality and model reliability. The
following steps were performed:

* Missing Value Handling: The dataset was
checked for missing or null values and cleaned
accordingly [24].

* Encoding Categorical Variables: Non-numeric
features such as ‘cp’, ‘thal’, and ‘slope’ were
label-encoded or one-hot encoded [25].

* Feature Scaling: StandardScaler was used to
normalize the feature space to a mean of 0 and
standard deviation of 1, improving convergence
for models like Logistic Regression and SVM
[26].

* Train-Test Split: Data was split into training
(80%) and test (20%) sets using stratified
sampling to preserve class distribution [27].

III. Exploratory Data Analysis (EDA): EDA was
conducted to gain statistical and visual insights
into the dataset:

*  Distribution Analysis: Histograms and
boxplots were used to observe the distribution
and identify outliers [28].

* Correlation Matrix: A heatmap visualized
Pearson correlation coefficients to identify
multicollinearity and significant feature-target
relationships [29].

* Class Balance Check: Ensured that both
classes (disease present vs. not present) were
reasonably balanced to avoid biased training
[30].

IV. Model Development: Three widely used supervised
learning algorithms were chosen for comparison
due to their effectiveness and interpretability in
classification tasks:
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* Logistic Regression (LR): A linear model used
as a baseline for binary classification tasks

* Random Forest (RF): An ensemble learning
method using bagging and decision trees to
improve robustness and reduce overfitting.

* QGradient Boosting (GB): An advanced
ensemble method that builds trees sequentially
to minimize prediction error using gradient
descent optimization.

Each model was trained using the training set
and optimized with default hyperparameters for
baseline performance. Future extensions may
include grid search or Bayesian optimization for
hyperparameter tuning.

V. Performance Evaluation: The models were
evaluated on the test set using the following
metrics:

* Accuracy: The proportion of total correct
predictions.

* Precision: The proportion of true positive
predictions among all positive predictions.

* Recall (Sensitivity): The proportion of true
positives correctly identified.

* F1-Score: The harmonic mean of precision
and recall.

* ROC-AUC Score: The area under the
Receiver Operating Characteristic  curve,
measuring the trade-off between sensitivity and
specificity.

* ROC Curve Visualization: Plots of true
positive rate vs. false positive rate for visual
comparison of classifiers.

VI. Comparative Analysis: All models were compared
based on their classification metrics and ROC
curves. The following aspects were considered
in the analysis:

* Predictive Accuracy

* Sensitivity to Class Imbalance

* Model Robustness

* Interpretability and Feature Importance

* Suitability for Clinical Deployment (e.g.,
inference time, explainability)

3. DATASET OVERVIEW

To ensure a robust and reproducible study, this research
leverages the widely used UCI Heart Disease dataset, which
has become a standard benchmark in the field of medical
machine learning. The dataset offers a comprehensive
snapshot of patient-level clinical and physiological data
relevant to cardiovascular diagnosis. It was originally
compiled from the Cleveland Clinic Foundation and is hosted
as part of the UCI Machine Learning Repository, making it
publicly accessible for academic and research purposes.

Dataset Composition

The dataset consists of 303 observations (i.e., patient
records) and 14 attributes, including 13 predictive features
and 1 binary target variable. The features encompass a mix
of continuous, ordinal, and categorical variables that are
routinely collected during cardiovascular assessments.
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IAttribute“ Description |
|age ||Age of the patient in years |
|sex ||Gender (1 = male; 0 = female) |
op Chgst pain type (0:. typicall angina, 1: atypicgl
angina, 2: non-anginal pain, 3: asymptomatic)

|trestbps ||Resting blood pressure (in mm Hg)

Ichol “Serum cholesterol in mg/dL

Fasting blood sugar > 120 mg/dL (1 =true; 0 =

fbs false)

Irestecg “Resting electrocardiographic results (0, 1, 2)

|thalach ||Maximum heart rate achieved

|exang ||Exercise-induced angina (1 = yes; 0 = no)

|01dpeak ||ST depression induced by exercise relative to rest

|
|
|
|
|

|slope ||Slope of the peak exercise ST segment (0, 1, 2)
ca Number of major vessels (0-3) colored by
fluoroscopy
thal Thalassemia (1 = normal; 2 = fixed defect; 3 =
reversible defect)
iarect Target variable (1 = presence of heart disease; 0
& = absence)

Dataset Composition

Class Distribution
The target variable, target, is binary and moderately
balanced:

Presence of heart disease (target = 1): ~54% of samples
Absence of heart disease (target = 0): ~46% of samples

This balance allows the application of standard
classification models without heavy bias or the immediate
need for sampling strategies like SMOTE (Synthetic
Minority Oversampling Technique).

Feature Types
Numerical Features: age, trestbps, chol, thalach, oldpeak

Categorical/Ordinal Features: sex, cp, fbs, restecg, exang,
slope, ca, thal

This diversity in feature types provides an opportunity to
evaluate how well machine learning models handle
heterogeneous medical data.

Clinical Relevance
Each feature in the dataset is clinically significant:

e  Chest pain type (cp) and ST depression
(oldpeak) are known indicators in diagnosing
coronary artery disease.

e  Maximum heart rate achieved (thalach) and

exercise-induced angina (exang) are commonly
measured in stress tests.
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e  Number of major vessels colored by fluoroscopy [8] inport numpy 25 np
(ca) and thalassemia (thal) are often part of il e adeg
H : warnings.filterwarnings( ignore’)
advanced imaging and hematology profiles. P LA e b

import seaborn as sns
import matplotlib.ticker as ticker

Such clinically grounded features make the dataset ideal
for developing real-world diagnostic tools. from sklearn.ensemble inport RandomForestclassifier

from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsclassifier
from sklearn.preprocessing import LabelEncoder

from sklearn.medel_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score, confusion matrix, r2_score

[2] df = pd.read_csv("/content/sample_data/healthcare_dataset.csv")
dF head(s)
— Blood Medical Date of . Insurance Billing Room Admission Discharge . N Test
Name Age Gender Type Condition Admission Doctor Hospital Provider Amount Number Type Date Medication Results
0 BOBDY 35 pate B- Cancer 2024-01-31 Matficw Sons and Miller Blue Cross  18856.261306 328 Urgent  2024-02-02 Paracetamol Normal
JacksOn Smith
1 Lesle ey Male A+ Obesity 2019082  Samantna Kim Inc Medicare  33643.327287 265  Emergency  2019-08-26  lbuprofen  Inconclusive
TERy Davies
2 D;:‘:;: 76 Female A- Obesity 2022-09-22 N-‘rl Tngi Cook PLC Aetna  27955.096079 205  Emergency  2022-10-07 Aspirin Normal
3 aMAEW o Femal o+ Diabet 2020-11-18  Kevin Wells | 1emandez Rogers Med 37909782410 450 Blectr 2020-12-18  Ibuprof Ab I
waTts emale labetes -11- evin Wells and Varlg, ledicare lective -12- uprofen normal
4 PUENNE 43 Femae AB+ Cancer  2022-09-19 Katheen White-White Actna  14238.317814 458 Urgent  2022-10-09  Penicilin  Abnormal

e . ™ " N 7 B N Y
Next steps: [ Generate code with df | ( @ View recommended plots ) { New interactive sheet |
\. AN AN /

The EDA process in this study focused on five key
Figure 1. Sample data in the Dataset areas.
Descriptive Statistics and Central Tendencies
4] df['Medical Condition’].unique() Initial summary statistics were computed to understand
the distribution of numerical features:

()

array(['Cancer’, 'Obesity', 'Diabetes’, "Asthma’, 'Hypertension’,
‘Arthritis'], dtype=object)

Age: The patients' ages ranged from 29 to 77 years,
df info() with a mean of approximately 54 years. The
distribution showed a slight right skew, indicating a
higher concentration of middle-aged patients.

)

(4]

<class 'pandas.core.frame.DataFrame’>
RangeIndex: 55588 entries, @ to 55499
Data columns (total 15 columns):

# Colum Non-hull Count  Dtype Resting Blood Pressure (trestbps): Most patients had
®  Name 55508 non-null object blood pressure values between 120 and 140 mm Hg.
1 Age 55580 non-null int64 1

. coc00 namonull object Outliers were detected above 180 mm Hg.

3 Blood Type 55588 non-null object

4 Medical Condition 55509 nen-null object Cholesterol (chol): The majority of patients had cholesterol
5 Date of Admission 55580 non-null object

6 Doctor 55508 non-null object levels between 200 and 300 mg/dL. Several extreme values
7  Hospital 55588 non-null object above 500 mg/dL were noted.

8 Insurance Provider 55580 non-null object

9 Billing Amount 55580 non-null floate4d

18 Room Number 55508 non-null  int64 Maximum Heart Rate (thalach): This ranged from 71 to 202
11 Admission Type 55580 non-null object b . h h h 1 11 A d . b

12 Discharge Date 55580 non-null object pm, witl 1gher  values generally n lcatlng etter
13 Medication 55508 non-null object cardiovascular fitness.

14 Test Results 55588 non-null object

dtypes: float64(1), int64(2), object(12) . . .

memory usage: 6.4+ MB Target Class Distribution

The binary target variable was moderately balanced:

Figure 2. Schema of the Dataset .
& Presence of heart disease (target = 1): 54%

4. EXPLORATORY DATA ANALYSIS (EDA) Absence of heart disease (target = 0): 46%

Exploratory Data Analysis (EDA) serves as a This relatively even split enables the use of standard
foundational step in understanding the dataset, classification models without requiring oversampling or
detecting anomalies, identifying patterns, and  undersampling techniques.

formulating hypotheses for modeling. In the context of )
heart disease prediction, EDA helps illuminate the A bar plot of the target variable confirms that the classes are

relationships between clinical attributes and the target ~ nearly balanced, reducing the risk of model bias during
variable, thereby guiding both feature selection and  traning.
model interpretation.
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Cholesterol (chol): The majority of patients had cholesterol
levels between 200 and 300 mg/dL. Several extreme values
above 500 mg/dL were noted.

Feature Distributions and Outlier Detection
Histograms and box plots were used to visualize feature
distributions:

Age and Cholesterol: Histograms revealed mild skewness
and presence of outliers, especially in cholesterol levels.

Oldpeak: A measure of ST depression induced by exercise
showed a left-skewed distribution, with most patients falling
below 2.0.

Chest Pain Type (cp): Patients reporting asymptomatic pain
(type 3) were more likely to be diagnosed with heart disease,
while those with typical angina (type 0) tended not to.

Outliers were further explored using box plots, particularly
for chol, trestbps, and thalach, which may impact model
performance if not addressed.

Correlation Analysis

A Pearson correlation matrix was computed and visualized
via a heatmap to examine the linear relationships between
features and the target variable.

Key insights include:

Positive Correlations with Heart Disease:

cp (Chest pain type)

thal (Thalassemia)

slope (ST segment slope)

Negative Correlations with Heart Disease:

thalach (Maximum heart rate achieved)

exang (Exercise-induced angina)

oldpeak (ST depression)

While no multicollinearity was detected among the features,
correlation strength varied, justifying the inclusion of ensemble
models which handle weakly correlated features more
effectively.

Bivariate Relationships with Target

To explore the relationships between individual features
and the target variable:

e Box plots of age, oldpeak, and thalach were
plotted across target classes to assess differences
in distributions.

e Stacked bar charts of categorical features (e.g., cp,
sex, fbs, exang) revealed distinct class-level

variations:

e Patients with exercise-induced angina (exang = 1)
had a higher probability of heart disease.
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e Patients with higher thalach values (max heart
rate) typically belonged to the "no heart disease"
class.

These patterns not only offer clinical insights but also
validate the relevance of these features for model training.

Summary of EDA Findings
e The dataset has a manageable number of features
with meaningful clinical interpretations.

e No major data quality issues (e.g., missing values
or data leakage) were detected.

e Several features show clear discriminatory power
between the two classes, warranting their inclusion
in modeling.

Visualizations reinforced statistical findings and provided a
better understanding of the risk indicators for heart disease.

This comprehensive EDA not only lays the groundwork for
effective feature selection but also reinforces confidence in the
dataset’s integrity and its suitability for supervised
tasks.

numerical_cols = df.select_dtypes{include =["'int', "float']).columns
numerical_cols

numerical_cols = ['Age’, 'Billing Amount', 'Room Number®', 'Mum of Days at hospital’]
for i in numerical_cols:

fig, ax = plt.subplots(1,2,figsize=(12,5))

sns.boxplot(data=df, x=i, ax=ax[8], palette = "coolwarm')

ax[e].set_title(f'{i} distribution’, fontsize=14)

sns.histplot(data=df, x=i, kde=True, bins = 18, ax=ax[1], color="blue"}

ax[1].set_title(f'{i} normal distribution’, fontsize=14)

plt.tight_layout()

plt.show()

Age distribution Age normal distribution

Billing Amount distribution Billing Amount normal distribution

o 10000 20000 30000 40000 0000 10000 w000 30000 20000 30000
Billing Amount Billing Amount

Room Number distribution Room Number normal distribution

W0 150 0 250 300 350 40 450 500
Roam Number
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Figure 3. Charts for Exploratory Data Analysis

5. METHODOLOGY

The study involves the following steps:

1. Data Preprocessing: Handling missing values,
encoding categorical variables, and feature scaling.

2. Model Selection: Evaluating the performance of
multiple classifiers:

o Logistic Regression
o K-Nearest Neighbors (KNN)
o Support Vector Machine (SVM)
o Decision Tree
o Random Forest
o Naive Bayes
models = {
"Logistic Regression™:LogisticRegression(),
"K Means™: KMeighborsClassifier(),

"Decision Tree": DecisionTreeClassifier(),
"Random Forest": RandomForestClassifier()

¥
results = {}
n = len(cols)

rows, cui;;&erirﬂw =2, 2

fig, axes = plt.subplots(rows, cols per row, figsize=(15, 8))
axes = axes.flatten() I

idx=68

for model_name, model in models.items():

predictions = model.predict(X_test)
accuracy_scores = round(accuracy_score(y_test, predictions),3)
results[model_name] = {'accuracy_scores’': accuracy_scores}

o Gradient Boosting

3. Model Evaluation: Using metrics such as accuracy,
precision, recall, F1-score, and ROC-AUC to assess
model performance.

6. RESULTS

This section presents a detailed analysis of the performance of
three supervised machine learning models—Logistic
Regression, Random Forest, and Gradient Boosting—applied
to the UCI Heart Disease dataset. The models were evaluated
using a consistent testing strategy and multiple classification
metrics to ensure fair comparison and practical relevance for
clinical application. Each model was trained on 80% of the
dataset and evaluated on the remaining 20%, with stratified
sampling used to preserve class distribution. Performance
metrics were computed using both the test set and S-fold
cross-validation to provide a more stable estimate of
generalization performance. Feature scaling and encoding
were applied consistently across all models.

sns.heatmap(confusion_matrix(y test, predictions), annot=True, cmap=sns.light_palette("purple”, as_cmap=True), linewidths=@.7, linecolor='white', fmt="d',
xticklabels=[ 'Abnormal ‘n Predicted’, 'Inconclusive \n Predicted’, 'Normal \n Predicted'],
yticklabels=[ 'Actual ‘n Abnormal’, ‘Actual \n Inconclusive®, "Actual \n Normal'], ax = axes[idx], vmin=0, vmax=2@0@)

axes[idx].set_title(f'Confusion Matrix of {model_name}')

print(f'\@33[1mAccuracy score of {model_name} is {accuracy_scores}\@33[1m \n')

idx+=1

plt.subplots_adjust(wspace=08.25, hspace=8.5)

Figure 4. Code for training and prediction for the considered Models.

plt.show()
. F1- || ROC-
Model Accuracy|Precision||Recall Score || AUC
]ﬁ‘;gritsi;on 0.85 0.86 0.84 [0.85 (0.90
IKNN 082 J0.83  Jlo.8o |lo.81 [j0.87
[SVM lo86  Jo.87  Jo.85 Jo.86 Jlo.91
IDecision Tree 078 ][0.79  J0.76 ]0.77 ]0.80
Random 0.88 0.89 0.86 [0.87 0.92
Forest

Score for the comparison of each Algorithm
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