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Abstract: Agriculture is the largest consumer of water; enhancement of the water level irrigation is essential for sustainability. This project 

employs the Random Forest Regressor for crop specifications as per hectare with considering the features such as crop type, seasonal data, 

location and meteorological data. To improve the robustness of the model performance, data preprocessing, Feature Engineering and 

Exploratory Data Analysis are used. The trained model is incorporated with a Flask Based web application, enabling the user, farmer, 

researchers and policymakers to custom their inputs and obtain their regional and crop specific predictions of water footprint. An in-built 

water calculator helps in manual estimations of predicting the water level required by specific crops along with yield area in cubic meters. 

By the combination of Machine Learning with user interface, it helps in the prediction of water footprint by considering the different 

features and improving the water conservation.  
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1. INTRODUCTION 

Agriculture accounts for 70% of global issues of 

withdrawing the freshwater, making the enhancement of 

water irrigation practices provides a crucial stage in 

achieving the agricultural productivity. Other 

Traditional methods of irrigation are defective for 

predicting the water footprint with the diverse climatic 

conditions and specific crops across specified regions. In 

response the machine learning (ML) method provides an 

active tool for the optimization of decision making in 

precision agriculture. 

 

The basis of this project is steams from Kulkarni et al. 

[1], who validated the techniques of Machine Learning 

in agriculture by prognosticating the crop yields using 

climatic and pesticide data. Expanding on such 

intelligent modelling, researchers have developed 

resilient Machine Learning techniques for predicting the 

yield and classification of crop aimed at sustainability 

[2]. Furthermore, extensive evaluations of ML 

approaches for smart agriculture system [3] and that was 

targeted on yield prediction studies specifically on cotton 

[4] which visualizes the versatility of these models. 

Recent critiques on developing the human-assist and 

digital technologies also emphasize the increasing role 

of intelligent systems in sustainable farming. Human 

involvement remains central to the chosen and success 

of sustainable agricultural technologies. Emerging tools 

aim to complement, rather than replace human decision-

making. This not only give about the prediction of water 

footprint but also helps the farmers, researchers and 

policymakers to empower with each other along with the 

agricultural needs [5]. 

 

Kashyap et al. [6] presented an IoT-based intelligent 

irrigation system using deep learning method called Deep 

Neural Network (DNN) to maximize water use efficiency 

and automate the scheduling of irrigation. Concurrently, 

Jain et al. [7] discussed how agro-inundation practices, 

with integrated optimized irrigation design and crop 

selection approaches, can remarkably raise yield and 

water efficiency. The importance of mathematical and 

scientific modelling in determining the boundaries of 

irrigation can also be identified through the research work 

of Turaev et al. [8], which outlines algorithms to determine 

the limits of operation in irrigation networks. Machine 

learning methods have emerged to the forefront to 

maximize water allocation in agriculture. Kanmani et al. 

[9] applied data-driven methods to distribute water 

resources more effectively in agricultural environments to 

facilitate real-time decision- making. Similarly, the 

Hydro-Sense system by Thigale et al. [10] is an ideal 

example of employing sensor networks and data analytics 

to monitor soil moisture levels and maximize irrigation. 

Regional crop water footprint is provided by Rodríguez et 

al. [11] who estimated Argentinean rainfed crops' green 

water footprint with climate variability. Monchusi et al. 

[12] also further explained the combined application of 

IoT and AI to monitor and manage water, especially in 

small farms, for improved precision agriculture practice. 

The sensitivity of crop water needs to climate change is 

illustrated by Suwannakhot et al. [13], who looked into 

glutinous rice farming in Thailand and proposed 

adaptation strategies to mitigate expected threats. 

Furthermore, decision support models for considering 

crop seasonality and climatic conditions for sustainable 

irrigation planning are gaining prominence, as shown in a 

study by Díaz et al. [14].  

 

Advanced machine learning and control systems such as 

those proposed by Agyeman et al. [15] unlock new 

opportunities for intelligent irrigation scheduling. On the 

micro- level, Geerthana et al. [16] reported an AI-

supported model for determination of the crop water 

footprint with a digital solution for resource planning. 

Finally, the case study by Saicharan and Shwetha [17] 

quantifies rice's virtual water content in Mysore district, 
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giving one an idea about region-specific consumption 

patterns of water. 

 

When compared to the earlier research that generally 

concentrated on yield prediction, irrigation control or 

water footprint estimation specific to regions, this work 

proposes a inclusive method of crop water footprint 

prediction using a variety of features in the datasets like 

rainfall, irrigation sources, pesticides used and crop 

production specific to India. Although previous studies 

have already shown good efficiency of machine learning 

in agriculture, fewer studies combine more than one 

parameter of agriculture across seasons and regions for 

good estimation of water footprint accuracy. 

 

In this we have used Decision Tree and Random Forest 

algorithm integrated with K-Fold Cross Validation is 

used to prevent overfitting and to ensure robust 

performance. In fact, the results obtained were 1.00 for 

Decision Tree and 0.99 for Random Forest, respectively. 

In addition, another innovation of this work is in the 

creation of a user- interactive web- based platform 

through which farmers, researchers and policy-makers 

can feed crop and regional information to get precise 

water footprint forecasts. This project address about the 

voids between perception and practical execution by 

providing the exceptional, scalable and accessible 

solution for supporting imperishable irrigation planning 

and water resource management. 

 

2. PROJECT DESCRIPTION 

 

The Project, An Intelligent Approach for Crop Water 

Footprint Prediction Leverages Machine Learning and 

web- based technologies to calculate the irrigation 

requirements of various (water footprint types such as 

blue and green water footprint) specified crops based on 

specific geographical and climatic conditions. The idea 

was to identify and develop a predictive model that use 

Random Forest Regressor to analyze the agricultural 

inputs such as state, district, crop type and season and 

outputs the calculated water usage per hectare. The 

system aims to support environmental-safe irrigation 

planning by providing the farmers and policymakers a 

fast tool access water need. The design begins with the 

collection and preprocessing the datasets with the 

cleaning techniques in accordance with the varieties of 

features and characteristics of crop and environment. 

Using Pandas and Numpy, the data gets cleaned and the 

features are getting encoded with the numeric values to 

endure the adaptability and compatibility with the 

Machine Learning model. 

 

2.1 Block Diagram 

 

Figure 1 depicts the system architecture for predicting 

the Water footprint of crops using the Machine Learning 

tool. The process begins with user input, where vital 

agricultural parameters that are provided through a web 

interface. These inputs are then preprocessed and 

cleaned to endure the continuous state in formatting and 

to handle any missing or noisy values. Preprocessing 

may include normalization, encoding of categorical 

variables into numbers and scaling of numerical data to 

prepare it for model consumption. 

 

 

 

 

Figure 1 System Architecture for Crop Water Footprint Prediction 

 

2.2 Working Principle 

 
Input Data Collection 

The process begins with user input, where users provide 

vital agricultural data with varieties of features such as 

state, district, crop type and cultivation area. These serve 

as a basic parameter for predicting the water requirements 

and are entered via a user-friendly web interface. 

 

Data Preprocessing 

Once the data collected, the next phase is data 
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preprocessing, that checks on the input values that it is 

cleaned, standardized and compatible. 

The steps involve: 

1.Encoding variables on different categories into 

numerical values. 2.Normalizing numeric features to 

remove the redundancy. 

3. Handling the missing values. 

4. Ensuring the formatting of different data. 

Preprocessing is vital for optimizing the accurate 

prediction level and stability of the model and check 

on the obtaining results. 

Data Fetching 

After preprocessing, the historical data are needed to be 

fetched along with the environmental data relevant to 

the given inputs by the user. 

Historical irrigation requirements. Crop yield data. 

Meteorological and geographical conditions. 

These steps are required for the enrichment of the 

relevant background information that enables the high 

accuracy level. 

Model Predictions Using Random Forest 

After pre-processing, the dataset is pre-processed and 

enriched in terms of useful features and fed to a trained 

Random Forest regressor model. Random Forest algorithm 

is selected for its better accuracy and noise-robustness and 

the ability to minimize overfitting based on ensemble 

learning. This model appears to be able to comprehensively 

represent complex, non-linear relationships of a large 

number of input features by building several decision trees 

with their outputs averaged together. To improve its 

predictive performance, the model is fine-tuned using 

methodologies such as k-fold cross-validation and tested 

based on the key metrics including Root Mean Square Error 

(RMSE) and the coefficient of determination (R² score), thus 

inferring reliability and generalizability. 

Processing and Interface 

The whole prediction workflow is easily embedded into a 

simple to use web application built using the Flask 

framework. This interface eases the flow of interaction 

between the user and the backend model. Essential 

technologies in the areas of Pandas and NumPy are utilized 

for effective data manipulations, computation of numericals, 

while Scikitlearn is used for model training and evaluation. 

Furthermore, Matplotlib also provides the possibility to 

generate useful visualizations to help interpret the 

predictions. This architecture provides ease of use as well as 

effective deployment of the machine learning pipeline. 

 

3. RESULTS 

 

In Figure 2, one can observe the correlation heatmap for 

numeric features used in the analysis. From this 

visualization, there are linear relationships between key 

variables such as Area, Production, Rainfall (mm), 

Estimated Irrigation Requirement (cu.m), Crop Water 

Productivity (CWP), Rainfall Contribution and Blue 

Water Footprint (BWF). Interestingly, Area has a high 

positive correlation with Estimated Irrigation 

Requirement (0.98) and BWF (0.98) implying that high 

cultivation areas are closely linked to high water needs 

and high use of blue water. Similarly Estimated Irrigation 

Requirement is very much correlated with BWF (1.00) 

indicating their direct dependency. Rainfall (mm) has 

weak to moderate positive correlations with Rainfall 

Contribution (0.26) and CWP (0.09), indicating that 

natural precipitation as a contribution contributes 

partially in increasing crop water efficiency as well as 

overall water contribution. Surprisingly, CWP is 

associated with few or no variables such that water 

productivity is regulated by complex or crop specific 

factors. These correlations reveal useful information 

about interdependency between features and are essential 

in selecting predictors for machine learning models for 

water footprint estimation.

 

 

 

 

Figure 2 Feature Correlation Heatmap 

 
 

Figure 3 presents the distribution plots for various 

features used in the water footprint estimation model. The 

features visualized include Area, Production, Rainfall 

(mm), Estimated Irrigation Requirement (cu.m), Rainfall 
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Contribution, CWP (Crop Water Productivity) and BWF 

(Blue Water Footprint). Most distributions, such as those 

for Area, Production, Estimated Irrigation Requirement, 

Rainfall Contribution, BWF and CWP, exhibit strong 

right-skewness, indicating that a majority of the values 

are concentrated near the lower end, with a few extreme 

values extending toward the higher end. This suggests the 

presence of outliers or uneven data spread, which is 

common in agricultural datasets due to regional or crop-

specific variations. In contrast, the distribution of Rainfall 

(mm) appears relatively more uniform, with multiple 

peaks, suggesting seasonal or regional fluctuations in 

rainfall patterns. These plots provide critical insights into 

data behavior and helped guide further preprocessing 

steps, such as outlier handling and normalization, before 

model training. Understanding these distributions is 

essential for accurate prediction and interpretation of 

water footprint metrics in agriculture.

  
 

 
 

Figure 3 Distribution of Key Numerical Features 
 

The Actual vs. Predicted Irrigation Requirement plot 

(Figure 4) shows how well the machine learning based 

model performs in determining irrigation water demand (in 

cubic meter). Each point plotted here corresponds to a 

single prediction; the x value indicates the actual irrigation 

required and y is the predicated value. The points are tightly 

packed deviating from the diagonal line (ideal prediction 

line), indicating that there is much proximity being shown 

in the predicted to real values. This alignment means that 

the model learned from the training data the lower-level 

structures well and can make [fairly] good predictions with 

little error. There are a few outliers which can be seen 

which is more at higher values which indicate a possible 

area for improvement or perhaps they are just worth 

looking into these particular instances. In summary, the 

visual correlation supports the model’s robustness and its 

appropriateness for real-world forecasting of agricultural 

planning irrigation needs.

 

 

 
 

Figure 4 Actual vs Predicted Irrigation requirement 

 
The system is successfully developed to compute the 

crop-specific water footprint for irrigation by employing 

a machine learning-based regression method. A Flask-

based web interface is provided to accept input 

parameters like the name of the crop, state, district and 

hectares of area and display prediction of the amount of 



Preethi Harris et al, International Journal of Advanced Research in Computer Science, 16 (3), May-June 2025, 121-127 

© 2024-2027, IJARCS All Rights Reserved       125 

irrigation water needed in cubic meters. As can be 

observed in Figure 5, the user interface is simple and 

intuitive to facilitate a smooth interaction between 

farmers and planners.

  

 

 
Figure 5 Input from user 

 
Figure 6 is a picture of the final output screen of the Flask-

based web-application developed for estimating the water 

footprint of agricultural crops. The interface shows 

predicted water footprint in cubic meters depending on 

the user-input considering such parameters as crop type, 

state, district and area expressed in hectares. In this case, 

the user had chosen onion as crop in Shimoga district of 

Karnataka state in 10 hectares of area. The system 

computed a water footprint of 4944.29cubic meters. The 

interface also has two visual components to make user 

engagement better. An image about the selected crop that 

is a visual image of the crop. A state map image showing 

the selected state, pointing to a contextualized geographic 

territory. Moreover, water is precious message reminder 

“Water is precious. Let's not waste it." is added for better 

awareness of the practice of the sustainable use of water. 

Users have the choice of prediction again and viewing 

history making the system interactive and useful for 

iterative usages by farmers and planners.

 

 

 
Figure 6 Water Prediction of Onion 

 
The performance of the classification models was 

evaluated using confusion matrices for both the Decision 

Tree and Random Forest algorithms, as shown in Figure 7. 

Each confusion matrix provides insight into the model's 

classification accuracy across four categories: true 

positives (TP), true negatives (TN), false positives (FP) and 

false negatives (FN). In the Decision Tree confusion 

matrix, the model achieved 1909 true negatives (TN), 

correctly identifying non-irrigation-requiring instances and 

4 true positives (TP), accurately predicting irrigation-

requiring instances. Importantly, there were no false 

positives (FP) and no false negatives (FN), indicating a 

perfect classification performance on this dataset. 

In contrast, the Random Forest confusion matrix also 

recorded 1909 TNs and 3 TPs, but it had 1 false negative 

(FN) and 1 false positive (FP). Despite this very slight 

deviation from the perfect score of the Decision Tree, the 

Random Forest model was chosen for deployment due to 

its greater generalization ability and robustness to 

overfitting. Decision Trees are prone to overfitting, 

particularly with small or imbalanced datasets, as they can 

memorize training data patterns too precisely. Random 
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Forest, by aggregating multiple decision trees and 

introducing randomness, tends to offer better performance 

on unseen data, making it a more reliable model in real-

world applications. This trade-off between marginal loss in 

perfect classification and improved model stability strongly 

justifies the selection of Random Forest for this project.

 

 

 
 

Figure 7 Confusion Matrix 

 
The Table 1 compares Random Forest Regressor and 

Decision Tree Regressor were also matched based on 

crucial performance measurements and characteristics 

of models. The Random Forest Regressor scored an 

incredibly high accuracy of R² 0.9999, defeating yet 

again the Decision Tree which had an earlier R² score of 

0.9732. Regarding error, Random Forest evidenced 

extreme low Mean Absolute Error, whereas the Decision 

Tree proved to have significantly high error in 

comparison. When talking about generalization, 

Random Forest turned out to be excellent and manage to 

minimize overfitting by merging results of multiple 

trees, whereas the Decision Tree is more prone to 

overfitting as it relies on a single tree. Interpretability 

plays in favor of the Decision Tree since the latter’s 

simpler structure makes it easier to interpret, and the 

Random Forest endows only moderate interpretability. 

However, the network’s improved performance on 

Random Forest comes with a higher inference timing in 

contrast to Decision Tree models which deliver rapid 

evaluations thereby better fitting timing sensitive 

applications, presents the detailed comparison between 

the Random Forest Regressor and the Decision Tree 

Regressor based on several criteria used in the crop 

water footprint prediction system. By comparing the 

both Regressor techniques Random Forest Regressor is 

more effective and efficient than Decision Tree 

Regressor.

 

 

Table 1 Random Forest Regressor vs Decision Tree Regressor 
 

CRITERIA RANDOM FOREST REGRESSOR DECISION TREE REGRESSOR 

Accuracy R^2 score                     0.9999                      0.9732 

Mean Absolute Error                   Very low               Higher than RF 

Generalization      Excellent flow overfitting   Moderate prone to overfitting 

Interpretability                  Moderate                       High 

Inference Time                     High                       Low 

 

The Result of the project demonstrate that the proposed 

system accurately predicts crop-specific water 

requirements using Random Forest regression model. 

Overall, the system proves to be a fast, user-friendly and 

practical tool for sustainable irrigation planning. 

 

4. CONCLUSION 

 

The Machine learning tool is used to identify the 

accurate estimation of water footprint to maintain the 

environmental-safety surrounding and also it calculates 

water for particular crop with specified geographical 

region. Machine Learning utilizes the Random Forest 

Regressor to predict the water demand and it shows high 

accuracy with 0.9999 score. The model analyses the 

most significant attributes to accurately estimate blue 

and green water footprints per hectare. The Flask-based 

web application provided in the package provides an 

easy-to-use interface where users can input region and 

crop details to receive instant water requirement 

predictions. It also provides the history of previous 

predicted water footprint which is useful for farmers, 

researchers and policymakers. Specialized though it is 

on farm irrigation planning, principles and the model 
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may apply to other areas like forestry, urban water 

management, or climate-based resource forecasting in 

future. Through its usability, scalability and accuracy, 

the project is a resilient testament to the ways in which 

the Machine Learning tools are used and support for the 

sustainable agricultural practices that includes the water 

management. 
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