
DOI: http://dx.doi.org/10.26483/ijarcs.v16i1.7181

Volume 16, No. 1, January-February 2025

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2023-2025, IJARCS All Rights Reserved 48

ISSN No. 0976-5697

CIPHERSHIELD: PIONEERING MULTI-KEY CRYPTOGRAPHY FRAMEWORK

FOR FILE ENCRYPTION USING DYNAMIC KEYS

Mohammed Abdul Lateef
Computer Science and Engineering

Jawaharlal Nehru Technological University Hyderabad

Hyderabad, India

Dr. P. Swetha

Computer Science and Engineering

Jawaharlal Nehru Technological University Hyderabad

Hyderabad, India

Abstract: The exponential growth of digital content consumption, particularly in the form of video data, underscores the critical need for robust

security measures to prevent unauthorized usage and copyright infringement of video data. This work introduces another level of hybrid

cryptographic approach, specifically tailored to secure video files by leveraging a hybrid encryption model that combines the asymmetric power

of RSA and dynamic AES key management. Unlike conventional methods, our approach dynamically generates unique AES keys for each chunk

of video data, using system-unique identifiers and elliptic curve equations, thereby enhancing the security and adaptability of the encryption

process. The proposed system is implemented through a sophisticated software solution that features dedicated modules for video encryption and

decryption. This system ensures that video files are securely encrypted, with keys regenerated dynamically to maintain resilience against attacks.

Rigorous testing and evaluation demonstrate the system's superiority in both security and performance metrics, proving it to be an effective solution

for combating modern challenges such as copyright infringement and piracy. This research offers a significant contribution to the field of file

security, presenting a cutting-edge cryptographic implementation that meets the evolving demands of digital content protection.

Keywords: Multi-Key Cryptography, Hybrid Cryptography, Elliptic Curve Cryptography, Real-time File Securing, Dynamic Encryption,

Performance Metrics

I. INTRODUCTION

For the digital video content, there are many and plenty of
data is built by information era brought on-line over different
threats that Ciphers based on key-secret should certainly play a
significant role protecting these types. Be it in order to protect
the confidential content from being in-scoped by others without
permission, or even from without distribution and tampering,
video encryption is a must. Videos are much heavier than plain-
text or individual static images, and so part of the reason why
they can be hard to protect is due to their size; on top of that live
streaming also demands real-time delivery. Given the particular
context, existing encryption techniques might not be adequate
for video data and they require to be made stronger with specific
methods to successfully protect. Hence, we need some dedicated
Video Data Aligned algorithms as further discussed.

The challenges with respect to manipulating video data are
immense, hence encrypting the content adds another level of
complexity. This is because the encryption algorithm to be used
must have a throughput, with video files being large in size thus,
making sure that there are no significant latencies arise during
the implementation of security is equally crucial. Their use cases
(like video streaming which requires real-time processing) are
complex, and the architecture required to support such
applications is a lot more complicated. While common
encryption algorithms, like AES and RSA for example, while
being secure, are computationally intensive and may not be
optimized for the continuous, high-throughput nature of video
streams. These issues have resulted in the development of
models that are hybrid in nature, which leverage combined
capabilities offered by symmetric and asymmetric cryptography
to cater video related security challenges.

One promising approach to video encryption is the hybrid
dynamic key cryptography approach. This method utilizes
symmetric key algorithms for encrypting the bulk of the video

data due to their efficiency and speed, while asymmetric key
algorithms are used for securing the generated key through initial
key encryption [10]. By dynamically generating and encrypting
keys for each video chunk, this technique enhances security and
ensures that compromising one chunk does not lead to the
decryption of the entire video. The use of multiple keys also
reduces the risk associated with key exposure, providing an
additional layer of security.

The unique technique created for video encryption is capable
of harnessing crucial aspects like the security and performance;
to handle the distinctive issues associated with video data [11].
The approach makes sure that every video chunk it generates is
encrypted with an exclusive key by utilizing a dynamic key
generation mechanism. This greatly increases the difficulty of
unauthorized decryption [9]. The method works fine enough, for
today's real-time video streaming applications since it is also
tuned to reduce latency [12]. The custom algorithm is a very
effective technique to secure videos of any generation, in a
variety of applications all being down to its combination of
strong security features and lightning-fast algorithmic
processing [13].

Hence this custom algorithm for the video-based encryption
introduces a sophisticated approach to ensuring that video data
is secure, and at the same time aims in addressing both the
security and performance needs of modern applications. By the
use of advanced cryptographic techniques and optimizing for the
unique characteristics of video files, this algorithm offers a
practical and efficient solution to the growing demand for secure
video communication.

II. LITERATURE SURVEY

Y. Fouzar et. al. in 2023, proposed a multi-key solution that
aims to separate the video into many parts and then encrypt each
chunk with a different key. The receivers do not have access to
these keys. The receiver application generates the key using the

Mohammed Abdul Lateef et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 48-54

© 2023-2025, IJARCS All Rights Reserved 49

encrypted chunks it has received. The receiver application starts
the decryption process as soon as the video chunks are received
because the suggested method is dynamic and automatic [1].

Iavich et. al. in 2018, introduced a new hybrid cryptographic
algorithm model using combination of two cryptographic
algorithms AES and ElGamal; and provide comparison between
two symmetric, asymmetric algorithms and new hybrid model.
They also portrayed an effectiveness and security of new hybrid
model which makes the algorithm strong against vulnerabilities.
Currently many encryption algorithms are available to secure the
data but some algorithms consume lot of computing resources
such as memory and CPU time. Their work shows comparative
analysis experimental results on those encryption algorithms[2].

Y. Hu in 2023. proposed an efficient symmetric
cryptographic algorithm based on garbled coding, and combined
it with ECC asymmetric cryptographic algorithm and SHA-256
hash algorithm to propose an efficient hybrid encryption scheme
suitable for encrypting electric power business data. This paper
also analyzes that the proposed hybrid cryptographic algorithm
has sufficiently high security, and the simulation verifies that the
proposed method has high encryption and decryption efficiency
with appropriate data chunking ratio [3].

C. Prashanth et. al. in 2021, illustrated mobile encryption
using multiple algorithms (AES, Salsa20, fernet) as part of
hybrid encryption approach. The data was split and encrypted
with multiple algorithms. The selected file to be encrypted is
separated into three parts, and it gets encrypted using AES,
Salsa20 and Fernet. The private keys are then RSA(Rivest-
Shamir-Adleman algorithm) encrypted. The RSA cipher file is
stored in phone storage. To decrypt, the same RSA cipher file
receives, and their correlating keys are received. And the AES,
Salsa20 and Fernet algorithms decrypt their respective encrypted
segments by keys. The decrypted segments are combined and
the original file is obtained. Then the file is stored in the device
[4].

T. Yue and et. al in 2019, proposed the hybrid encryption
algorithm based on wireless sensor networks, to provide the
analysis of existing wireless sensor networks susceptibility to
security, which combines the high encryption efficiency
characteristic of the symmetric encryption algorithm and
asymmetric encryption’s high encryption intensity. This
algorithm works as follows: ciphertext blocks are generated,
initially plaintext messages are grouped, and then the plaintext
blocks are encrypted using AES and ECC, then data
compression generates the cipher blocks and the MAC address
is concatenated with the ECC-encrypted AES key to form the
final cipher message. Through the description and
implementation of the algorithm, the results show that the
algorithm can reduce the encryption time, decryption time and
total running time complexity without losing security [5].

Huahong Ma and et. al. a state-of-the-art survey on the topic
of computational offloading techniques for video data in MEC
systems with an early 2024 perspective to cover most up-to-date
research was conducted (to our best knowledge), departing by
re-thinking conventional task offloading schemes from mobility
nature of edge server nodes, grasping existing static and dynamic
designs offered using fixed or mobile-based MEC servers.
Furthermore, they investigated how the video offloading
methods vary in both single-MEC server and multiple-MEC
servers. [6].

M. A. El-Mowafy and et. al. contributed to he first two
algorithms of which were proposed in 2022 for compressed
videos using the advanced H.264/AVC video coding are

displayed. This is the first approach of algorithm which was
implemented robust video encryption algorithms on chaos maps
with random key then need to test for various attack. For video
frames, a mixture of steganography and chaos-based
cryptography pueblo (steg-chao cipher) has been applied by the
second algorithm approach The algorithms are implemented on
MATLAB platform, with luminance component Y of various
resolution different yuv sequence videos. [7].

Q. Zhang, in 2023 provided a comprehensive review on
security issues in 2021 for the information transmission and the
method of hybrid encryption algorithms that will be widely used
in the future. Also, the various characteristics of algorithms in
different systems and some typical cases of hybrid encryption
will be reviewed and analyzed to showcase the reinforcement by
combining algorithms. Hybrid encryption algorithms will
improve the security of the transmission without causing more
other problems. Additionally, the way how the encryption
algorithms combine to strength the security will be discussed
with the aid of an example[8].

Lateef and Kavitha (2025) reinforced smart contract security
using bytecode analysis to detect vulnerabilities. Similarly, our
dynamic key generation and AES-based chunk encryption
enhance video security, mitigating risks of unauthorized access
and cryptographic attacks[15].

Lateef and Amri (2023) presents a security framework for
online learning platforms using blockchain, OAuth, and MFA.
Blockchain ensures immutable academic records, OAuth
enables secure authentication, and MFA adds an extra layer of
protection. Similarly, in video encryption, our approach
enhances security by employing AES-based chunk encryption
and dynamic key generation, mitigating risks of unauthorized
access and ensuring content integrity[16].

Lateef et al. (2023) introduced the C2MAP protocol using
Chebyshev chaotic maps for secure mutual authentication in
wireless networks, improving efficiency over traditional ECC-
based methods. Similarly, in video encryption, our approach
leverages dynamic key generation and AES-based chunk
encryption to enhance security, ensuring robust protection
against unauthorized access while maintaining computational
efficiency.[17]

III. PROPOSED SYSTEM

The increasing amount of video data transmitted across the
internet require strong encryption methods, at scale with high-
speed performance. There are a few problems when using
traditional encryption methods like AES and RSA for video data.
Even though, AES is efficient but the problem here is that just
one key was used for both encryption and decryption which if
compromised has introduced a big security hole. However, RSA
is computationally expensive and cannot encrypt large amounts
of data as pre-shared key pairs due to its slow processing speed.
The challenge is to create a framework that secures the data but
also have enough performance at disposal for real-time
applications like video streaming and secure file storage.

CipherShield answers these questions by providing a multi-
key, dynamic encryption model that increases both security and
performance. In this work, the system developed for it, is
intended to fulfil such need using an algorithm called Hybrid
Dynamic Key Video Encryption Algorithm (HDKVEA) which
has been designed and implemented. The approach that is
considered by HDKVE Algorithm aims to achieve video file
protection that involves an initial key encryption using RSA
algorithm and a dynamic chunk-wise AES algorithm. Such a
hybrid method can be used to play off the strength and weakness

Mohammed Abdul Lateef et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 48-54

© 2023-2025, IJARCS All Rights Reserved 50

of each cryptographic technique in order achieve security with
strong efficiency. The primary requirement of the system is to
securely encrypt and decrypt video files while maintaining the
integrity and confidentiality of the content. The system must
handle large video files by dividing them into smaller chunks,
each encrypted with a dynamically generated key.

This is the two-step process HDKVE Algorithm uses to
encrypt and decrypt. First, a master key is encrypted using RSA,
which provides us the security of having different keys used for
encryption and decryption. Then each chunk of the video file
will be encrypted with AES and dynamically generated keys
through the same AES. These keys are generated from a pre-
defined equation and are unique per chunk, so that it enhances
security to the full extent.

The most basic video safeguarding system must guarantee
that it is a process for securely encrypting and decrypting video
files as well in maintaining confidence that this content arrive
unaltered. The second is very tricky since the system needs to
encrypt big video files by breaking them down into chunks and
each chunk containing in an encrypted file is based on a dynamic
key that was generated using chunk wise input. A two-step
process for encryption and decryption is used by the HDKVE
Algorithm. The process starts by getting a master key encrypted
using RSA. After that, each of these chunks are encrypted using
AES and a runtime generated keys. These keys are generated
through a predefined function and they differ for each chunk
which also makes it secure to use.

Here, we present an algorithm to encrypt the video content
for enhanced security, where HDKVE Algorithm helps in
resolving common complication of just applying symmetric and
asymmetric cryptography by using its own unique way of
creating keys. This hybrid approach reinforces security, yet
allows you to gain all the necessary optimal performance for
real-time video applications. This approach optimizes the
encryption process enough to handle larger video files while still
being suitable for streaming and other high-throughput use-
cases.

Encrypting video content poses unique challenges due to the
large size of video files and the need for real-time processing.
Traditional encryption methods, such as AES (Advanced
Encryption Standard) and RSA (Rivest-Shamir-Adleman), have
limitations when applied to video data. AES, while efficient,
relies on a single key, posing a security risk if the key is
compromised. RSA provides secure key exchange but is
computationally intensive and not suited for large data volumes.

IV. CIPHERSHIELD ALGORITHM WITH FORMULATION

The formulation for CipherSield Algorithm for the encryption

and decryption process is portrayed below.

A. Encryption Process

1. Let (V) be the original video file of size (S).

𝑉 = {𝐶1, 𝐶2, … , 𝐶𝑆}

2. Divide (V) into (n) chunks (iC) such that:

∑|𝐶𝑖|

𝑛

𝑖=1

= 𝑉

3. Initialize VID from first 16 bytes of first video chunk.

𝑉𝐼𝐷 = {𝐶1[1], 𝐶1[2], … , 𝐶1[16]}

4. Generate a master AES key using the ECC equation with VID.
The modified fundamental ECC equation is,

𝑦 = √(𝑥3 + 𝑎𝑥 + 𝑏)𝑚𝑜𝑑(𝑝)

And the master AES key is generated as below with int
converted value of GUID

 𝐾𝑚𝑎𝑠𝑡𝑒𝑟 = √(𝑥3 + 𝑉𝐼𝐷 ∗ 𝑥 + 𝐺𝑈𝐼𝐷)𝑚𝑜𝑑(2256)

Where x is derived as below for first chunk,

𝑥 = 𝑖𝑛𝑡(𝑠ℎ𝑎256(𝑉𝐼𝐷))

5. Encrypt the first chunk using master AES key (masterK)

𝐸0 = 𝐸𝐴𝐸𝑆(𝐶0, 𝐾𝑚𝑎𝑠𝑡𝑒𝑟)

6. Encrypt the symmetric key (masterK) using the public RSA

key (KRSA_Pub)

𝐾𝐸𝑁𝐶_𝑚𝑎𝑠𝑡𝑒𝑟 = 𝐸𝑅𝑆𝐴(𝐾𝑚𝑎𝑠𝑡𝑒𝑟, 𝐾𝑅𝑆𝐴_𝑝𝑢𝑏)

7. Concatenate the encrypted master key with the first encrypted
video chunk.

𝐸0 = 𝐸0 ∥ 𝐾𝐸𝑁𝐶_𝑚𝑎𝑠𝑡𝑒𝑟

8. For encrypting chunks other than first chunks we use modified
GUID to make key generated independent.

GUIDnew = GUID ⊕ (SHA256(Kprev)[: 16])

9. For the rest of video chunks to be encrypted, the key would be
derived from previous key KPrev and GUID is as follows. Also (
KPrev= KENC_master)when the second chunk is being encrypted,
where i >= 1

.

𝐾𝑖−1
∗ = √(𝑥3 + 𝐾𝑃𝑟𝑒𝑣 ∗ 𝑥 + 𝐺𝑈𝐼𝐷𝑛𝑒𝑤)𝑚𝑜𝑑(2256)

Where, x is obtained as,

𝑥 = 𝑖𝑛𝑡(𝑠ℎ𝑎256(𝐾𝑒𝑦𝑃𝑟𝑒𝑣))

10. Encrypt each video chunk (iC) using its corresponding

symmetric key (iK) with the AES algorithm.

𝐸𝑖 = 𝐸𝐴𝐸𝑆(𝐶𝑖 , 𝐾𝑖)

11. Store or transmit the encrypted video chunks (iE) to the

receiver having the final cipher as FinalC

Mohammed Abdul Lateef et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 48-54

© 2023-2025, IJARCS All Rights Reserved 51

∑|𝐸𝑖|

𝑛

𝑖=1

= 𝐶𝐹𝑖𝑛𝑎𝑙

The encryption process of HDKVE algorithm of
CipherShield is depicted in Table[I].

TABLE I. PSEUDOCODE FOR ENCRYPTION PROCESS USING HDKVE

ALGORITHM

Pseudo code

Step 1
Initialize GUID from Receiver and Load RSA public

key.

Step 2 Divide the video into chunks.

Step 3 Initialize VID from first 16 bytes of first video chunk.

Step 4
Generate a master AES key using ECC equation with

VID.

Step 5

Encrypt First chunk using master AES key and generate

the next key using ECC equation with Previous AES

key.

Step 6
Encrypt the master AES key using RSA public key and

concatenate it with first encrypted video chunk

Step 7 For each chunk:

Step 7.1
-Generate a dynamic key using the ECC equation and

previous AES Key.

Step 7.2 -Encrypt the chunk using the dynamic key.

Step 8 Save/Transmit Encrypted chunks.

Note: The encrypted data being stored or transmitted would
be more than the actual size of video file as it involves
concatenation of the master AES key.

B. Decryption Process

1. Retrieve the encrypted video chunks (FinalE) and the GUID

information.

2. Extract the first encrypted chunk and the encrypted master

AES key i.e. (0E) and (
masterENCK _

)from (0E).

𝐸0 = 𝐸0[: 256] and 𝐾𝐸𝑁𝐶_𝑚𝑎𝑠𝑡𝑒𝑟 = 𝐾0[256:]

3. Decrypt the encrypted symmetric key (
masterENCK _

) using

the private RSA key (KRSA_Priv).

𝐾𝑚𝑎𝑠𝑡𝑒𝑟 = 𝐷𝑅𝑆𝐴(𝐾𝐸𝑁𝐶_𝑚𝑎𝑠𝑡𝑒𝑟 , 𝑃𝑃𝑟𝑖𝑣)

4. Derive the chunk data by decrypting each encrypted video
chunk using the key.

* If the first video chunk is to be decrypted the key would be
derived as follows. Here x is integer from the hash of VID i.e.

𝐶0 = 𝐷𝐴𝐸𝑆(𝐾𝑚𝑎𝑠𝑡𝑒𝑟, 𝐸0)

Here (Kmaster = K0)i.e. the first key generated and (1K) is

the subsequent key generated.

𝐾1 = √(𝑥3 + 𝑉𝐼𝐷 ∗ 𝑥 + 𝐺𝑈𝐼𝐷)𝑚𝑜𝑑(2256)

*For encrypting chunks other than first chunks we use
modified GUID to make key generated independent.

𝐺𝑈𝐼𝐷𝑛𝑒𝑤 = 𝐺𝑈𝐼𝐷 ⊕ (𝑆𝐻𝐴256(𝐾𝑝𝑟𝑒𝑣)[: 16])

5. For the rest of encrypted video chunks key would be derived
from previous key KPrev and GUID is as follows for i>=1.

𝐾𝑖−1
∗ = 𝑥3 + 𝐾𝑃𝑟𝑒𝑣 ∗ 𝑥 + 𝐺𝑈𝐼𝐷𝑛𝑒𝑤 . 𝑚𝑜𝑑2256

6. Decrypt each of the encrypted video chunks (iE) using its

corresponding symmetric keys (iK) with the AES algorithm.

𝐶𝑖 = 𝐷𝐴𝐸𝑆(𝐸𝑖 , 𝐾𝑖)

7. Reassemble the decrypted video chunks (iC) to reconstruct

the original video file (V).

𝑉 = ∑ 𝐶𝑖

𝑛

𝑖=0

The decryption process of HDKVE algorithm of
CipherShield is depicted in Table[II].

TABLE II. PSEUDOCODE FOR DECRYPTION PROCESS USING HDKVE

ALGORITHM

Pseudo code

Step 1 Initialize RSA private key and load GUID data.

Step 2
Extract Encrypted master AES Key, GUID from first

encrypted video chunk.

Step 3 Decrypt the master AES key using RSA private key.

Step 4 For each encrypted chunk:

Step 5
-Generate the corresponding dynamic key using the

predefined equation.

Step 6 -Decrypt the chunk using the dynamic key

Step 7
Combine the decrypted chunks to reconstruct the video

file.

Step 8 Save/transmit the decrypted video.

V. IMPLEMENTATION

To validate the effectiveness and performance of the
CipherShield algorithm, a comprehensive web application was
developed. This web application was designed to manage the
entire life cycle of video encryption and decryption, from the
initial upload and chunking of video files to the final decryption
and playback. The application architecture was modular,
enabling independent testing and optimization of each
component. The application is structured into several distinct
modules, each responsible for a specific aspect of the encryption
and decryption process. This modular design ensures that each
component can be independently developed, tested, and
optimized, enhancing the overall robustness and efficiency of the
system.

A Video Upload and Chunking Module handles the initial
upload of video files. Once a video file is uploaded, it is divided
into smaller chunks. The chunking process is crucial for parallel
processing, enabling efficient encryption and decryption. The
size of each chunk is configurable but the default assumed is
1024 kilo bytes or 1mb, allowing the system to balance between
security and performance. Upon chunking the video, the
Dynamic Key Generation Module helps the system generates
unique symmetric keys for each chunk. These keys are generated
using a cryptographically secure random number generator to
ensure unpredictability and enhance security. The dynamic

Mohammed Abdul Lateef et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 48-54

© 2023-2025, IJARCS All Rights Reserved 52

nature of key generation ensures that each chunk is encrypted
with a distinct key, mitigating the risk of key compromise.

A Symmetric Encryption Module uses the Advanced
Encryption Standard (AES) algorithm to encrypt each video
chunk with its corresponding symmetric key. AES is chosen for
its efficiency and robustness in handling large data volumes. The
encryption process ensures that each chunk is securely
encrypted, making it difficult for unauthorized entities to access
the content. The symmetric keys generated for each chunk are
encrypted using the RSA algorithm in the Asymmetric Key
Encryption Module. RSA provides secure key exchange,
ensuring that the symmetric keys can be safely transmitted and
stored. This module ensures that even if the encrypted video
chunks are intercepted, the symmetric keys remain protected.

 The encrypted video chunks and their corresponding
encrypted symmetric keys can be stored or transmitted securely.
This module manages the storage and retrieval of encrypted data,
ensuring data integrity and confidentiality. Additionally, it
handles the secure transmission of data, ensuring that the
encrypted chunks and keys can be efficiently transmitted over
potentially insecure channels.

Fig. 1. Time taken to Chunk the video

Fig. 2. Time taken generate dynamic keys for the chunks created

Fig. 3. Time taken to Encrypt the video file using dynamic keys generated.

Fig. 4. Time taken to Decrypt the video chunks

When a user requests to view a video, the system retrieves
the encrypted chunks, the encrypted symmetric key and the
GUID of receiver stored. The decryption process involves first
decrypting the encrypted symmetric key using the private RSA
key. Once the symmetric key is retrieved, each video chunk is
decrypted using its corresponding decrypted symmetric key.
Each encrypted video chunk is decrypted using its corresponding
symmetric key. The decryption process uses the AES algorithm,
resulting in the original chunk. The decrypted chunks are then
reassembled to reconstruct the original video file. The
reassembly process ensures that the video is reconstructed
accurately and can be played back seamlessly.

A. Delay for splitting file into chunks

The time required to divide a video file into smaller chunks,
a critical component of our video encryption process. Our
implementation utilizes a custom chunking algorithm rather than
relying on utilities that are computationally heavy like
FFMpeg[1]. The chunk size is dynamically determined based on
the video content, aiming for efficient processing and
encryption. The time taken by our video processing module to
split the video file into chunks is illustrated in Fig.[1]. The results
indicate that as the file size increases, the delay also increases
gradually, which is expected. This delay is essential for
achieving high security in video transmission, despite the
overhead introduced by chunk formation.

B. Time to Generate Encryption Keys

To assess the impact of our multi-key encryption approach,
this metric calculates the time required to generate each key
during the encryption process. Our custom key generation
method uses Elliptic Curve Equation(ECE) combined with
system-specific information and video-specific data, ensuring
each key is unique and secure. Fig[2] shows the time required to
generate each key. The first key is derived from the video
identifier, while subsequent keys are generated using a
combination of the previous key and additional system-specific
data. The consistency in parameter lengths results in minimal
variation in key generation times, though the precise time
captured allows for detecting even small delays. Here the plot is
made for a video file of over 500mb in order to determine the
delay between key generation of over 500 keys as each chunk is
of 1mb. The model determines the delay between 0.00005 to
0.00025s or 0.05 to 0.25 milliseconds.

C. Time to Encrypt Video Chunks

This section examines the time taken to encrypt individual
video chunks. Each chunk, once formed, is encrypted using AES
with the dynamically generated keys. Unlike traditional methods
where chunk sizes are fixed, our implementation allows for
varying chunk sizes to optimize encryption efficiency. Fig[3]
depicts the delay involved in encrypting each chunk. The chunks
are of 1mb in size, leading to encryption times ranging from 0.9

Mohammed Abdul Lateef et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 48-54

© 2023-2025, IJARCS All Rights Reserved 53

to 1.2 seconds for lower video sizes and is directly proportional
to higher video sizes.

D. Number of Keys Generated

This metric tracks the number of encryption keys generated
during the video processing. Given our multi-key approach, each
chunk is encrypted with a unique key, enhancing security. The
total number of keys generated corresponds to the number of
chunks produced from the video file. Since the keys are
temporarily stored and used only once, the increase in key
quantity does not impact memory usage or introduce additional
delays in the encryption process.

E. End-To-End Decryption Delay

This section analyses the time taken by the receiver’s
application to process encrypted video chunks. Upon receiving
the encrypted chunks, the application decrypts them sequentially
and combines them into the original video. The total decryption
time, including chunk reassembly, is depicted in Fig[4]. The
decryption delay generally mirrors the encryption delay,
although transmission medium factors may introduce additional
delays. However, the decryption ensures that the video is ready
for playback without significant lag.

F. Comparison of Results

To ensure a fair and consistent comparison, we adhered to
similar test conditions as those described in [1]. This included
using video files of comparable sizes and applying the
encryption and decryption processes within controlled
environments. The primary metric under consideration is the
time taken to encrypt and decrypt video files. We captured this
data for various file sizes, ensuring that the comparison is
comprehensive and covers a wide range of scenarios. The results
of our comparison are illustrated in the form of a double bar
graph. In this graph, each video file size is represented on the x-
axis, while the y-axis denotes the time required (in seconds) to
complete the encryption and decryption processes as shown
Fig[5].

One bar in each pair of represents the encryption time
reported in [1], while the other bar indicates the encryption time
recorded by our implementation. The results indicate that our
algorithm consistently outperforms the base paper's technique in
terms of encryption speed, particularly as the video file size
increases. This performance improvement is largely attributed to
our dynamic key generation mechanism and efficient chunk
processing. Similarly, the decryption times are plotted side by
side. Our algorithm demonstrates a lower decryption time across
all test cases, emphasizing its efficiency in real-time video
playback scenarios. The optimized key retrieval and chunk
reassembly processes are key factors contributing to this
performance gain was demonstrated on a 15.4mb video file and
higher ones as well but the below plot can be observed for the
same.

Fig. 5. Results comparison using proposed algorithm and existing

algorithm[1] for 15.4mb video file.

VI. CONCLUSION

In this paper, we introduce a secure and efficient approach
for video encryption/decryption targeting on protecting the
contents of video data. The system developed uses sophisticated
cryptographic approaches such as dynamic key production and
chunk wise encryption to make sure video data is safe at the time
of decryption and transfer. The proposed system utilizes these
innovative ways to not only secure video files but with limited
process time which makes it feasible for real-time applications.

This shows both secure and high-performance armouring
against the state-of-the art techniques. These two methods,
combined with the key generation method employed with ECC
equation demonstrates on-the-fly nature of keys and allows to
decrypt each chunk securely. Because the approach deals with
large video files without compromising security in handling
these data, make it potentially a useful tool for several
applications such as secure video conferencing.

This proposed work is an efficient methodology for video
encryption which may be considered as a required advancement
within the region of cryptography aimed toward presenting
strong and speedy algorithm. With its adaptable scripting system
and robust security measures, it becomes a valuable asset when
seeking to safeguard video content in an age that is ever more
digital. By integrating the system with other security protocols,
this kind of approach would help a long way to making it more
useful for deployment in different environments involving large
data to be transferred securely..

VII. REFERENCES

[1] Y. Fouzar, A. Lakhssassi and M. Ramakrishna, "A Novel
Hybrid Multikey Cryptography Technique for Video
Communication," in IEEE Access, vol. 11, pp. 15693-
15700, 2023, doi: 10.1109/ACCESS.2023.3242616.

[2] M. Iavich, S. Gnatyuk, E. Jintcharadze, Y. Polishchuk and
R. Odarchenko, "Hybrid Encryption Model of AES and
ElGamal Cryptosystems for Flight Control Systems," 2018
IEEE 5th International Conference on Methods and
Systems of Navigation and Motion Control (MSNMC),
Kiev, Ukraine, 2018, pp. 229-233, doi:
10.1109/MSNMC.2018.8576289.

[3] Y. Hu, L. Gong, J. Zhang and X. Luo, "An Efficient Hybrid
Encryption Scheme for Encrypting Smart Grid Business
Data," 2023 IEEE 11th Joint International Information
Technology and Artificial Intelligence Conference
(ITAIC), Chongqing, China, 2023, pp. 1490-1494, doi:
10.1109/ITAIC58329.2023.10408778.

[4] C. Prashanth, M. Mohamed, K. Latha, S. Hemavathi and
D. Venkatesh, "Enhanced Hybrid Encryption Through
Slicing and Merging of Data with Randomization of
Algorithms," 2021 4th International Conference on

Mohammed Abdul Lateef et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 48-54

© 2023-2025, IJARCS All Rights Reserved 54

Computing and Communications Technologies (ICCCT),
Chennai, India, 2021, pp. 376-380, doi:
10.1109/ICCCT53315.2021.9711883.

[5] T. Yue, C. Wang and Z. -x. Zhu, "Hybrid Encryption
Algorithm Based on Wireless Sensor Networks," 2019
IEEE International Conference on Mechatronics and
Automation (ICMA), Tianjin, China, 2019, pp. 690-694,
doi: 10.1109/ICMA.2019.8816451.

[6] Huahong Ma, Bowen Ji, Honghai Wu, Ling Xing, "Video
data offloading techniques in Mobile Edge Computing: A
survey", Physical Communication, Volume 62, 2024,
102261, ISSN 1874-4907, doi:
10.1016/j.phycom.2023.102261

[7] M. A. El-Mowafy, S. M. Gharghory, M. A. Abo-Elsoud,
M. Obayya and M. I. Fath Allah, "Chaos Based Encryption
Technique for Compressed H264/AVC Videos," in IEEE
Access, vol. 10, pp. 124002-124016, 2022, doi:
10.1109/ACCESS.2022.3223355

[8] Q. Zhang, "An Overview and Analysis of Hybrid
Encryption: The Combination of Symmetric Encryption
and Asymmetric Encryption," 2021 2nd International
Conference on Computing and Data Science (CDS),
Stanford, CA, USA, 2021, pp. 616-622, doi:
10.1109/CDS52072.2021.00111.

[9] X. Zhou, H. Wang, K. Li, L. Tang, N. Mo and Y. Jin, "A
Video Streaming Encryption Method and Experimental
System Based on Reconfigurable Quaternary Logic
Operators," in IEEE Access, vol. 12, pp. 25034-25051,
2024, doi: 10.1109/ACCESS.2024.3365523

[10] T. Shanableh, "HEVC Video Encryption With High
Capacity Message Embedding by Altering Picture
Reference Indices and Motion Vectors," in IEEE Access,
vol. 10, pp. 22320-22329, 2022, doi:
10.1109/ACCESS.2022.3152548.

[11] B. Jiang, Q. He, P. Liu, S. Maharjan and Y. Zhang,
"Blockchain Empowered Secure Video Sharing With
Access Control for Vehicular Edge Computing," in IEEE

Transactions on Intelligent Transportation Systems, vol.
24, no. 9, pp. 9041-9054, Sept. 2023, doi:
10.1109/TITS.2023.3269058.

[12] J. Arif et al., "A Novel Chaotic Permutation-Substitution
Image Encryption Scheme Based on Logistic Map and
Random Substitution," in IEEE Access, vol. 10, pp. 12966-
12982, 2022, doi: 10.1109/ACCESS.2022.3146792.

[13] M. Yu, H. Yao, C. Qin and X. Zhang, "A Comprehensive
Analysis Method for Reversible Data Hiding in Stream-
Cipher-Encrypted Images," in IEEE Transactions on
Circuits and Systems for Video Technology, vol. 32, no.
10, pp. 7241-7254, Oct. 2022, doi:
10.1109/TCSVT.2022.3172226.

[14] A. Al-Hyari, C. Obimbo, M. M. Abu-Faraj and I. Al-
Taharwa, "Generating Powerful Encryption Keys for
Image Cryptography With Chaotic Maps by Incorporating
Collatz Conjecture," in IEEE Access, vol. 12, pp. 4825-
4844, 2024, doi: 10.1109/ACCESS.2024.334

[15] Lateef, M. A., & Kavitha, A. (2025). Blockchain smart
contract fortification using bytecode analysis to address
vulnerabilities. In S. Sethi, B. Sahoo, D. Tosh, S. K.
Jayasingh, & S. K. Bhoi (Eds.), *Computing,
Communication and Intelligence* (1st ed., pp. 4). CRC
Press. Doi: 10.1201/9781003581215

[16] Lateef, M. A., & Amri Nesa Sultani (2023). Enhancing
Security In Online Learning Environments: A Holistic
Approach via MFA and OAuth, IJNRD - International
Journal Of Novel Research And Development ,
ISSN:2456-4184, Vol.8, Issue 8, page no.d122-d129,
August-2023.

[17] Lateef, M.A., Atheeq, C., Rahman, M.A., Faizan, M.A.
(2023). Data Aegis Using Chebyshev Chaotic Map-Based
Key Authentication Protocol. In: Manchuri, A.R., Marla,
D., Rao, V.V. (eds) Intelligent Manufacturing and Energy
Sustainability. Smart Innovation, Systems and
Technologies, vol 334. Springer, Singapore.
https://doi.org/10.1007/978-981-19-8497-6_19

