
DOI: http://dx.doi.org/10.26483/ijarcs.v16i2.7224 

Volume 16, No. 2, March-April 2025 

I International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2024-2027, IJARCS All Rights Reserved       71 

ISSN No. 0976-5697 

PREDICTIVE MAINTENANCE TO REDUCE MACHINE DOWNTIME IN 

FACTORIES USING MACHINE LEARNING ALGORITHMS 
 

Manasa Koppula 
Department of Computer and Data Science,  

The University of Texas at Austin, Austin, TX 78712, United States 

 

Abstract: Accurate machine failure detection allows manufacturers to estimate potential machine deterioration and avoid machine 

downtime caused by unexpected performance issues. Predictive maintenance with the use of machine learning algorithms may anticipate 

machine faults and maximize maintenance efforts to solve machine downtime problems. To anticipate machine breakdowns and 

minimize downtime, this work applies a variety of machine learning methods, such as Random Forest, Decision Tree, Support Vector 

Machines (SVM), K-Nearest Neighbors (KNN), Gradient Boosting, and Logistic Regression. Based on the performance measurement 

values, Random Forest model has shown high levels of accuracy, precision, recall, and F-score. The sequence of order for accuracy of 

machine learning models follows as: Random Forest > Decision Tree> Gradient Booster Classifier and SVM > Logistic Regression and 

KVM. This work emphasizes that, through various machine learning models, machine manufacturers could optimize the machine 

maintenance and prolong the life of machines. 
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1. INTRODUCTION 

 

Maintaining the machine's performance over time is one 

of the biggest problems faced by machine manufacturers. 

To address machine failure and prevent needless 

maintenance expenses, predictive maintenance of the 

machinery is required [1]. Unplanned machine downtime 

in a manufacturing facility has the potential to increase 

product losses, raise maintenance costs, and interfere 

with production plans [2]. For any industry or 

manufacturing unit to remain safe and effective, machine 

maintenance is essential. An organization's operational 

performance and process safety are severely impacted by 

a poor maintenance system since it directly affects 

productivity levels [3]. 

The conventional way of scheduling maintenance 

depends on regular manufacturing shutdowns to carry 

out maintenance operations. By concentrating on when 

to schedule periodic maintenance, the conventional 

maintenance scheduling can be optimized to cut down 

the maintenance expenses. However, the conventional 

maintenance method ignores the connection between 

equipment deterioration and maintenance and is not the 

best strategy. Therefore, employing predictive 

maintenance offers improved industry practice for 

scheduling maintenance [4]. Predictive maintenance is 

required for manufacturing or production industries to 

plan numerous operational activities such as continuous 

production and long-term maintenance of machines [5]. 

Predictive maintenance detects the possibility of early 

detection maintenance failure and faults [6]. 

Machines frequently show symptoms and indications of 

poor performance prior to failure. Engineers employ 

predictive maintenance as a technique to foresee 

performance issues before failure occurs [7]. Predictive 

maintenance, a promising technique, has the potential to 

overcome the tradeoff issue associated with unplanned 

and preventative maintenance by optimizing uptime and 

a component's useful life at the same time. It is intended 

to track the state of out-of-service equipment and 

forecast when it may break down. It enables the 

approximation of future machine component behavior 

and condition, which will aid in the optimization of 

maintenance chores. As a result, while maintaining the 

lowest possible frequency of maintenance, machine 

downtime, and maintenance expenses can be greatly 

decreased [8]. While there are many advantages to 

implementing predictive maintenance at different design 

stages, there are drawbacks as well. Increased 

productivity, fewer system errors, less unscheduled 

downtime, and better resource efficiency are among the 

benefits. Additionally, predictive maintenance improves 

the optimization of maintenance intervention planning 

[9, 10]. 

Predictive maintenance utilizes machine learning and 

digital data to estimate when a machine needs a 

maintenance. The most common machine learning 

algorithms used are Random Forest, Decision Tree, 

Support Vector Machine, KNN etc. However, each study 

utilizes different data, and different machine learning 

methods will be applied to specific components of the 

machine. For this reason, it is necessary to employ and 

compare various machine learning algorithms [3].       

Asti D et al. [11] developed a machine learning model 

and optimized the models based on the accuracy and 

prediction, F1 score for a prediction of machine failure. 

Additionally, they compared the outcomes between the 

models, such as Logistic Regression, Naive Bayes, K-

Nearest Neighbors (KNN), Decision Tree, AdaBoost 

Classifier, Gradient Boosting, Random Forest, Extra 

Tree Classifier, and HistGradient Boosting to assess the 

machine’s downtime status. When compared to other 

models or algorithms, Random Forest demonstrated 

superior performance in terms of choosing criteria.  

Mohammad Shahin et al., [2] created a machine learning 

and deep learning models to predict how the system 
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could malfunction and minimize downtime. According 

to performance assessment criteria including accuracy, 

precision, recall, and the F-score, the results suggest that 

deep forest and gradient boosting algorithms had very 

high levels of average accuracy (above 90%). 

The main objective of this work is to reduce machine 

downtime through the integration of machine learning 

models. Reducing waiting times and downtime brought 

on by equipment failures due to poor maintenance 

procedures is crucial for increasing output and lowering 

expenses. Together with incorporating a suitable 

machine learning model and proactive maintenance 

techniques, the lifespan of equipment could be increased 

greatly.  

This work aims to reduce manufacturing downtime 

through the integration of machine learning 

methodologies. Reducing waiting times and downtime 

brought on by machine failures and poor maintenance 

procedures is important for increasing productivity, 

lowering expenses, and maximizing the lifespan of the 

equipment [2]. In this study, various machine learning 

algorithms have been used that may be able to detect 

faults early on before they cause future machine failure. 

Understanding how machine learning algorithms can be 

used to anticipate unscheduled machine downtime and 

lower maintenance costs is the main goal of this study. 

 

2. METHODS 

2.1. Data collection 

The current study makes use of the "Optimization of 

Machine Downtime" dataset from Kaggle’s [12]. The 

dataset includes 2,500 records and 16 attributes (two 

categorical and 14 numerical) such as date, machine ID, 

load cells, hydraulic pressure, coolant pressure, air 

system pressure, coolant temperature, hydraulic oil 

temperature, proximity sensors, spindle vibration, tool 

vibration, spindle speed, voltage, torque, cutting force, 

and downtime. The dataset has around 50.6% of Machine 

Failure entries and 49.4% of operational entries. The 

dataset has missing values in most of the columns; hence, 

missing values in numerical columns are imputed with 

their mean, and categorical columns are imputed with the 

mode. 

2.2. Data Split  

While there are many ways to split the dataset, like Train-

Test Split, Train-Validation-Test Split, k-fold Cross 

Validation, Stratified Sampling, and Time-primarily 

based split, a Train-Test Split have been used for 

dividing the dataset. 75% of the dataset is used for 

training purposes and 25% for testing purposes, with the 

dataset being divided into training and testing sections. 

2.3. Data Preprocessing  

The data preprocessing tasks, such as cleaning, 

transformation, and selection, are performed iteratively 

to prepare the dataset. This includes removing 

duplicates, handling missing values using imputation 

techniques (where the mean was applied for numerical 

columns and the mode for categorical columns), aligning 

data types, and standardizing numerical features to avoid 

biases. Outliers are identified and managed using 

winsorization technique, and feature engineering 

introduces new variables based on machine performance 

patterns. Quality assurance checks validate the data's 

reliability, and the dataset is split for training and testing 

to evaluate model performance. 

2.4. Data Pipeline 

The data pipeline is designed for flexibility and 

adaptability, facilitating the processing of raw sensor 

data, feature extraction, and application of machine 

learning models. Python was used for data acquisition, 

cleaning, and organizing, while tools like pandas and 

NumPy ensure the data is in a standard format. 

Descriptive analysis and visualization help uncover 

patterns related to machine downtime, and predictive 

models are built using scikit-learn. 

2.5. Exploratory Data Analysis  

Exploratory data analysis (EDA) was used to gain a 

deeper understanding of the dataset's complex 

characteristics. While there is no fixed methodology for 

EDA, typical techniques include summary statistics, 

correlation analysis, data visualization, and aggregation 

methods. The analysis specifically focuses on 

understanding the machine environment, examining 

machine dynamics and performance, analyzing statistical 

properties and variability, and identifying distribution 

patterns. 

2.6. Distribution Characteristics 

Metrics such as skewness, which measures the degree of 

asymmetry, and kurtosis, which describes the 

characteristics of the distribution tails, are essential in 

exploratory data analysis (EDA) [6]. When analyzing 

distribution patterns, it is observed that variables like 

applied force, hydraulic pressure, and air system pressure 

follow right-skewed distributions with prominent peaks 

and extended tails. This indicates that lower values are 

more common, with occasional higher values, suggesting 

a vulnerability to extreme values, particularly in the case 

of cutting force. This detailed, research-focused analysis 

forms the foundation for deeper exploration of machine 

dynamics and informs future efforts to optimize and 

improve industrial processes. 

2.7. Statistical Analysis  

Correlation matrices was developed to perform 

multivariate Exploratory Data Analysis (EDA). 

Correlation matrices involve evaluating the relationships 

between different variables through their correlation 

coefficients. This process offers valuable insights into 

how variables are interrelated within the dataset. 

2.8.  Algorithms 

The output variable, ‘downtime’, was predicted using a 

variety of machine learning algorithms. For improved 

prediction, the algorithms were tuned using a variety of 

hyper parameters. Accuracy, precision, F1-score, MTBF 

(Mean time between failures), and AUROC are the 

primary metrics for all algorithms. 

2.8.1. Logistic Regression 

Logistic Regression was applied to classification tasks 

where the objective was to forecast the likelihood that an 

instance will fall into a particular class or not. This 

algorithm was applied as it provides a clear explanation 

of how different factors affect downtime by explicitly 

modeling the likelihood of machine failures [13]. 

https://www.kaggle.com/datasets/srinivasanusuri/optimization-of-machine-downtime
https://www.kaggle.com/datasets/srinivasanusuri/optimization-of-machine-downtime
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2.8.2. Naïve Bayes 

Naïve Bayes algorithm is based on the Bayes theorem 

and the main idea behind this algorithm is each pair of 

features being classified is independent of the others 

[14]. 

2.8.3.  K-Nearest Neighbors (KNN) 

Considering the values of K nearest neighbors in the 

training dataset, the KNN algorithm predicts the label or 

value of a new data point based on the similarity 

principle [15]. 

2.8.4.  Decision Trees 

Key characteristics influencing machine reliability are 

identified by decision trees. AdaBoost combines several 

weak learners to increase prediction accuracy [16].  

2.8.5.  Gradient Boosting 

Gradient Boosting combines several weak models to 

produce a single and more accurate predictive model 

[17]. 

2.8.6.  Random Forest 

Random forest enhances predictions by using multiple 

decision trees [18]. 

2.8.7. Support Vector Machine (SVM) 

SVMs are frequently applied to classification issues. By 

identifying the best hyperplane that optimizes the margin 

between the nearest data points of opposing classes, they 

can differentiate between two classes [19]. 

 

3. RESULTS 

 

To comprehend the multivariate analysis, a heatmap or 

correlation matrices is utilized (Figure 1). This aids in 

our comprehension of how the variables relate to one 

another. There is a negative relationship between cooling 

component temperature and torque, suggesting that 

greater torque may facilitate cooling. There is a link 

between spindle speed, force, and vibration 

characteristics, suggesting that higher speeds lead to 

higher levels of force and vibration. Sensors, particularly 

those measuring physical loads and proximity, show 

strong correlations with vibrational factors (linked to the 

machine's spindle and tool) and cutting force. These 

correlations suggest that these measurements may share 

common underlying influences or exhibit similar 

patterns. 

Within the hydraulic systems, significant correlations are 

observed between pressure readings (both hydraulic and 

coolant) and temperature measurements (coolant and 

oil), indicating a systemic connection among these 

variables. For dynamic interactions, spindle speed shows 

notable associations with vibration and force measures, 

particularly for tool and cutting forces. This implies that 

higher speeds tend to increase force and vibration levels. 

A subtle negative correlation is also observed between 

rotational force (torque) and the temperature of cooling 

components, implying that higher torque might slightly 

aid in cooling. To identify the most impactful features for 

modeling, the correlation strengths, variability, and 

predictive potential parameters were examined. Features 

that have strong correlations with the target variable and 

significant variability are typically key to the model 

development. Additionally, features that exhibit high 

predictive power, those that strongly influence the target 

outcome, are especially critical. Variables related to 

force application, hydraulic dynamics, and sensor 

measurements emerge as key influencers. The findings 

suggest that machining operations typically involve 

moderate applied forces, indicating a trend toward 

moderate force applications. At the same time, coolant 

pressure remains low, reflecting an ongoing need for 

temperature control. Additionally, air system pressure 

and coolant temperature both highlight moderate 

operational demands in these areas. 

The insights gained from these correlations and 

dependencies laid a foundation for the next phase of 

model development. With a clearer understanding of the 

dataset’s characteristics and influential features, the 

subsequent step will involve creating a model that 

leverages these insights for better prediction accuracy 

and operational optimization.

 

 

 
Figure 1. Correlation Matrix / Heatmap 

 

 



 
Manasa Koppula, International Journal of Advanced Research in Computer Science, 16 (2), March-April 2025, 71-77 

 

© 2024-2027, IJARCS All Rights Reserved       74 
 

 
 

We further explore the machine's dynamics and 

performance, focusing on key factors that influence its 

operation. Vibration measurements from the spindle and 

tool offer essential insights into the stability of the 

machining process. The spindle's higher rotational speed 

plays a significant role in determining the efficiency and 

speed of machining operations [Figure 2]. The machine's 

high electrical voltage demands highlight its 

considerable power consumption. Furthermore, torque 

values represent the rotational force applied to the 

spindle, indicating the power used in machining. The 

cutting force levels demonstrate the moderate force 

typically applied during the machining process.

 

 
 

Figure 2: Performance analysis measurement for spindle vibration and cutting force 

 

The analysis also includes a detailed examination of the 

statistical properties and variability within the dataset. 

This involves carefully investigating fluctuations, trends, 

and patterns [Figure 3], offering a thorough 

understanding of the data's inherent variability and 

revealing potential factors that contribute to its diverse 

behaviors. Hydraulic pressure shows significant 

variability, suggesting changes in power requirements. 

Temperature readings display varying levels of 

consistency, influencing the machine's thermal 

conditions. Vibration levels also exhibit fluctuating 

patterns, which directly affect the stability of the 

machining process. Additionally, spindle speed, 

electrical voltage, torque, and cutting force all 

demonstrate unique levels of variability.

 

 
Figure 3: Performance trend for machine tool over the period 
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Table 1 depicts the model performance metrics for all the 

7 algorithms. A crucial statistic that ranges from 0 to 1 is 

the F1-score, which is computed as F1 = (2 × Precision 

× Recall) / (Precision + Recall) [14]. Higher values 

signify a better balance between precision and recall. It 

is especially helpful in dealing with false negatives, 

which anticipate downtime when none exists, and false 

positives, which miss real downtime. A high F1-score 

guarantees that the model minimizes false alarms while 

accurately detecting and forecasting machine downtime. 

Another crucial statistic that assesses the trade-off 

between false positive and true positive rates is the Area 

Under the Receiver Operating Characteristic (AUROC). 

It has a range of 0 to 1, where a model that performs 

better is indicated by values nearer 1. A thorough grasp 

of the model's capacity to distinguish between classes 

across a range of probability thresholds is offered by the 

AUROC curve. 

The reliability of the machine is calculated using MTBF 

(mean time between failure). MTBF is calculated by 

dividing the total operating time with the number of 

failures. 

Numerous models, including Random Forest, Logistic 

Regression, Naive Bayes, KNN, Decision Trees, SVM, 

and Gradient Boosting, were utilized for model 

optimization. Five assessment metrics—accuracy, 

precision, recall, F1-score, AUROC, and MTBF were 

used to evaluate their performance (Table 1).

 

Table 1. Model performance details 

Model Name Accuracy Precision Recall F1-Score AUROC MTBF 

Logistic Regression 0.85 0.85 0.85 0.85 0.99 2.0 

Gradient Booster Classifier 0.91 0.91 0.91 0.91 0.99 2.0 

KNN 0.85 0.85 0.85 0.85 0.99 2.0 

Naïve Bayes 0.85 0.85 0.85 0.85 0.99 2.1 

SVM 0.91 0.91 0.91 0.91 0.99 2.0 

Decision Tree 0.95 0.95 0.95 0.95 0.99 2.0 

Random Forest Classifier 0.99 0.99 0.99 0.99 0.99 2.1 

 

Despite having lower values on most metrics and an 

accuracy of 0.85, Logistic Regression, KNN, and Naïve 

Bayes are nonetheless reliable models, with Naïve Bayes 

having a little higher MTBF than the others. Gradient 

Boost Classifier, Support Vector Machine (SVM), and 

Decision Tree come in second and third, respectively, 

with strong accuracy, precision, recall, and F1-score. The 

Random Forest Classifier has the best performance on all 

parameters, with accuracy, precision, recall, F1-score, 

and AUROC all at 0.99. 

The choice of the best model ultimately depends on 

specific optimization goals. Random Forest, with its 

ensemble approach, stands out as a strong contender, 

offering high accuracy and precision. However, the final 

decision should be based on the priorities of the 

downtime optimization task, whether minimizing false 

positives or maximizing overall accuracy. Further fine-

tuning or the use of ensemble techniques could further 

improve the model’s performance, offering a tailored 

solution for machine downtime prediction. 

After a thorough model selection process, the Random 

Forest model underwent detailed hyper parameter tuning 

to enhance its accuracy and reduce misclassification 

rates. This optimized model was then integrated into 

Streamlit, providing an interactive and user-friendly 

platform for predicting machine downtime events. The 

fine-tuning process not only improved prediction 

accuracy but also minimized errors, delivering reliable 

real-time insights within the Streamlit application. This 

seamless integration demonstrates the model’s readiness 

for real-world deployment, supporting the goal of 

reducing false positives and maximizing accuracy in 

downtime predictions. Ongoing improvements will 

focus on further refining the Random Forest model 

through continuous hyperparameter adjustments. 

Additionally, incorporating advanced ensemble methods 

and user feedback will be key to adapting the model to 

evolving operational conditions. Future updates will aim 

to enhance the model’s robustness and maintain its 

effectiveness in dynamic machine downtime prediction 

scenarios. 

Optimizing the hyper parameters of each model is 

essential for accurately predicting machine downtime. 

The model’s ability to generalize and make reliable 

predictions is heavily influenced by the careful selection 

and evaluation of critical parameters such as learning 

rates, tree depths, and regularization strengths [20, 21]. 

A systematic approach, involving in-depth analysis and 

testing of these hyper parameters, is necessary to achieve 

optimal results in machine downtime prediction.  

 

Table 2 shows details of model specific hyper 

parameters.

 

Table2: Details of model specific hyper parameters. 

Model  

 

Hyperparameters  

 

Logistic Regression  

 

- Penalty: ('l1', 'l2', 'elastic net', 'none')  

- C: Inverse of regularisation strength  

Gradient Boosting  - n_estimators: Number of boosting stages  
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 - learning_rate: Weight applied to each tree  

- max_depth: Maximum depth of individual trees  

KNN 

 

- n_neighbors: Number of neighbors  

- weights: Weight function ('uniform' or 'distance')  

- p: Power parameter for Minkowski distance  

Naive Bayes  Type: Gaussian, Multinomial, or Bernoulli  

SVM C- regularization parameter degree 

Degree of polynomial 

Gamma-kernal coefficient 

Kernel-kernel type 

Decision Tree  

 

- Criterion: Measure of split quality ('gini' or 'entropy')  

- max_depth: Maximum depth of the tree  

- min_samples_split: Minimum samples to split an internal node  

Random Forest classifier 

 

n_estimators: Number of trees in the forest  

- criterion: Measure of split quality ('gini' or 'entropy')  

- max_depth: Maximum depth of the trees  

 

CONCLUSION 

 

The study shows how machine learning models can be 

used to forecast machine downtime and enhance 

maintenance procedures by implementing predictive 

maintenance. Several machine learning algorithms were 

used to predict machine failures and optimize 

maintenance plans by utilizing a dataset that included a 

variety of parameters, such as machine health indicators 

and downtime status. Based on the evaluation criteria 

(accuracy, precision, recall, F1-score, and AUROC), the 

Random Forest Classifier was the best-performing model 

and was demonstrated to be the most dependable model 

for machine downtime prediction.  

 

With excellent accuracy and other metric scores, gradient 

boosting and support vector machines (SVM) also 

demonstrated strong performance, making them viable 

options for predictive maintenance. KNN, Naïve Bayes, 

and logistic regression all performed consistently across 

metrics but were less accurate and precise compared to 

the random forest model. For predictive maintenance, 

these models remain reliable despite their relatively low 

accuracy (0.85), with Naïve Bayes showing a little 

improved MTBF (Mean Time Between Failures).  All 

models' performance was optimized by hyperparameter 

tuning, but Random Forest and SVM benefited from this, 

producing better outcomes.  

 

This study emphasizes the use of machine learning 

models in the industrial setup and the significance of 

predictive maintenance in lowering maintenance 

expenses and machine downtime.  

 

Manufacturers may guarantee increased productivity, 

longer equipment life, and lower operating costs by 

selecting the best model based on performance 

parameters. The study also confirms that, depending on 

the situation and requirements of the application, simpler 

models can still be successful even when more complex 

models, such as Random Forest, yield the best results.  

Additionally, maximizing hyperparameter tweaking in 

machine learning models will be the focus of future 

research. Furthermore, examining a variety of deep 

learning techniques outside of LSTM may enhance 

modeling and yield more accurate forecasting results. 
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