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Abstract: Lung cancer stands as the most fatal cancer worldwide, responsible for an estimated 1.8 million deaths annually, accounting for nearly 

one in five cancer-related deaths (18.7%) [1]. According to the World Health Organization (WHO), it surpassed all other forms of cancer in 

mortality in 2022, with 2.48 million new cases reported globally [2]. The burden is particularly high in low- and middle-income countries, where 

healthcare access and early screening programs are limited. Despite advancements in treatment, the survival rate remains low, largely due to 

late-stage diagnosis and continued tobacco consumption [3]. Smoking is the primary risk factor, linked to approximately 85% of all lung cancer 

cases [4]. Beyond its health implications, the economic cost of lung cancer is staggering. In 2023, the global cancer drug market was valued at 

$223 billion, and lung cancer alone contributed significantly to this figure [5]. The lung cancer treatment market reached $17.65 billion in 2023 

and is projected to grow at a compound annual growth rate (CAGR) of 14.21%, potentially exceeding $44.17 billion by 2030 [6]. These figures 

reflect not only the direct cost of treatment but also indirect costs such as loss of productivity, caregiver burden, and long-term disability [7]. 

Early identification of smoking behaviour is a critical lever in lung cancer prevention and early detection strategies. However, traditional 

approaches—relying on self-reporting or delayed clinical diagnostics—are often inconsistent or inaccessible [8]. There is an urgent need for 

data-driven tools that can proactively classify individuals based on their smoking behaviour and estimate their risk for lung cancer using routine 

clinical and demographic data. 

This white paper introduces a robust machine learning-based predictive framework that addresses this gap. The proposed model utilizes health 

features such as age, BMI, blood pressure, cholesterol levels, and behavioural indicators to classify smoking status and stratify lung cancer risk. 

Developed and tested using publicly available datasets, the model achieved high accuracy and interpretability, making it suitable for integration 

into digital health platforms and primary care systems. 

Key highlights include Smoking status classification accuracy exceeding 90% using ensemble learning algorithms like Random Forest and 

Gradient Boosted Trees. Derivation of a composite lung cancer risk score based on demographic and health parameters, allowing for early risk 

stratification. Scalable and cost-effective deployment potential, especially in population health programs and telehealth platforms. 

 

Keywords: Artificial Intelligence, lung cancer, smoking status, machine learning, predictive modelling, cancer prevention, early detection, 

healthcare analytics, risk stratification, data-driven healthcare, tobacco-related diseases, population health, preventive healthcare 

 

1. INTRODUCTION 

Lung cancer has evolved into a global public health crisis, 
claiming more lives each year than breast, colon, and prostate 
cancers combined. According to the World Health 
Organization (WHO), lung cancer was responsible for 
approximately 1.8 million deaths in 2022, representing 18.7% 
of all cancer fatalities. Despite decades of public health 
campaigns and advancements in oncology, the disease 
continues to present devastating outcomes, primarily due to its 
silent progression and late detection. The five-year survival rate 
for lung cancer remains dismally low—hovering around 18–
21% globally, and as low as 5% in low-income countries where 
early diagnostic infrastructure is limited or non-existent. 

 
A predominant factor driving this global health burden is 

cigarette smoking, which contributes to nearly 85% of lung 
cancer cases. The toxic compounds in tobacco smoke initiate 
genetic mutations and inflammation in lung tissue, triggering a 
cascade of cellular abnormalities that, over time, can lead to 
malignant tumors. However, identifying smokers, particularly 
in population-wide settings, remains a persistent challenge. 
Many individuals underreport smoking habits due to stigma, 
lack of awareness, or cultural sensitivity. This makes reliance 

on self-reported data not only unreliable but potentially 
misleading, thereby hindering timely and targeted intervention. 

 
Furthermore, although screening technologies such as low-

dose computed tomography (LDCT) have been shown to 
reduce mortality through early detection, they remain 
underutilized due to high cost, limited availability, radiation 
exposure concerns, and the need for specialized personnel. This 
underlines a critical gap in preventive healthcare—where early 
identification of at-risk individuals is needed long before 
cancer manifests clinically, and before costly diagnostic 
procedures become necessary. 

 
In this context, machine learning (ML) presents a 

transformative opportunity. The practical application of 
predictive data analytics is vital for creating cost-effective 
healthcare strategies focused on managing chronic conditions 
like lung cancer. By leveraging data-driven insights, healthcare 
organizations can improve care quality, enhance patient 
outcomes, reduce prevalence rates, and decrease healthcare 
costs. This white paper presents a technical perspective on the 
crucial role of prediction in addressing the challenges 
associated with lung cancer and offers recommendations for 
utilizing data-driven approaches to transform healthcare 
delivery systems [9]. With its ability to process vast and 
complex datasets, ML can reveal hidden patterns and risk 
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factors that are not apparent through traditional statistical 
methods. By using routinely available health metrics—such as 
age, body mass index (BMI), blood pressure, cholesterol, 
glucose levels, physical activity, and alcohol consumption—
ML models can infer the likelihood of a person being a smoker 
and simultaneously estimate their relative risk of developing 
lung cancer. This dual-purpose predictive framework represents 
a paradigm shift from reactive treatment to proactive 
prevention. 

 
Moreover, the integration of such models into digital health 

ecosystems—such as electronic health records (EHRs), 
telehealth platforms, or mobile health apps—can offer real-
time, personalized risk assessments at the point of care. These 
predictive tools not only empower clinicians with actionable 
insights but also enable individuals to make informed lifestyle 
decisions. Public health agencies, in turn, can use the 
aggregated insights for strategic planning, such as identifying 
high-risk populations, designing community-level screening 
campaigns, and allocating resources effectively [11]. 

 
This white paper presents a comprehensive machine 

learning-based solution that classifies individuals by smoking 
status and stratifies lung cancer risk using accessible health and 
behavioral data. Built and validated on publicly available 
datasets, the model demonstrates high predictive accuracy, 
interpretability, and scalability. It stands as a compelling 
example of how artificial intelligence can augment human 
expertise in healthcare—bridging the gap between prevention 
and early intervention in one of the deadliest and costliest 
cancers affecting our global population [12]. 

2. DATA DESCRIPTION 

A robust and reliable predictive model is only as good as 
the data that informs it. In this study, we utilize a high-quality, 
publicly available dataset sourced from Kaggle [13], 
comprising over 56,000 anonymized records collected from 
routine health screening programs. The dataset reflects real-
world health assessments, containing both quantitative and 
categorical variables that are instrumental for behavioral 
classification and chronic disease risk modeling. Its scale and 
feature diversity make it ideally suited for developing machine 
learning models that aim to identify complex interrelationships 
between lifestyle factors (like smoking) and disease 
predisposition (such as lung cancer). 

 
This section provides a comprehensive breakdown of the 

dataset's composition, structure, and clinical utility. 
 
Demographic Features: 
Age (continuous): A primary factor in disease 

susceptibility. Age influences smoking behavior and is an 
independent risk factor for lung cancer due to cumulative 
exposure to environmental toxins. 

Gender (binary): Male or female. Gender differences 
influence lung physiology, hormonal factors, and cancer 
susceptibility, and are therefore essential in stratifying risk 
accurately. 

 
Age is used both as a continuous predictor and for 

categorical binning (e.g., age groups) to capture non-linear 
effects. Gender enables differential risk modeling. 

 
Anthropometric Measurements: 
These measurements assess body composition and are 

critical indicators of metabolic health: 

 
Height (cm) and Weight (kg): Raw measures used to derive 

the Body Mass Index (BMI). 
BMI (derived): A key feature used to classify individuals as 

underweight, normal weight, overweight, or obese. Elevated 
BMI is often associated with systemic inflammation and is 
recognized as a co-morbidity in many non-communicable 
diseases including cancers. 

 
BMI is used both as a numeric and categorized feature to 

assess indirect risk of lung cancer via obesity and metabolic 
dysfunction. 

 
Vital Signs: 
Vital signs offer dynamic, real-time insights into 

cardiovascular and systemic health: 
 
Systolic Blood Pressure (SBP) and Diastolic Blood 

Pressure (DBP): High blood pressure (hypertension) is a 
frequent comorbidity among smokers and contributes to 
cardiovascular strain. 

Blood Pressure Category (derived): Created based on 
American Heart Association guidelines (e.g., Normal, Elevated, 
Stage 1 Hypertension, Stage 2 Hypertension). 

 
Helps detect stress on vascular systems, often exacerbated 

by nicotine and tobacco use. 
 
Clinical Laboratory Values: 
These biomarkers provide a snapshot of internal health and 

potential metabolic disruptions: 
 
Total Cholesterol (mg/dL): A critical lipid profile measure. 

Elevated levels are correlated with cardiovascular disease and 
systemic inflammation—both relevant to cancer 
pathophysiology. 

Fasting Glucose (mg/dL): Abnormal glucose regulation 
(e.g., pre-diabetes, diabetes) has been linked to increased 
oxidative stress and cellular mutation rates. 

 
Both are retained as continuous variables and are also 

transformed into clinically meaningful bins to capture 
thresholds of risk. 

 
Behavioral & Lifestyle Indicators: 
These features offer direct insights into the user’s habits and 

daily routines—often precursors to long-term health outcomes: 
 
Alcohol Consumption (binary): Alcohol and tobacco 

combined elevate carcinogenic risk, especially for cancers of 
the lung, liver, and gastrointestinal tract. 

Physical Activity (categorical): Sedentary behavior is both a 
standalone risk factor for many chronic diseases and a behavior 
frequently associated with smokers. 

 
These are used both independently and in conjunction with 

interaction features (e.g., smoker + sedentary lifestyle) to 
capture compounded risk. 

 
Primary Target: Smoking Status: 
Smoking Status (binary): The primary target variable for 

classification. Defined as "smoker" or "non-smoker", this label 
guides the supervised learning framework. 
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This label is used to train classifiers such as Random Forest, 
Gradient Boosted Trees, and SVM to predict an individual’s 
smoking behavior based on the above features. 

 
Secondary Output: Lung Cancer Risk Score 

(Engineered): 
Although the dataset does not explicitly include lung cancer 

diagnoses, a composite Lung Cancer Risk Score was 
engineered based on literature-backed criteria. Factors 
contributing to this derived score include: 

 
Age (>50 years) 
Long-term smoking status 
High BMI 
Hypertension (SBP/DBP) 
Hypercholesterolemia 
Impaired glucose tolerance 
 
The risk score categorizes individuals as Low, Moderate, or 

High Risk of developing lung cancer, acting as a surrogate 
label for multi-class risk stratification. 

 
This allows us to simulate real-world risk scenarios where 

lung cancer diagnosis is unavailable, yet predictive insight is 
urgently needed. 

 
Data Engineering and Integrity Management: 
To prepare the dataset for robust modeling, the following 

preprocessing steps were performed: 
 
Imputation of Missing Values: Median imputation for 

continuous variables; mode for categorical. 
Outlier Detection and Treatment: IQR filtering and 

winsorization to reduce model skew. 
Categorical Encoding: One-hot encoding for nominal 

variables, label encoding for binary ones. 
Feature Scaling: Min-Max normalization for gradient-

sensitive algorithms (e.g., SVM, Logistic Regression). 
Class Balancing: While smoking status was relatively 

balanced, additional checks ensured model fairness. 
 

Table I.  Table of Summary of Data Strengths 

Feature 

Category 
Type 

Clinical 

Relevance 

Predictive 

Utility 

Demographics 
Continuous, 

Binary 

Age and gender 

influence cancer 

prevalence 

High 

Anthropometric Continuous 

Obesity and 

metabolic rate 

modulate cancer 

risk 

Moderate 

to High 

Vitals Continuous 

Cardiovascular 

strain linked to 

smoking 

High 

Lab Values Continuous 

Indicate systemic 

inflammation and 

metabolic disease 

High 

Behavioral 

Indicators 

Binary, 

Categorical 

Lifestyle co-

factors for cancer 
High 

Target 

Variables 

Binary, 

Engineered 

Ground-truth and 

derived outcome 
Critical 

Feature 

Category 
Type 

Clinical 

Relevance 

Predictive 

Utility 

labels 
                                                                                                            Summary of Data Strengths 
 

3. METHODOLOGY 

The development of the predictive framework for smoking 
status classification and lung cancer risk stratification followed 
a structured data science methodology encompassing data 
preprocessing, feature engineering, model development, and 
evaluation [14]. The first phase involved extensive data 
cleaning and transformation. Missing values were addressed 
using median and mode imputation strategies, while outliers 
were detected using interquartile range (IQR) analysis and 
capped through winsorization to preserve data integrity [15]. 
Continuous features such as age, blood pressure, glucose, and 
cholesterol levels were normalized to ensure algorithm 
stability, particularly for models sensitive to feature scaling. 
Categorical variables like gender and alcohol use were encoded 
using binary or one-hot encoding depending on their 
cardinality, ensuring the dataset was fully compatible with both 
linear and non-linear models [16]. 

 
Feature engineering played a critical role in enhancing the 

model’s ability to capture complex relationships between health 
indicators and smoking behavior. Derived variables such as 
Body Mass Index (BMI), blood pressure categories, and age 
brackets were introduced to transform raw metrics into 
clinically meaningful insights [17]. Additionally, a composite 
lung cancer risk score was engineered using epidemiological 
correlations between variables such as age, BMI, hypertension, 
glucose levels, and smoking status. This score, categorized into 
low, moderate, and high risk levels, served as a surrogate target 
variable for lung cancer risk stratification, enabling the 
development of a secondary predictive model without requiring 
confirmed diagnoses in the original dataset [18]. Need to 
mention the integration of artificial intelligence (AI) with 
Electronic Health Record (EHR) systems represents a 
significant opportunity to transform patient care across the 
healthcare landscape [19]. 

 
Model development involved the training and comparison 

of multiple machine learning classifiers including Logistic 
Regression, Random Forest, Support Vector Machine (SVM), 
and Gradient Boosted Trees (XGBoost). For smoking status 
classification, Random Forest and XGBoost consistently 
outperformed other models, delivering accuracy rates 
exceeding 90% while maintaining high precision and recall. 
The lung cancer risk stratification task, treated as a multi-class 
classification problem, showed optimal performance with 
Gradient Boosted Trees, which effectively captured subtle 
nonlinear interactions among features. Each model underwent 
rigorous hyperparameter tuning using grid search with cross-
validation to ensure generalizability and robustness across 
diverse subsets of the data. 

 
Evaluation of model performance was carried out using 

standard classification metrics such as accuracy, F1-score, 
precision, recall, and ROC-AUC for binary classification, along 
with macro F1-score and confusion matrices for multi-class 
outputs. Feature importance was analyzed using model-specific 
methods and further interpreted using SHAP (SHapley 
Additive exPlanations) values to explain predictions both 
globally and at the individual level. These interpretability 
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measures not only validated the clinical plausibility of the 
model but also laid the foundation for real-world deployment, 
particularly in digital health platforms and clinical decision 
support systems where transparency and trust are essential. 

 
 
 
Data Preprocessing: 
Effective data preprocessing is foundational to the success 

of any machine learning model, especially in healthcare 
analytics where data quality and integrity are critical. In this 
study, preprocessing involved a multi-step transformation 
pipeline designed to clean, normalize, and optimize the dataset 
for downstream predictive tasks—namely, smoking status 
classification and lung cancer risk stratification. 

 
I. Handling Missing Values 
Although the dataset was largely complete, minor 

missingness in certain biometric and lab values (e.g., 
cholesterol, glucose) was addressed using domain-appropriate 
imputation techniques. Median imputation was selected for 
continuous variables to reduce sensitivity to outliers, while 
mode imputation was applied to categorical features such as 
gender or alcohol consumption. This step ensured that no rows 
were discarded unnecessarily, preserving statistical power and 
model generalizability. 

 
II. Outlier Detection and Treatment 
Given the clinical context, outliers were handled carefully 

to prevent masking true pathological indicators. Outliers in 
numerical features such as systolic/diastolic blood pressure, 
BMI, and glucose were detected using the Interquartile Range 
(IQR) method and visualized using boxplots. Rather than 
removing them outright, extreme values were capped at the 5th 
and 95th percentiles (winsorization), preserving the data 
distribution while reducing the influence of erroneous or rare 
extreme values on model training. 

 
III. Data Normalization and Scaling 
To ensure feature comparability and improve convergence 

in distance-based and gradient-based algorithms, continuous 
variables were normalized using min-max scaling. For models 
like SVM and Logistic Regression that are sensitive to the scale 
of input features, this transformation ensured consistent feature 
ranges. Tree-based models such as Random Forest and 
XGBoost were less sensitive to scaling, but for uniformity and 
integration across ensemble pipelines, the normalization step 
was applied across all features. 

 
IV. Categorical Encoding 
Categorical variables were processed using encoding 

strategies tailored to their nature. Binary fields (e.g., gender, 
alcohol consumption) were label-encoded into 0/1 values, 
while ordinal variables like derived BMI categories and blood 
pressure levels were assigned ordered numerical values. One-
hot encoding was used for non-ordinal multi-class features such 
as age groups and activity levels, which avoids imposing false 
orderings. These encodings ensured that categorical features 
could be seamlessly integrated into both linear and non-linear 
models. 

 
V. Data Quality Checks 
After transformation, the dataset underwent rigorous quality 

assurance checks. Correlation matrices and pairwise 
scatterplots were used to validate expected relationships 
between variables (e.g., high BMI correlating with 

hypertension and glucose levels). Feature histograms were 
inspected pre- and post-scaling to ensure distributions retained 
their clinical interpretability. Additionally, class distribution in 
the target variable (smoker vs. non-smoker) was verified to be 
balanced, removing the need for oversampling or class 
weighting in the initial model training phase. 

 
Feature Engineering: 
Feature engineering was a pivotal phase in enhancing the 

predictive capacity and clinical relevance of the model. While 
the raw dataset provided a solid foundation, deriving new 
features from existing variables allowed for the uncovering of 
hidden patterns, enabling the machine learning algorithms to 
make more nuanced and context-aware predictions. This step 
bridged the gap between purely data-driven modeling and 
clinically informed insights, significantly improving both 
smoking status classification and lung cancer risk stratification. 

 
I.  Body Mass Index (BMI) 
 
BMI was computed using the formula: 
 
BMI=Weight (kg) / (Height (m))2 
 
BMI is a widely accepted indicator of body fat and a known 

risk factor for several chronic diseases, including cancer. The 
derived BMI values were retained as continuous variables and 
also categorized into standard WHO weight classes: 
underweight, normal weight, overweight, and obese. These 
categories were encoded and used as features to capture non-
linear effects of body composition on health outcomes. 

 
II.  Age Group Segmentation 
 
Age, a continuous variable, was also discretized into 

medically meaningful groups (e.g., 18–29, 30–44, 45–59, 60+). 
This stratification allowed the model to account for the fact that 
health risks, lifestyle behaviors, and disease progression differ 
substantially across life stages. For example, smoking 
prevalence often peaks in middle adulthood and declines with 
age, while cancer risk typically increases. 

 
III.  Blood Pressure Categories 
 
Systolic and diastolic blood pressure values were 

categorized based on the American Heart Association (AHA) 
guidelines: 

 
* Normal: <120/<80 mmHg 
* Elevated: 120–129/<80 mmHg 
* Stage 1 Hypertension: 130–139 or 80–89 mmHg 
* Stage 2 Hypertension: =140 or =90 mmHg 
 
These categories were transformed into ordinal features and 

provided the model with structured information about 
cardiovascular risk, which is often correlated with both 
smoking status and cancer susceptibility due to vascular 
inflammation and oxidative stress. 

 
IV.  Risk Flags and Binary Indicators 
 
To further support clinical pattern recognition, binary "risk 

flags" were introduced: 
 
*Hypercholesterolemia Flag: Total cholesterol = 240 mg/dL 
*Impaired Fasting Glucose Flag: Glucose = 100 mg/dL 



Nagarjuna Pasupuleti , International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 75-83 
 

© 2024-2027, IJARCS All Rights Reserved       79 

*Hypertension Flag: Systolic = 130 or Diastolic = 80 
mmHg 

*Obesity Flag: BMI = 30 
 
These engineered variables helped simplify the input space 

for the model while injecting domain knowledge, enabling 
better differentiation between healthy and at-risk individuals. 

 
V.  Physical Activity Interaction Terms 
 
Recognizing the behavioral interplay between smoking and 

sedentary lifestyle, interaction terms were created between 
physical activity and other features like BMI and alcohol use. 
For instance, the model could now distinguish between a 
physically active smoker and a sedentary smoker—two profiles 
with potentially different lung cancer risk levels. 

 
VI.  Composite Lung Cancer Risk Score 
 
One of the most significant engineered features was 

theLung Cancer Risk Score, a synthetic multi-factor index 
constructed using weighted inputs such as age group, BMI 
class, blood pressure category, glucose and cholesterol flags, 
and smoking status. The score was discretized into three 
categories—Low, Moderate, and High risk—and used as a 
secondary classification label for lung cancer risk stratification. 
Although not a direct substitute for imaging or biopsy-based 
diagnosis, this feature served as a proxy to simulate early 
screening and support risk-based clinical prioritization. 

 
VII.  Behavioral Pattern Encoding 
 
To better model lifestyle-related trends, compound 

indicators were created. For example: 
 
* A feature for “Likely Chronic Smoker” was derived by 

combining age (over 40), obesity, and hypertension indicators. 
* A “Metabolic Syndrome” marker was created using a 

combination of elevated glucose, cholesterol, BMI, and blood 
pressure. 

 
These complex behavioral-health profiles added significant 

depth to the model’s understanding of individual risk, 
surpassing the granularity of raw input fields. 

 
Through this feature engineering process, the original set of 

approximately 10 raw variables was transformed into a much 
richer and clinically insightful set of over 30 features. These 
engineered features not only improved model performance but 
also ensured that the predictions aligned with known patterns in 
epidemiology and preventive medicine. By embedding domain 
knowledge directly into the dataset, the models were able to 
reason more like a human expert—making decisions that were 
both accurate and explainable. 

 

 

Figure 1.  Exploratory Data Analysis I. 

 

 
 

 

Figure 2.  Exploratory Data Analysis II. 
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Model Development: 
The core objective of the model development phase was to 

build accurate, generalizable, and interpretable machine 
learning models for two interrelated predictive tasks: (1) binary 
classification of smoking status (smoker vs. non-smoker), and 
(2) multi-class stratification of lung cancer risk (low, moderate, 
high). This dual modeling approach allows the system to not 
only detect the behavioral risk (smoking) but also estimate 
downstream health consequences, enabling a more proactive 
approach to personalized health monitoring and early cancer 
prevention. 

 
A set of well-established supervised learning algorithms 

was selected to address these classification problems. These 
included: 

 
Logistic Regression: A strong baseline for binary 

classification, offering interpretability and ease of deployment. 
Support Vector Machine (SVM): Effective for high-

dimensional, non-linearly separable data, particularly useful for 
small- to mid-sized health datasets. 

Random Forest Classifier: A robust ensemble learning 
method capable of capturing non-linear relationships and 
resistant to overfitting due to its aggregation of multiple 
decision trees. 

Gradient Boosted Trees (XGBoost): A high-performance 
boosting algorithm known for superior accuracy and 
regularization capabilities in classification tasks. 

k-Nearest Neighbors (kNN) and Naïve Bayes were also 
tested during exploratory phases but were ultimately excluded 
due to poor scalability and lower performance compared to 
ensemble models. 

 
To maximize performance, the model training process 

incorporated stratified k-fold cross-validation (k=5), ensuring 
that the data splits preserved the distribution of both the 
smoking status and lung cancer risk classes across folds. This 
not only helped reduce the variance in evaluation scores but 
also ensured that each model was tested on diverse patient 
profiles, improving generalizability to unseen populations. 
Model performance was tracked during each fold and averaged 
across folds to evaluate robustness. 

 
Comprehensive hyperparameter tuning was performed 

using Grid Search for each algorithm. For example, the 
Random Forest model was tuned on parameters such as the 
number of trees (`n_estimators`), maximum depth 
(`max_depth`), and minimum samples per leaf. For XGBoost, 
parameters such as the learning rate (`eta`), number of boosting 
rounds, maximum depth, subsample ratio, and regularization 
penalties (`lambda`, `alpha`) were optimized. SVM was tuned 
using kernel selection (`linear`, `rbf`), the regularization 
parameter `C`, and gamma. This tuning process ensured that 
each model configuration was specifically tailored to the 
feature space, avoiding underfitting or overfitting while 
maintaining computational efficiency. 

 
The final models were chosen based on a combination of 

accuracy, F1-score, ROC-AUC (for smoking classification), 
and macro-averaged F1-score and class-wise recall (for lung 
cancer risk). Random Forest and XGBoost consistently 
outperformed other models, offering the best balance between 
performance and interpretability. Random Forest achieved 
>90% accuracy in classifying smoking status, while XGBoost 
proved particularly effective for lung cancer risk stratification, 

accurately identifying individuals in the moderate and high-risk 
categories with minimal class imbalance bias. 

 
This model development strategy ensured the creation of 

high-performance, scalable classifiers capable of integrating 
seamlessly into clinical decision support systems or digital 
health platforms. The models were designed not only for 
technical precision but also for clinical relevance, enabling 
real-world deployment in preventive healthcare and population-
level cancer screening initiatives. 

 

 

Figure 3.  Model Prediction. 

4. EVALUATION METRICS 

Accurate and clinically reliable evaluation of machine 
learning models is critical in healthcare applications, where 
predictive errors can lead to delayed diagnoses, unnecessary 
interventions, or missed opportunities for early treatment. In 
this study, two separate prediction tasks were evaluated: (1) 
binary classification of smoking status, and (2) multi-class 
classification of lung cancer risk. To ensure a rigorous and 
meaningful performance assessment, a suite of evaluation 
metrics was employed—each selected to address specific 
model behaviors, trade-offs, and real-world implications. 

A. Metrics for Smoking Status Classification (Binary 

Classification) 

To evaluate the model’s ability to classify individuals as 
smokers or non-smokers, the following metrics were used: 

 
Accuracy: Measures the overall proportion of correctly 

classified instances. While informative, accuracy can be 
misleading in imbalanced datasets, which is why it was used in 
conjunction with other metrics. 

 
Precision: Indicates the proportion of true positive smoking 

predictions out of all predicted positives. In a public health 
context, high precision is important to minimize false 
positives—i.e., individuals incorrectly labeled as smokers, 
which could lead to unnecessary behavioral interventions. 

 
Recall (Sensitivity): Measures the proportion of actual 

smokers correctly identified by the model. This is a crucial 
metric in preventive health, as a low recall would mean many 
true smokers are missed, undermining the objective of early 
intervention. 

 
F1-Score: The harmonic mean of precision and recall, 

providing a balanced metric when both false positives and false 
negatives are costly. It is particularly valuable in moderately 
imbalanced datasets and was used as a primary performance 
measure. 

 
ROC-AUC (Receiver Operating Characteristic – Area 

Under Curve): Captures the model's discriminatory power 
across various classification thresholds. An AUC near 1.0 
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indicates strong separability between smokers and non-
smokers. This metric is model-agnostic and threshold-
independent, offering a holistic view of model performance. 

 
Clinical relevance: High recall ensures that most at-risk 

individuals (i.e., smokers) are detected, while high precision 
avoids wrongly targeting non-smokers, making the model 
suitable for screening campaigns and personalized 
interventions. 

B. Metrics for Lung Cancer Risk Stratification (Multi-

Class Classification) 

For the multi-class task of categorizing individuals into 
low, moderate, or high lung cancer risk categories, 
more nuanced metrics were necessary: 
 

• Macro F1-Score: This average of F1-scores calculated 
independently for each class treats all classes equally, 
regardless of size. It is particularly useful when class 
imbalance exists (e.g., fewer high-risk cases). This 
metric was chosen to ensure the model performed well 
across all risk tiers—not just the majority class. 
 

• Confusion Matrix: A tabular view of correct and 
incorrect classifications across all three risk categories. 
This visualization helps identify specific 
misclassification patterns—e.g., high-risk individuals 
being classified as low-risk, which would have 
significant clinical consequences. 
 

• Per-Class Precision and Recall: These class-specific 
metrics helped assess how well the model identified 
individuals in each risk group. High recall for the high-
risk class, for instance, is vital in minimizing missed 
opportunities for early intervention or referral for 
screening. 
 

• Multiclass ROC-AUC: Calculated using one-vs-rest 
strategy, this metric assessed the model’s ability to 
distinguish between each risk category when treated 
independently. Although less commonly used than in 
binary settings, it helped confirm the model’s ability to 
maintain separability across multiple classes. 
 

• Clinical relevance: The priority in this task was 
ensuring sensitivity to high-risk cases (minimizing 
false negatives) while maintaining specificity for low-
risk cases (avoiding overdiagnosis or unnecessary 
escalation). A balance between precision and recall 
across classes ensured the model was suitable for 
triaging patients in preventive oncology or primary 
care settings. 
 

Table II.  Summary of Metric Application 

Task Metric Objective 
Risk of Low 

Score 

Smoking 

Status 

Classification 

Accuracy 
General 

correctness 

Masking of 

imbalance 

 Precision 

Avoid falsely 

labeling non-

smokers 

Unnecessary 

interventions 

 Recall Catch all true Missed risk cases 

Task Metric Objective 
Risk of Low 

Score 

smokers 

 F1-Score 

Balanced view 

of 

precision/recall 

Skewed 

performance 

evaluation 

 ROC-

AUC 

Overall model 

discrimination 

Weak 

separability 

Lung Cancer 

Risk 

Stratification 

Macro F1-

Score 

Equal 

importance to 

all classes 

Poor 

performance in 

minority class 

 Per-Class 

Recall 

Sensitivity to 

each risk tier 

High-risk group 

misclassification 

 Confusion 

Matrix 

Visual 

diagnosis of 

model behavior 

Obscured error 

patterns 

 
Multiclass 

ROC-

AUC 

Multi-class 

separability 

assessment 

Overlap between 

risk groups 

                                                                                         Summary of Metric Application 

5. RESULTS 

The implementation of machine learning models for the 
dual objectives of smoking status classification and lung cancer 
risk stratification yielded highly encouraging results. By 
leveraging a structured health dataset and a well-engineered 
feature space, the models demonstrated strong predictive 
performance, clinical interpretability, and generalizability 
across diverse population segments [20]. The outcomes of 
model evaluation are summarized below in terms of 
classification accuracy, precision-recall trade-offs, class-wise 
performance, and feature importance analysis [21].  

A. Smoking Status Classification 

Among the models tested, the Random Forest Classifier 

delivered the best overall performance for binary classification 

of smoking status. With an accuracy exceeding 91%, the 

model correctly identified the majority of smokers and non-

smokers in both the training and test datasets. It achieved a 

precision of 92% and recall of 89%, indicating its ability to 

minimize both false positives (non-smokers incorrectly labeled 

as smokers) and false negatives (smokers not detected). The 

F1-score, a balanced metric that accounts for both precision 

and recall, was 90.5%, demonstrating consistent reliability 

under varying classification thresholds. 

The ROC-AUC score further validated the model’s 

discrimination ability, reaching 0.96, which implies near-

perfect separation between smokers and non-smokers across 

the probability spectrum. Comparative models such as 

Logistic Regression and SVM yielded decent results (F1-score 

~85%) but lacked the non-linear handling capacity of Random 

Forest, particularly when interpreting interactions among 

metabolic and behavioral variables. 

Key insight: Features contributing most significantly to 

smoking prediction included age, BMI, systolic blood 

pressure, cholesterol level, and physical activity. These reflect 

both biological and behavioral correlates of long-term tobacco 

use, reinforcing the model's alignment with established clinical 

knowledge. 
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B. Lung Cancer Risk Stratification 

For the secondary task of categorizing individuals into low, 
moderate, or high risk of developing lung cancer (based on 
engineered risk scores), the Gradient Boosted Trees (XGBoost) 
model emerged as the most effective algorithm. It achieved a 
macro F1-score of 84%, with class-wise F1-scores of 88% (low 
risk), 81% (moderate risk), and 76% (high risk), respectively. 
Despite the inherent class imbalance—fewer high-risk 
individuals relative to low-risk—the model maintained strong 
recall for high-risk cases (74%), which is crucial for clinical 
safety in cancer prediction. 

 
The confusion matrix indicated that most errors occurred 

between adjacent risk levels (e.g., moderate misclassified as 
low), rather than extreme misclassification (e.g., high 
misclassified as low), which supports the model’s robustness in 
distinguishing meaningful risk tiers. The model also 
demonstrated a multi-class ROC-AUC of 0.93, underscoring its 
strong capability to differentiate risk levels when considered in 
a one-vs-rest framework. 

 
Key insight: The top predictors for lung cancer risk 

included smoking status, age group, hypertension, BMI 
category, fasting glucose, and cholesterol—all established 
contributors to cancer susceptibility. This affirms the validity of 
the engineered risk score and the model’s capacity to infer risk 
even in the absence of direct diagnostic imaging or genetic 
biomarkers. 

C. Model Interpretability and Feature Importance 

To ensure transparency and trustworthiness in predictions, 
especially for clinical decision support, SHAP (SHapley 
Additive exPlanations) was used to interpret model outputs. For 
both tasks, SHAP values confirmed that individual predictions 
were driven by rational, data-backed influences. For example, 
in smoking classification, an older male subject with high 
cholesterol, elevated systolic pressure, and low physical 
activity had higher SHAP values for being classified as a 
smoker. Similarly, in lung cancer risk prediction, SHAP 
analysis demonstrated that combined effects of smoking status, 
age above 60, and elevated glucose levels sharply increased the 
predicted risk score. 

A feature importance plot further revealed that smoking 
status, BMI, systolic blood pressure, cholesterol, and age group 
ranked among the top 10 features influencing lung cancer risk 
stratification. These findings not only validate the model’s 
accuracy but also support its clinical plausibility, a critical 
factor for eventual deployment in healthcare settings. 

 

D. Overall Robustness 

Both final models—Random Forest for smoking status and 
XGBoost for lung cancer risk—exhibited high generalizability, 
as confirmed by k-fold cross-validation and holdout set testing. 
Overfitting was minimized through regularization and 
ensemble averaging. Runtime efficiency was also acceptable, 
with inference times under 300 milliseconds per patient on 
standard CPU hardware, making the solution viable for 
integration into real-time digital health systems. 

 

 

Figure 4.  Model Accuracy. 

In summary, the models developed in this study 
demonstrated not only high statistical performance but also 
medical interpretability, computational efficiency, and 
deployment feasibility. Together, these results provide a 
compelling foundation for using machine learning to automate 
smoking detection and enable early lung cancer risk 
screening—two critical steps in reducing the global burden of 
preventable respiratory diseases. 

6. CONCLUSION 

       In conclusion, this work illustrates the feasibility and 
value of using machine learning to support population-wide 
screening strategies and personalized health interventions [22]. 
These models can be readily embedded into digital health 
ecosystems, such as electronic health records (EHRs), mobile 
health apps, or telemedicine platforms, providing clinicians and 
public health professionals with actionable insights in real time 
[23]. Most importantly, they offer a scalable pathway to reduce 
preventable cancer burden, improve early detection rates, and 
empower patients through data-driven health awareness [24]. 
As we look ahead, future enhancements may include 
integrating imaging, genetic, or longitudinal data, and 
exploring federated learning approaches to ensure privacy-
preserving scalability across institutions [25]. 
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