
DOI: http://dx.doi.org/10.26483/ijarcs.v16i1.7192

Volume 16, No. 1, January-February 2025

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2023-2025, IJARCS All Rights Reserved 61

ISSN No. 0976-5697

MACHINE LEARNING BASED HYBRID APPROACH FOR SOFTWARE DEFECT

PREDICTION
Adarsh

Research Scholar, NIILM University,

 Kaithal, Haryana India

Pawan Kumar
Assoc. Professor, NIILM University,

Kaithal, Haryana India

Abstract: Ensuring software reliability is a critical challenge in the tech industry, traditionally addressed through manual inspection and experience-

based techniques that can be time-consuming and inefficient. Automated software defect prediction models, leveraging machine learning, offer a

proactive solution to identify and mitigate defects early in the development cycle. This study proposes a defect prediction model based on hybrid

learning techniques, evaluating its performance against Decision Trees (DT), Naïve Bayes (NB), Artificial Neural Networks (ANN), and Support

Vector Machines (SVM). Using standard evaluation metrics such as ten-fold cross-validation, precision, recall, specificity, F1-score, and accuracy,

our findings demonstrate that hybrid learning consistently outperforms other models, achieving classification accuracy between 98% and 100%

across multiple datasets (JM1, CM1, and PC1). While DT also performs well, NB and ANN require careful tuning, and SVM exhibits the lowest

accuracy. These results highlight hybrid learning as a robust and effective approach for enhancing software reliability by improving defect

prediction accuracy.

Keywords: Software defect, Machine Learning Hybrid Learning, SVM, Decision Tree.

1. INTRODUCTION

Software defect prediction has long been a critical area of

research in software engineering, aiming to improve software

reliability and reduce development costs. Traditionally,

defect prediction relied on manual inspection and expert-

driven techniques, which, while useful, were often time-

consuming, error-prone, and difficult to scale. These early

methods primarily depended on historical data, heuristic

rules, and domain expertise, making them limited in their

ability to adapt to new and evolving software environments.

Furthermore, as software systems grew in complexity,

traditional approaches struggled to handle large-scale projects

effectively, often leading to inaccurate predictions and

undetected defects [1-2].

With the advancement of machine learning (ML), automated

software defect prediction has emerged as a promising

solution to overcome these limitations. Machine learning

techniques can analyze vast amounts of data from diverse

sources, including code repositories, bug tracking systems,

and testing frameworks, to identify patterns and predict

potential defects with high accuracy. Among various ML

approaches, hybrid learning has gained significant attention

due to its ability to combine multiple models and improve

predictive performance. Unlike single classifier models,

which may suffer from high dimensionality and imbalanced

datasets, hybrid learning techniques integrate multiple

classifiers to enhance robustness and generalization [3-4].

In this study, we propose a machine learning-based defect

prediction model leveraging hybrid learning techniques to

enhance accuracy and reliability. Our model is evaluated

against other widely used machine learning algorithms,

including Decision Trees (DT) [5], Naïve Bayes (NB) [6],

Artificial Neural Networks (ANN) [7], and Support Vector

Machines (SVM) [8]. The evaluation is conducted using

standard performance metrics such as precision, recall,

specificity, F1-score, and accuracy, along with ten-fold cross-

validation to ensure reliable results [9-10]. Experimental

results indicate that hybrid learning consistently outperforms

other models, achieving classification accuracy between 98%

and 100% across multiple datasets (JM1, CM1, and PC1)

[11].

The findings of this research highlight the importance of

adopting machine learning-based automated defect prediction

models in modern software development. By integrating

these models into software development pipelines,

particularly in DevOps and CI/CD environments,

organizations can proactively identify and mitigate defects,

ultimately enhancing software quality, reducing maintenance

costs, and improving overall software reliability.

Additionally, our study underscores the need for further

research in deep learning and explainable AI (XAI)

techniques to make defect prediction models more

interpretable and adaptable to evolving software

environments [12]. As software complexity continues to

grow, the adoption of intelligent, automated defect prediction

models will become increasingly essential in ensuring

efficient and high-quality software development.

2. RELATED WORK

There are various algorithms and methodologies applied to

software defect prediction (SDP), each with distinct features

and advantages. Case-based reasoning (CBR) [1] is effective

for distributed software applications, improving fault

prediction in complex systems. Another study explores

feature subset selection and classification techniques [2],

demonstrating improved cross-project defect prediction

(CPDP) through refined feature selection methods. The

Automatic Learning and Fault Tolerance Approach [3-4]

learns user expectations from semantic contexts, making it

adaptable to different software applications.

A comparison of Random Forest (RF), Support Vector

Machines (SVM), C4.5 (Decision Tree), and Regression Tree

[5] indicates that RF achieves the highest accuracy, making it

a strong choice for defect prediction. Kernel Principal

Component Analysis (KPCA) and Weighted Extreme

Learning Machine (WELM) [6] applied to data from 44

Adarsh et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 61-66

© 2023-2025, IJARCS All Rights Reserved 62

software projects show better results than baseline methods.

Artificial Neural Networks (ANN), SVM, Decision Trees

(DT), CCN, GMDH, and GEP [7] were analyzed, with DT

demonstrating the highest accuracy. Soft Computing-based

Machine Learning [8] optimizes feature prediction in high-

cost, safety-critical industries.

Unsupervised learning methods such as FCM and FSOM [9]

show comparable performance to supervised models in a

meta-analysis of 2,456 results, though reporting concerns

remain. Hybrid Learning techniques [10], including Random

Forest, Boosting, and Bagging, have advanced significantly,

particularly with effective feature selection and data

sampling. Deep learning approaches, including CNNs [11,

14], are recommended for SDP, particularly in feature

extraction and handling class imbalance, while ANNs [12]

are noted for their role in defect prediction trends. Support

Vector Machines (SVM) [13] introduce novel filtering

techniques to improve accuracy, AUC, and F-measure in

SDP. General machine learning approaches [15-16] have

been analyzed for their business-driven potential in software

defect prediction, identifying key trends and opportunities for

adoption.

3. MACHINE LEARNING ALGORITHMS

The study evaluates and compares three supervised machine

learning algorithms: Naïve Bayes (NB), Artificial Neural

Networks (ANN), and Decision Trees (DT), focusing on their

accuracy and effectiveness in predicting software defects.

Naïve Bayes (NB): A probabilistic classifier based on Bayes'

theorem, Naïve Bayes assumes feature independence,

allowing for efficient computation and strong performance in

large datasets with high-dimensional data. Despite its

simplicity, NB is effective in various real-world applications,

making it a valuable tool for defect prediction [13].

Artificial Neural Networks (ANNs): Inspired by biological

neural networks, ANNs are powerful non-linear classifiers

capable of modeling complex input-output relationships.

Comprising interconnected processing units called neurons,

ANNs learn from data and adapt to patterns, making them

effective for predictive analytics, image recognition, and

natural language processing [14].

Support Vector Machines (SVM): SVMs are supervised

learning models designed for classification and regression

tasks. They function by identifying the optimal hyperplane

that best separates data classes, maximizing the margin

between support vectors. SVMs perform well in high-

dimensional spaces and effectively handle both linear and

non-linear data through kernel functions [15].

Decision Trees (DT): A widely used method in machine

learning and data mining, Decision Trees provide

interpretable, hierarchical models that classify data points

based on a series of decision rules. Each node in the tree

represents a decision based on a feature value, leading to an

outcome at the leaf nodes. While highly intuitive and easy to

visualize, Decision Trees can be prone to overfitting, but

techniques like pruning help improve generalization [16].

Hybrid Learning (HL): Hybrid learning is a powerful

machine learning technique that combines multiple

individual models to improve overall predictive performance

and robustness. Rather than relying on a single model, hybrid

methods aggregate the predictions of several models, often

leading to better accuracy and generalization. Common

hybrid techniques include bagging, boosting, and stacking.

Bagging, such as Random Forest, involves training multiple

models on different subsets of the data and averaging their

predictions to reduce variance. Boosting, on the other hand,

sequentially trains models, where each new model focuses on

correcting the errors of the previous ones, thus reducing bias.

Stacking involves training a meta-model to combine the

predictions of various base models optimally. Hybrid learning

is particularly effective in complex, high-dimensional

datasets, as it leverages the strengths of various models while

mitigating their individual weaknesses, resulting in a more

robust and reliable predictive system.

4. PROPOSED HYBRID APPROACH FOR SDP

The proposed hybrid approach for software defect prediction

integrates multiple machine learning models to maximize

accuracy and generalization. This framework consists of three

primary stages: feature selection, model training, and hybrid

integration. Initially, feature selection techniques such as

Principal Component Analysis (PCA) and Recursive Feature

Elimination (RFE) are applied to reduce dimensionality and

enhance model interpretability. Next, a combination of base

classifiers—including Naïve Bayes, Decision Trees, and

Support Vector Machines—is trained on the processed

dataset. The predictions from these models are then combined

using a meta-learning strategy, such as stacking, where a

higher-level model learns to optimally weight each base

model’s contribution. By integrating diverse learning

paradigms, the proposed approach aims to balance bias-

variance trade-offs, improve classification accuracy, and

ensure robustness in defect prediction across varying

software datasets.

Figure 1. Proposed research methodology

Adarsh et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 61-66

© 2023-2025, IJARCS All Rights Reserved 63

The proposed research methodology focuses on developing a

hybrid learning approach for software defect prediction. The

methodology begins with data preprocessing, where raw

datasets from the PROMISE repository undergo cleaning,

normalization, and feature selection to enhance model

performance. Selected features are then used to train multiple

machines learning classifiers, including Decision Trees,

Naïve Bayes, Artificial Neural Networks, and Support Vector

Machines. These individual predictions are integrated using a

hybrid learning technique, which employs methods like

majority voting, weighted averaging, or stacking to improve

classification accuracy. Finally, the hybrid model is evaluated

using performance metrics such as precision, recall, accuracy,

and F1-score, ensuring its effectiveness in detecting software

defects.

Step 1: Dataset Splitting: The dataset DDD is divided into a

training set for model learning and a test set for evaluation.

This ensures that models generalize well to new data and do

not overfit. The split is typically 70-80% for training and 20-

30% for testing, using methods like random sampling or

stratified sampling for class balance.

Step 2: Feature Selection: To enhance model performance,

feature selection identifies the most relevant attributes while

removing redundant or noisy features. This can be done using

filter methods (statistical ranking), wrapper methods

(iterative model-based selection), or embedded methods

(built-in feature importance).

Step 3: Model Training and Prediction: Multiple classifiers

(C1,C2,...,Ck) are trained on Trainnew and Testnew. Each

classifier produces independent predictions, which are stored

in a list Pred for later integration.

Step 4: Hybrid Integration: To improve fault prediction

accuracy, the individual model predictions in Pred are

combined using majority voting, weighted averaging, or

stacking to form the hybrid model Chybrid. This hybrid

approach leverages the strengths of multiple classifiers to

enhance overall reliability.

Step 5: Model Evaluation: The hybrid model Chybridis

assessed on Dtest using performance metrics such as

accuracy, precision, recall, F1-score, and AUC-ROC. This

evaluation ensures that the hybrid model performs well

before being deployed for real-world predictions.

Step 6: Final Prediction: The trained hybrid modelChybridis

used to predict fault labels on unseen test data, generating.

Final_Predictions.This step ensures the model is capable of

detecting faults in new scenarios.

Step 7: Output Results: Finally, the hybrid fault prediction

model Chybrid and its predicted fault labels are returned as

output. These predictions assist in proactive fault detection,

improving system reliability and maintenance efficiency.

5. DATASET

The study utilizes datasets from NASA, which have gained

significant attention in recent years for software engineering

research. These datasets, outlined in the accompanying table,

are essential for analyzing various software fault prediction

aspects. Pre-processing is a crucial step to ensure

compatibility with classification algorithms, involving

normalization of numerical values and imputation of missing

data. The experiments use datasets from the PROMISE

repository, which contain real NASA software projects and

diverse software modules. Benchmarking with these publicly

available datasets enables comparisons with existing research

efforts. The datasets include various code metrics, such as

McCabe’s cyclomatic complexity, code length, and

Halstead’s complexity, which help assess software quality.

The NASA MDP datasets use a binary target variable, where

‘1’ indicates a defect and ‘0’ signifies no defect.

This study employs three datasets—Dataset1, Dataset2, and

Dataset3—each containing key measurements for evaluating

software fault prediction models. All datasets include two

primary variables: the number of faults (Fi) and the number

of test workers (Ti) recorded daily (Di) during different

software testing phases. Dataset1, Dataset2, and Dataset3

contain 50, 100, and 150 measurements, respectively,

offering insights into fault occurrences during the testing

phase. Notably, Dataset3 is based on real-world data from a

test/debug program for a real-time control application,

providing practical insights into debugging-related faults.

To enhance analysis, the datasets underwent preprocessing

using a novel clustering technique, which assigns class labels

to fault data. These faults are categorized into five classes (A,

B, C, D, and E), as detailed in Table 1, which presents class

values and instance distributions. The study evaluates

machine learning algorithms for software bug prediction

using confusion matrix-based performance metrics. The

following sections will provide a detailed discussion on the

confusion matrix and specific evaluation metrics used in this

research.

Table 1: Distribution of Fault Data Across Different Fault

Classes

Fault

Class

Number of

Faults

DS1 DS2 DS3

A 0-5 18 52 87

B 6-11 22 28 35

C 12-17 5 10 18

D 18-23 3 6 5

E More than 23 2 4 5

 50 100 150

6. PERFORMANCE EVALUATION PARAMETERS

The following sub-sections give the basic definitions of the

performance parameters used for fault prediction (Table 2).

Table 2: Confusion Matrix for Classifying Modules as

Faulty or Not Faulty

 Not-

Faulty

Yes Faulty

Not-

Faulty

Yes Negative

(YN)

Not Positive

(NP)

Yes

Faulty

Not Negative

(NN)

Yes Positive

(YP)

The confusion matrix is categories into four categories:

1. Yes positives (YP) are the number of modules

correctly classified as faulty modules.

2. Not positives (NP) refer to not-faulty classes

incorrectly labeled as faulty classes.

3. Yes negatives (YN) correspond to not-faulty

modules correctly classified as such.

4. Finally, Not negatives (NN) refer to faulty classes

incorrectly classified as not-faulty classes.

According to authors in [1], following are the

performance parameter used to measures the classification

techniques.

Adarsh et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 61-66

© 2023-2025, IJARCS All Rights Reserved 64

Precision: It is used to measure the degree to which the

repeated measurements under unchanged conditions show the

same results.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
 …………….(1)

Recall: It indicates the how many of the relevant things

which are to be identified. It is represented as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
……………………(2)

F-Measure: These are used to join the precision and

recall numeric value to produce one score, which is defined

as the harmonic mean of the recall and precision. It is

computed as:

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
… .(3)

Specificity: Specificity indicates how effectively a

classifier identifies the negative labels. It may be expressed

as:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
………………..(4)

Accuracy: Accuracy measure is the proportion of

predicted fault prone modules that are inspected out of all

modules. It is defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
…………(5)

7. RESULT AND ANALYSIS

The JM1 dataset is a widely used benchmark in software

defect prediction and is part of NASA’s Metrics Data

Program (MDP). It contains software metrics collected from

a large-scale NASA project, where each instance represents a

software module described by attributes such as lines of code,

cyclomatic complexity, and other software engineering

metrics. The primary objective of this dataset is to predict

whether a module contains defects, making it valuable for

evaluating machine learning models in defect detection.

Given its real-world origin, the JM1 dataset presents a

challenging and realistic environment for testing predictive

algorithms. Similarly, the CM1 dataset, also from NASA’s

MDP, is derived from a different project but includes

comparable software metrics, such as code complexity

measures. CM1 is often analyzed alongside JM1 to compare

the generalizability of machine learning models across

different projects. Each instance represents a software

module, with the goal of identifying defects, making CM1 an

essential resource for testing the robustness of predictive

models.

The PC1 dataset is another component of NASA’s MDP,

containing software metrics from yet another NASA project.

Like JM1 and CM1, PC1 is used for software defect

prediction at the module level and includes a variety of

software engineering attributes, such as complexity, code

churn, and coupling metrics. Unlike JM1 and CM1, PC1 is

relatively smaller in size, which presents unique challenges

for machine learning models, particularly in terms of

avoiding overfitting. Despite its smaller scale, PC1 is

frequently used with other MDP datasets to assess the

transferability and effectiveness of defect prediction models

across different software projects. Collectively, these datasets

provide a comprehensive testbed for evaluating machine

learning algorithms in software defect prediction, allowing

researchers to analyze how well models generalize across

different projects and software metrics.To perform statistical

analysis, bugs were collected from Promise data repository

[9]. Table 3 shows the distribution of bugs based on the

number of occurrence (in terms of percentage of class

containing number of bugs.

Table 3: Distribution of Bugs in PROMISE Dataset [9]

No. of

Classes

% of

Bugs

NumberofAssociate

d Bugs

791 79.33 0

138 13.84 1

31 3.1 2

15 1.5 3

8 0.8 4

2 0.2 5

4 0.4 6

3 0.3 7

3 0.3 8

2 0.2 9

Proposed case study shown in Figure 2 contains 997 number

of different classes in which 79.33% of classes contain zero

bugs i.e., out of 997 classes: 791 classes contains zero bugs,

13.84% of classes contain at least one bug, 3.10% of classes

contain a minimum of two bugs, 1.50% of classes contain

three bugs, 0.80% classes contain four bugs, 0.20% of classes

contain five and nine bugs, 0.40% classes contain six bugs,

0.30% of classes contain seven and eight bugs.

Figure 2: Distribution of bugs in %age

The performance analysis of various machine learning

algorithms across the JM1, CM1, and PC1 datasets highlights

a clear hierarchy based on precision, recall, accuracy, and F1-

score. Among all models, Hybrid Learning (EL) consistently

achieves the highest scores, ranging between 0.96 and 0.99,

demonstrating its ability to effectively balance precision and

recall, leading to superior overall accuracy and robustness.

Following EL, the Decision Tree (DT) algorithm also

performs well, with scores ranging from 0.94 to 0.97. While

DT is highly effective and particularly useful for

interpretability, it is slightly less precise than EL.

The Naïve Bayes (NB) algorithm, known for its simplicity

and efficiency, delivers moderate performance, with scores

between 0.92 and 0.96. While it lags slightly behind DT, NB

remains a viable option due to its balance between

computational efficiency and accuracy. Artificial Neural

Networks (ANNs), despite their power in many applications,

show slightly lower performance in this study, with scores

between 0.91 and 0.95, suggesting that ANNs may require

fine-tuning or larger datasets for optimal performance. Lastly,

Support Vector Machines (SVMs) exhibit the lowest

performance, with scores ranging from 0.90 to 0.93. While

SVMs are often effective in high-dimensional spaces, they

Adarsh et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 61-66

© 2023-2025, IJARCS All Rights Reserved 65

appear less capable of handling the complexity of these

datasets. In conclusion, Hybrid Learning (EL) emerges as the

most effective model, followed by Decision Trees, Naïve

Bayes, Artificial Neural Networks, and Support Vector

Machines, in descending order of performance.

The performance analysis of machine learning algorithms

across the JM1, CM1, and PC1 datasets reveals that Hybrid

Learning (HL) consistently outperforms all other models. HL

achieves the highest precision, recall, accuracy, and F1-score

across all datasets, with precision ranging from 0.97 to 0.99

and recall between 0.96 and 0.98. Its superior accuracy (0.97

to 0.99) indicates a strong ability to correctly classify

defective and non-defective modules, making it the most

reliable model for software defect prediction. Following HL,

the Decision Tree (DT) algorithm also demonstrates strong

performance, with accuracy scores between 0.95 and 0.97.

While slightly lower than HL, DT remains effective,

especially in scenarios where interpretability and rule-based

decision-making are essential.

The Naïve Bayes (NB) algorithm performs moderately well,

with precision ranging from 0.93 to 0.96 and accuracy

between 0.94 and 0.96. Although slightly behind DT, NB

maintains a good balance between computational efficiency

and classification accuracy. Artificial Neural Networks

(ANNs) show similar trends, achieving accuracy between

0.93 and 0.95, though they may require additional fine-tuning

for optimal performance. Finally, Support Vector Machines

(SVMs) exhibit the lowest performance, with accuracy scores

between 0.91 and 0.93, indicating that while SVMs can be

effective in certain contexts, they struggle to handle the

complexity of these datasets. Overall, the hierarchy of

performance ranks HL as the best model, followed by DT,

NB, ANN, and SVM in decreasing order of effectiveness.

Table 4: Performance Evaluation of the Proposed Hybrid

Learning Algorithm

Algorithm Performance

Measurement

Dataset

JM1 CM1 PC1

Hybrid

Learning

(HL)

Precision 0.99 0.98 0.97

Recall 0.98 0.97 0.96

Accuracy 0.99 0.98 0.97

F1 0.98 0.97 0.96

Decision

Tree (DT)

Precision 0.97 0.96 0.95

Recall 0.96 0.95 0.94

Accuracy 0.97 0.96 0.95

F1 0.96 0.95 0.94

Naive Bayes

(NB)

Precision 0.96 0.95 0.93

Recall 0.95 0.94 0.92

Accuracy 0.96 0.95 0.94

F1 0.95 0.94 0.93

Artificial

Neural

Network

(ANN)

Precision 0.95 0.94 0.92

Recall 0.94 0.93 0.91

Accuracy 0.95 0.94 0.93

F1 0.94 0.93 0.92

Support

Vector

Machine

(SVM)

Precision 0.93 0.92 0.91

Recall 0.92 0.91 0.90

Accuracy 0.93 0.92 0.91

F1 0.92 0.91 0.90

Figure 3: Performance Evaluation of the Proposed Hybrid

Learning Algorithm

8. CONCLUSION

The findings of this study highlight the effectiveness of

various machine learning algorithms in software defect

prediction using the JM1, CM1, and PC1 datasets. Among the

evaluated models, Hybrid Learning (HL) consistently

achieved the highest precision, recall, accuracy, and F1-score,

demonstrating its robustness in identifying software defects

with minimal misclassification. The Decision Tree (DT)

algorithm also performed well, offering high accuracy and

interpretability, making it a strong alternative to HL. Naïve

Bayes (NB) and Artificial Neural Networks (ANNs) provided

moderate performance, showing potential for defect

prediction but requiring optimization to match the efficiency

of HL and DT. On the other hand, Support Vector Machines

(SVMs) exhibited the lowest performance, suggesting that

they may not be well-suited for handling the complexity of

the given datasets.

Overall, this study underscores the importance of selecting an

appropriate machine learning model based on dataset

characteristics and predictive performance. The superior

results of HL suggest that hybrid approaches, which integrate

multiple learning paradigms, can enhance defect prediction

accuracy and reliability. These findings contribute to ongoing

research in software quality assurance, offering insights into

how machine learning can be leveraged for more effective

defect detection. Future work could explore further

optimization of hybrid models, integration with additional

datasets, and real-world validation to improve

generalizability across different software development

environments.

REFERENCES
1. S. Montani and C. Anglano, “Achieving self-healing in service

delivery software systems by means of case-based reasoning,”

Appl. Intell., vol. 28, no. 2, pp. 139–152, Apr. 2008.

2. Q. Yu, J. Qian, S. Jiang, Z. Wu, and G. Zhang, “An Empirical

Study on the Effectiveness of Feature Selection for Cross-

Project Defect Prediction,” IEEE Access, vol. 7, pp. 35710–

35718, 2019.

3. J. Hotzkow and Jenny, “Automatically inferring and enforcing

user expectations,” in Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis -

ISSTA 2017, 2017, pp. 420–423.

4. A. A. Hudaib, H. N. Fakhouri, A. A. Hudaib, and H. N.

Fakhouri, “An Automated Approach for Software Fault

Detection and Recovery,” Commun. Netw., vol. 08, no. 03, pp.

158–169, Jul. 2016.

5. J. Moeyersoms, E. Junqué de Fortuny, K. Dejaeger, B. Baesens,

and D. Martens, “Comprehensible software fault and effort

85%

90%

95%

100%

Proposec Ensemble Learning (EL)Decision Tree (DT)Naive Bayes (NB)Artificial Neural Network (ANN)Support Vector Machine (SVM)

Performance Evaluation

Precision Recall Accuracy F1

Adarsh et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 61-66

© 2023-2025, IJARCS All Rights Reserved 66

prediction: A data mining approach,” J. Syst. Softw., vol. 100,

pp. 80–90, Feb. 2015.

6. Z. Xu et al., “Software defect prediction based on kernel PCA

and weighted extreme learning machine,” Inf. Softw. Technol.,

vol. 106, pp. 182–200, Feb. 2019.

7. R. Malhotra, “Comparative analysis of statistical and machine

learning methods for predicting faulty modules,” Appl. Soft

Comput., vol. 21, pp. 286–297, Aug. 2014.

8. Thota, M.K., Shajin, F.H. and Rajesh, P. (2020) Survey on

Software Defect Prediction Techniques. International Journal

of Applied Science and Engineering, 17, 331-344.

9. Li, N., Shepperd, M. and Guo, Y. (2020) A Systematic Review

of Unsupervised Learning Techniques for Software Defect

Prediction. Information and Software Technology, 122.

10. Matloob, F., Ghazal, T.M., Taleb, N., Aftab, S., Ahmad, M.,

Khan, M.A. and Soo mro, T.R. (2021) Software Defect

Prediction Using Hybrid Learning: A Systematic Literature

Review. IEEE Access, 9, 98754-98771.

11. Akimova, E.N., Bersenev, A.Y., Deikov, A.A., Kobylkin, K.S.,

Konygin, A.V., Me zentsev, I.P. and Misilov, V.E. (2021) A

Survey on Software Defect Prediction Using Deep Learning.

Mathematics, 9, Article No. 1180.

12. Khan, M.A., Elmitwally, N.S., Abbas, S., Aftab, S., Ahmad,

M., Fayaz, M. and Khan, F. (2022) Software Defect Prediction

Using Artificial Neural Networks: A Systematic Literature

Review. Scientific Programming, 2022,

13. Goyal, S. (2022) Effective Software Defect Prediction Using

Support Vector Ma chines (SVMs). International Journal of

System Assurance Engineering and Man agement, 13, 681-696.

14. Stradowski, S. and Madeyski, L. (2023) Machine Learning in

Software Defect Pre diction: A Business-Driven Systematic

Mapping Study. Information and Software Technology, 155,

15. V. U. B. CHALLAGULLA, F. B. BASTANI, I.-L. YEN, and

R. A. PAUL, “EMPIRICAL ASSESSMENT OF MACHINE

LEARNING BASED SOFTWARE DEFECT PREDICTION

TECHNIQUES,” Int. J. Artif. Intell. Tools, vol. 17, no. 02, pp.

389–400, Apr. 2008.

16. Hernández-Molinos, M.J., Sánchez-García, A.J., Barrientos-

Martínez, R.E., Pérez- Arriaga, J.C. and Ocharán-Hernández,

J.O. (2023) Software Defect Prediction with Bayesian

Approaches. Mathematics, 11.

