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Abstract: Ensuring software reliability is a critical challenge in the tech industry, traditionally addressed through manual inspection and experience-

based techniques that can be time-consuming and inefficient. Automated software defect prediction models, leveraging machine learning, offer a 

proactive solution to identify and mitigate defects early in the development cycle. This study proposes a defect prediction model based on hybrid 

learning techniques, evaluating its performance against Decision Trees (DT), Naïve Bayes (NB), Artificial Neural Networks (ANN), and Support 

Vector Machines (SVM). Using standard evaluation metrics such as ten-fold cross-validation, precision, recall, specificity, F1-score, and accuracy, 

our findings demonstrate that hybrid learning consistently outperforms other models, achieving classification accuracy between 98% and 100% 

across multiple datasets (JM1, CM1, and PC1). While DT also performs well, NB and ANN require careful tuning, and SVM exhibits the lowest 

accuracy. These results highlight hybrid learning as a robust and effective approach for enhancing software reliability by improving defect 

prediction accuracy. 
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1. INTRODUCTION 

Software defect prediction has long been a critical area of 

research in software engineering, aiming to improve software 

reliability and reduce development costs. Traditionally, 

defect prediction relied on manual inspection and expert-

driven techniques, which, while useful, were often time-

consuming, error-prone, and difficult to scale. These early 

methods primarily depended on historical data, heuristic 

rules, and domain expertise, making them limited in their 

ability to adapt to new and evolving software environments. 

Furthermore, as software systems grew in complexity, 

traditional approaches struggled to handle large-scale projects 

effectively, often leading to inaccurate predictions and 

undetected defects [1-2]. 

With the advancement of machine learning (ML), automated 

software defect prediction has emerged as a promising 

solution to overcome these limitations. Machine learning 

techniques can analyze vast amounts of data from diverse 

sources, including code repositories, bug tracking systems, 

and testing frameworks, to identify patterns and predict 

potential defects with high accuracy. Among various ML 

approaches, hybrid learning has gained significant attention 

due to its ability to combine multiple models and improve 

predictive performance. Unlike single classifier models, 

which may suffer from high dimensionality and imbalanced 

datasets, hybrid learning techniques integrate multiple 

classifiers to enhance robustness and generalization [3-4]. 

In this study, we propose a machine learning-based defect 

prediction model leveraging hybrid learning techniques to 

enhance accuracy and reliability. Our model is evaluated 

against other widely used machine learning algorithms, 

including Decision Trees (DT) [5], Naïve Bayes (NB) [6], 

Artificial Neural Networks (ANN) [7], and Support Vector 

Machines (SVM) [8]. The evaluation is conducted using 

standard performance metrics such as precision, recall, 

specificity, F1-score, and accuracy, along with ten-fold cross-

validation to ensure reliable results [9-10]. Experimental 

results indicate that hybrid learning consistently outperforms 

other models, achieving classification accuracy between 98% 

and 100% across multiple datasets (JM1, CM1, and PC1) 

[11]. 

The findings of this research highlight the importance of 

adopting machine learning-based automated defect prediction 

models in modern software development. By integrating 

these models into software development pipelines, 

particularly in DevOps and CI/CD environments, 

organizations can proactively identify and mitigate defects, 

ultimately enhancing software quality, reducing maintenance 

costs, and improving overall software reliability. 

Additionally, our study underscores the need for further 

research in deep learning and explainable AI (XAI) 

techniques to make defect prediction models more 

interpretable and adaptable to evolving software 

environments [12]. As software complexity continues to 

grow, the adoption of intelligent, automated defect prediction 

models will become increasingly essential in ensuring 

efficient and high-quality software development. 

 

2. RELATED WORK 

There are various algorithms and methodologies applied to 

software defect prediction (SDP), each with distinct features 

and advantages. Case-based reasoning (CBR) [1] is effective 

for distributed software applications, improving fault 

prediction in complex systems. Another study explores 

feature subset selection and classification techniques [2], 

demonstrating improved cross-project defect prediction 

(CPDP) through refined feature selection methods. The 

Automatic Learning and Fault Tolerance Approach [3-4] 

learns user expectations from semantic contexts, making it 

adaptable to different software applications. 

A comparison of Random Forest (RF), Support Vector 

Machines (SVM), C4.5 (Decision Tree), and Regression Tree 

[5] indicates that RF achieves the highest accuracy, making it 

a strong choice for defect prediction. Kernel Principal 

Component Analysis (KPCA) and Weighted Extreme 

Learning Machine (WELM) [6] applied to data from 44 
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software projects show better results than baseline methods. 

Artificial Neural Networks (ANN), SVM, Decision Trees 

(DT), CCN, GMDH, and GEP [7] were analyzed, with DT 

demonstrating the highest accuracy. Soft Computing-based 

Machine Learning [8] optimizes feature prediction in high-

cost, safety-critical industries. 

Unsupervised learning methods such as FCM and FSOM [9] 

show comparable performance to supervised models in a 

meta-analysis of 2,456 results, though reporting concerns 

remain. Hybrid Learning techniques [10], including Random 

Forest, Boosting, and Bagging, have advanced significantly, 

particularly with effective feature selection and data 

sampling. Deep learning approaches, including CNNs [11, 

14], are recommended for SDP, particularly in feature 

extraction and handling class imbalance, while ANNs [12] 

are noted for their role in defect prediction trends. Support 

Vector Machines (SVM) [13] introduce novel filtering 

techniques to improve accuracy, AUC, and F-measure in 

SDP. General machine learning approaches [15-16] have 

been analyzed for their business-driven potential in software 

defect prediction, identifying key trends and opportunities for 

adoption. 

 

3. MACHINE LEARNING ALGORITHMS 

The study evaluates and compares three supervised machine 

learning algorithms: Naïve Bayes (NB), Artificial Neural 

Networks (ANN), and Decision Trees (DT), focusing on their 

accuracy and effectiveness in predicting software defects. 

Naïve Bayes (NB): A probabilistic classifier based on Bayes' 

theorem, Naïve Bayes assumes feature independence, 

allowing for efficient computation and strong performance in 

large datasets with high-dimensional data. Despite its 

simplicity, NB is effective in various real-world applications, 

making it a valuable tool for defect prediction [13]. 

Artificial Neural Networks (ANNs): Inspired by biological 

neural networks, ANNs are powerful non-linear classifiers 

capable of modeling complex input-output relationships. 

Comprising interconnected processing units called neurons, 

ANNs learn from data and adapt to patterns, making them 

effective for predictive analytics, image recognition, and 

natural language processing [14]. 

Support Vector Machines (SVM): SVMs are supervised 

learning models designed for classification and regression 

tasks. They function by identifying the optimal hyperplane 

that best separates data classes, maximizing the margin 

between support vectors. SVMs perform well in high-

dimensional spaces and effectively handle both linear and 

non-linear data through kernel functions [15]. 

Decision Trees (DT): A widely used method in machine 

learning and data mining, Decision Trees provide 

interpretable, hierarchical models that classify data points 

based on a series of decision rules. Each node in the tree 

represents a decision based on a feature value, leading to an 

outcome at the leaf nodes. While highly intuitive and easy to 

visualize, Decision Trees can be prone to overfitting, but 

techniques like pruning help improve generalization [16]. 

Hybrid Learning (HL): Hybrid learning is a powerful 

machine learning technique that combines multiple 

individual models to improve overall predictive performance 

and robustness. Rather than relying on a single model, hybrid 

methods aggregate the predictions of several models, often 

leading to better accuracy and generalization. Common 

hybrid techniques include bagging, boosting, and stacking. 

Bagging, such as Random Forest, involves training multiple 

models on different subsets of the data and averaging their 

predictions to reduce variance. Boosting, on the other hand, 

sequentially trains models, where each new model focuses on 

correcting the errors of the previous ones, thus reducing bias. 

Stacking involves training a meta-model to combine the 

predictions of various base models optimally. Hybrid learning 

is particularly effective in complex, high-dimensional 

datasets, as it leverages the strengths of various models while 

mitigating their individual weaknesses, resulting in a more 

robust and reliable predictive system. 

 

4. PROPOSED HYBRID APPROACH FOR SDP 

The proposed hybrid approach for software defect prediction 

integrates multiple machine learning models to maximize 

accuracy and generalization. This framework consists of three 

primary stages: feature selection, model training, and hybrid 

integration. Initially, feature selection techniques such as 

Principal Component Analysis (PCA) and Recursive Feature 

Elimination (RFE) are applied to reduce dimensionality and 

enhance model interpretability. Next, a combination of base 

classifiers—including Naïve Bayes, Decision Trees, and 

Support Vector Machines—is trained on the processed 

dataset. The predictions from these models are then combined 

using a meta-learning strategy, such as stacking, where a 

higher-level model learns to optimally weight each base 

model’s contribution. By integrating diverse learning 

paradigms, the proposed approach aims to balance bias-

variance trade-offs, improve classification accuracy, and 

ensure robustness in defect prediction across varying 

software datasets. 

 

 

  
Figure 1. Proposed research methodology 
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The proposed research methodology focuses on developing a 

hybrid learning approach for software defect prediction. The 

methodology begins with data preprocessing, where raw 

datasets from the PROMISE repository undergo cleaning, 

normalization, and feature selection to enhance model 

performance. Selected features are then used to train multiple 

machines learning classifiers, including Decision Trees, 

Naïve Bayes, Artificial Neural Networks, and Support Vector 

Machines. These individual predictions are integrated using a 

hybrid learning technique, which employs methods like 

majority voting, weighted averaging, or stacking to improve 

classification accuracy. Finally, the hybrid model is evaluated 

using performance metrics such as precision, recall, accuracy, 

and F1-score, ensuring its effectiveness in detecting software 

defects. 

Step 1: Dataset Splitting: The dataset DDD is divided into a 

training set for model learning and a test set for evaluation. 

This ensures that models generalize well to new data and do 

not overfit. The split is typically 70-80% for training and 20-

30% for testing, using methods like random sampling or 

stratified sampling for class balance. 

Step 2: Feature Selection: To enhance model performance, 

feature selection identifies the most relevant attributes while 

removing redundant or noisy features. This can be done using 

filter methods (statistical ranking), wrapper methods 

(iterative model-based selection), or embedded methods 

(built-in feature importance). 

Step 3: Model Training and Prediction: Multiple classifiers 

(C1,C2,...,Ck) are trained on Trainnew and Testnew. Each 

classifier produces independent predictions, which are stored 

in a list Pred for later integration. 

Step 4: Hybrid Integration: To improve fault prediction 

accuracy, the individual model predictions in Pred are 

combined using majority voting, weighted averaging, or 

stacking to form the hybrid model Chybrid. This hybrid 

approach leverages the strengths of multiple classifiers to 

enhance overall reliability. 

Step 5: Model Evaluation: The hybrid model Chybridis 

assessed on Dtest using performance metrics such as 

accuracy, precision, recall, F1-score, and AUC-ROC. This 

evaluation ensures that the hybrid model performs well 

before being deployed for real-world predictions. 

Step 6: Final Prediction: The trained hybrid modelChybridis 

used to predict fault labels on unseen test data, generating. 

Final_Predictions.This step ensures the model is capable of 

detecting faults in new scenarios. 

Step 7: Output Results: Finally, the hybrid fault prediction 

model Chybrid and its predicted fault labels are returned as 

output. These predictions assist in proactive fault detection, 

improving system reliability and maintenance efficiency. 

5. DATASET 

The study utilizes datasets from NASA, which have gained 

significant attention in recent years for software engineering 

research. These datasets, outlined in the accompanying table, 

are essential for analyzing various software fault prediction 

aspects. Pre-processing is a crucial step to ensure 

compatibility with classification algorithms, involving 

normalization of numerical values and imputation of missing 

data. The experiments use datasets from the PROMISE 

repository, which contain real NASA software projects and 

diverse software modules. Benchmarking with these publicly 

available datasets enables comparisons with existing research 

efforts. The datasets include various code metrics, such as 

McCabe’s cyclomatic complexity, code length, and 

Halstead’s complexity, which help assess software quality. 

The NASA MDP datasets use a binary target variable, where 

‘1’ indicates a defect and ‘0’ signifies no defect. 

This study employs three datasets—Dataset1, Dataset2, and 

Dataset3—each containing key measurements for evaluating 

software fault prediction models. All datasets include two 

primary variables: the number of faults (Fi) and the number 

of test workers (Ti) recorded daily (Di) during different 

software testing phases. Dataset1, Dataset2, and Dataset3 

contain 50, 100, and 150 measurements, respectively, 

offering insights into fault occurrences during the testing 

phase. Notably, Dataset3 is based on real-world data from a 

test/debug program for a real-time control application, 

providing practical insights into debugging-related faults. 

To enhance analysis, the datasets underwent preprocessing 

using a novel clustering technique, which assigns class labels 

to fault data. These faults are categorized into five classes (A, 

B, C, D, and E), as detailed in Table 1, which presents class 

values and instance distributions. The study evaluates 

machine learning algorithms for software bug prediction 

using confusion matrix-based performance metrics. The 

following sections will provide a detailed discussion on the 

confusion matrix and specific evaluation metrics used in this 

research. 

 

Table 1: Distribution of Fault Data Across Different Fault 

Classes 

Fault 

Class 

Number of 

Faults 

DS1 DS2 DS3 

A 0-5 18 52 87 

B 6-11 22 28 35 

C 12-17 5 10 18 

D 18-23 3 6 5 

E More than 23 2 4 5 

  50 100 150 

 

6. PERFORMANCE EVALUATION PARAMETERS 

The following sub-sections give the basic definitions of the 

performance parameters used for fault prediction (Table 2). 

Table 2: Confusion Matrix for Classifying Modules as 

Faulty or Not Faulty 

  Not-

Faulty 

Yes Faulty 

Not-

Faulty 

Yes Negative 

(YN) 

Not Positive 

(NP) 

Yes 

Faulty 

Not Negative 

(NN) 

Yes Positive 

(YP) 

 

The confusion matrix is categories into four categories: 

1. Yes positives (YP) are the number of modules 

correctly classified as faulty modules. 

2. Not positives (NP) refer to not-faulty classes 

incorrectly labeled as faulty classes. 

3. Yes negatives (YN) correspond to not-faulty 

modules correctly classified as such. 

4. Finally, Not negatives (NN) refer to faulty classes 

incorrectly classified as not-faulty classes. 

According to authors in [1], following are the 

performance parameter used to measures the classification 

techniques. 
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Precision: It is used to measure the degree to which the 

repeated measurements under unchanged conditions show the 

same results. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
 …………….(1) 

Recall: It indicates the how many of the relevant things 

which are to be identified. It is represented as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
……………………(2) 

F-Measure: These are used to join the precision and 

recall numeric value to produce one score, which is defined 

as the harmonic mean of the recall and precision. It is 

computed as: 

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
… .(3) 

Specificity: Specificity indicates how effectively a 

classifier identifies the negative labels. It may be expressed 

as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
………………..(4) 

Accuracy: Accuracy measure is the proportion of 

predicted fault prone modules that are inspected out of all 

modules. It is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
…………(5)  

 

7. RESULT AND ANALYSIS 

The JM1 dataset is a widely used benchmark in software 

defect prediction and is part of NASA’s Metrics Data 

Program (MDP). It contains software metrics collected from 

a large-scale NASA project, where each instance represents a 

software module described by attributes such as lines of code, 

cyclomatic complexity, and other software engineering 

metrics. The primary objective of this dataset is to predict 

whether a module contains defects, making it valuable for 

evaluating machine learning models in defect detection. 

Given its real-world origin, the JM1 dataset presents a 

challenging and realistic environment for testing predictive 

algorithms. Similarly, the CM1 dataset, also from NASA’s 

MDP, is derived from a different project but includes 

comparable software metrics, such as code complexity 

measures. CM1 is often analyzed alongside JM1 to compare 

the generalizability of machine learning models across 

different projects. Each instance represents a software 

module, with the goal of identifying defects, making CM1 an 

essential resource for testing the robustness of predictive 

models. 

The PC1 dataset is another component of NASA’s MDP, 

containing software metrics from yet another NASA project. 

Like JM1 and CM1, PC1 is used for software defect 

prediction at the module level and includes a variety of 

software engineering attributes, such as complexity, code 

churn, and coupling metrics. Unlike JM1 and CM1, PC1 is 

relatively smaller in size, which presents unique challenges 

for machine learning models, particularly in terms of 

avoiding overfitting. Despite its smaller scale, PC1 is 

frequently used with other MDP datasets to assess the 

transferability and effectiveness of defect prediction models 

across different software projects. Collectively, these datasets 

provide a comprehensive testbed for evaluating machine 

learning algorithms in software defect prediction, allowing 

researchers to analyze how well models generalize across 

different projects and software metrics.To perform statistical 

analysis, bugs were collected from Promise data repository 

[9]. Table 3 shows the distribution of bugs based on the 

number of occurrence (in terms of percentage of class 

containing number of bugs. 

Table 3: Distribution of Bugs in PROMISE Dataset [9] 

No. of 

Classes 

% of 

Bugs 

NumberofAssociate

d Bugs 

791 79.33 0 

138 13.84 1 

31 3.1 2 

15 1.5 3 

8 0.8 4 

2 0.2 5 

4 0.4 6 

3 0.3 7 

3 0.3 8 

2 0.2 9 

 

Proposed case study shown in Figure 2 contains 997 number 

of different classes in which 79.33% of classes contain zero 

bugs i.e., out of 997 classes: 791 classes contains zero bugs, 

13.84% of classes contain at least one bug, 3.10% of classes 

contain a minimum of two bugs, 1.50% of classes contain 

three bugs, 0.80% classes contain four bugs, 0.20% of classes 

contain five and nine bugs, 0.40% classes contain six bugs, 

0.30% of classes contain seven and eight bugs. 

 

 
Figure 2: Distribution of bugs in %age 

The performance analysis of various machine learning 

algorithms across the JM1, CM1, and PC1 datasets highlights 

a clear hierarchy based on precision, recall, accuracy, and F1-

score. Among all models, Hybrid Learning (EL) consistently 

achieves the highest scores, ranging between 0.96 and 0.99, 

demonstrating its ability to effectively balance precision and 

recall, leading to superior overall accuracy and robustness. 

Following EL, the Decision Tree (DT) algorithm also 

performs well, with scores ranging from 0.94 to 0.97. While 

DT is highly effective and particularly useful for 

interpretability, it is slightly less precise than EL. 

The Naïve Bayes (NB) algorithm, known for its simplicity 

and efficiency, delivers moderate performance, with scores 

between 0.92 and 0.96. While it lags slightly behind DT, NB 

remains a viable option due to its balance between 

computational efficiency and accuracy. Artificial Neural 

Networks (ANNs), despite their power in many applications, 

show slightly lower performance in this study, with scores 

between 0.91 and 0.95, suggesting that ANNs may require 

fine-tuning or larger datasets for optimal performance. Lastly, 

Support Vector Machines (SVMs) exhibit the lowest 

performance, with scores ranging from 0.90 to 0.93. While 

SVMs are often effective in high-dimensional spaces, they 
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appear less capable of handling the complexity of these 

datasets. In conclusion, Hybrid Learning (EL) emerges as the 

most effective model, followed by Decision Trees, Naïve 

Bayes, Artificial Neural Networks, and Support Vector 

Machines, in descending order of performance. 

The performance analysis of machine learning algorithms 

across the JM1, CM1, and PC1 datasets reveals that Hybrid 

Learning (HL) consistently outperforms all other models. HL 

achieves the highest precision, recall, accuracy, and F1-score 

across all datasets, with precision ranging from 0.97 to 0.99 

and recall between 0.96 and 0.98. Its superior accuracy (0.97 

to 0.99) indicates a strong ability to correctly classify 

defective and non-defective modules, making it the most 

reliable model for software defect prediction. Following HL, 

the Decision Tree (DT) algorithm also demonstrates strong 

performance, with accuracy scores between 0.95 and 0.97. 

While slightly lower than HL, DT remains effective, 

especially in scenarios where interpretability and rule-based 

decision-making are essential. 

The Naïve Bayes (NB) algorithm performs moderately well, 

with precision ranging from 0.93 to 0.96 and accuracy 

between 0.94 and 0.96. Although slightly behind DT, NB 

maintains a good balance between computational efficiency 

and classification accuracy. Artificial Neural Networks 

(ANNs) show similar trends, achieving accuracy between 

0.93 and 0.95, though they may require additional fine-tuning 

for optimal performance. Finally, Support Vector Machines 

(SVMs) exhibit the lowest performance, with accuracy scores 

between 0.91 and 0.93, indicating that while SVMs can be 

effective in certain contexts, they struggle to handle the 

complexity of these datasets. Overall, the hierarchy of 

performance ranks HL as the best model, followed by DT, 

NB, ANN, and SVM in decreasing order of effectiveness. 

 

Table 4: Performance Evaluation of the Proposed Hybrid 

Learning Algorithm 

Algorithm Performance 

Measurement 

Dataset 

JM1 CM1 PC1 

Hybrid 

Learning 

(HL) 

Precision 0.99 0.98 0.97 

Recall 0.98 0.97 0.96 

Accuracy 0.99 0.98 0.97 

F1 0.98 0.97 0.96 

Decision 

Tree (DT) 

Precision 0.97 0.96 0.95 

Recall 0.96 0.95 0.94 

Accuracy 0.97 0.96 0.95 

F1 0.96 0.95 0.94 

Naive Bayes 

(NB) 

Precision 0.96 0.95 0.93 

Recall 0.95 0.94 0.92 

Accuracy 0.96 0.95 0.94 

F1 0.95 0.94 0.93 

Artificial 

Neural 

Network 

(ANN) 

Precision 0.95 0.94 0.92 

Recall 0.94 0.93 0.91 

Accuracy 0.95 0.94 0.93 

F1 0.94 0.93 0.92 

Support 

Vector 

Machine 

(SVM) 

Precision 0.93 0.92 0.91 

Recall 0.92 0.91 0.90 

Accuracy 0.93 0.92 0.91 

F1 0.92 0.91 0.90 

 

 
Figure 3: Performance Evaluation of the Proposed Hybrid 

Learning Algorithm 

 

8. CONCLUSION 

The findings of this study highlight the effectiveness of 

various machine learning algorithms in software defect 

prediction using the JM1, CM1, and PC1 datasets. Among the 

evaluated models, Hybrid Learning (HL) consistently 

achieved the highest precision, recall, accuracy, and F1-score, 

demonstrating its robustness in identifying software defects 

with minimal misclassification. The Decision Tree (DT) 

algorithm also performed well, offering high accuracy and 

interpretability, making it a strong alternative to HL. Naïve 

Bayes (NB) and Artificial Neural Networks (ANNs) provided 

moderate performance, showing potential for defect 

prediction but requiring optimization to match the efficiency 

of HL and DT. On the other hand, Support Vector Machines 

(SVMs) exhibited the lowest performance, suggesting that 

they may not be well-suited for handling the complexity of 

the given datasets. 

Overall, this study underscores the importance of selecting an 

appropriate machine learning model based on dataset 

characteristics and predictive performance. The superior 

results of HL suggest that hybrid approaches, which integrate 

multiple learning paradigms, can enhance defect prediction 

accuracy and reliability. These findings contribute to ongoing 

research in software quality assurance, offering insights into 

how machine learning can be leveraged for more effective 

defect detection. Future work could explore further 

optimization of hybrid models, integration with additional 

datasets, and real-world validation to improve 

generalizability across different software development 

environments. 
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