
DOI: http://dx.doi.org/10.26483/ijarcs.v16i1.7178

Volume 16, No. 1, January-February 2025

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2023-2025, IJARCS All Rights Reserved 6

ISSN No. 0976-5697

GEOMETRIC JACOBIANS DERIVATION AND KINEMATIC SINGULARITY

ANALYSIS FOR 6-DOF ROBOTIC MANIPULATOR

Mohammad Y Alwardat

High School of Automation and Robotics,

Peter the Great Saint Petersburg Polytechnic University,

Russia

Hassan Alwan

Associate Professor, Mechanical Engineering Department,

University of Technology,

Baghdad, Iraq

Abstract: This article investigates the kinematic singularities and geometric Jacobians of a 6-DOF robotic manipulator, incorporating a prismatic

joint, from the perspective of singularity theory. The study begins by deriving the forward kinematics using the Denavit-Hartenberg (D-H)

convention and examines the Jacobian matrices to identify configurations where the Jacobian matrix becomes rank-deficient, signaling the presence

of kinematic singularities. These singularities pose critical challenges, such as restricting end-effector mobility and leading to infinite solutions in

inverse kinematics. The determinant of the Jacobian matrix is employed to detect singular configurations, and the implications for motion control

and trajectory planning are discussed. Through a detailed analysis and MATLAB simulations, the article highlights the importance of singularity

avoidance and provides a deeper understanding of the manipulator's kinematic behavior. The findings emphasize the need for strategic design and

motion planning to ensure optimal performance and stability in robotic manipulation tasks.

Keywords: Robotic manipulator, kinematic singularities, geometric Jacobian, prismatic joint, Denavit-Hartenberg, inverse kinematics.

I. INTRODUCTION

The kinematics of robotic manipulators are

fundamental to their performance in a wide range of

applications, including industrial automation, medical

robotics, and service robots. A key aspect of this study is the

manipulator Jacobian, which serves as the differential

kinematic map relating joint velocities to the end-effector’s

linear and angular velocities. Understanding the behavior of

the Jacobian is crucial for trajectory planning, velocity

control, force control, and solving the inverse kinematics

problem. However, one of the most significant challenges in

manipulator kinematics is the occurrence of kinematic

singularities, which arise when the Jacobian loses rank,

resulting in a loss of degrees of freedom in the system. These

singularities limit the motion capabilities of the manipulator

and can lead to control issues, such as infinite solutions for

inverse kinematics.

This article focuses on a robotic manipulator with

six degrees of freedom (6-DOF) and a prismatic joint.

Through the derivation of the geometric Jacobian, we explore

the impact of joint configurations on the rank of the Jacobian

matrix and identify the positions where singularities occur.

We employ the Denavit-Hartenberg (D-H) convention for the

kinematic modeling of the manipulator and investigate how

the Jacobian’s determinant can be used to detect singularities.

By analyzing the manipulator’s kinematics and examining the

conditions for singular configurations, this study provides

valuable insights into the limitations and potential risks of

robotic manipulators, as well as strategies for avoiding these

singularities.

II. MANIPULATORS

A manipulator is a type of robotic system

comprising a series of mechanical links interconnected by

joints, all controlled by a computer. These manipulators form

a kinematic chain, with each link connected to the next by a

joint. This report specifically investigates rotary joints, which

serve as the connection between two adjacent links. The axis

of rotation, defined as the intersection of links 𝑙𝑖 and 𝑙𝑖+1,

plays a critical role in the kinematic structure of the

manipulator, while the joint variables represent the relative

displacement between consecutive links. In this study, we

focus on a robotic manipulator with six degrees of freedom,

incorporating a prismatic joint within its kinematic

configuration.

1 Links and Joint Identification

The manipulator consists of four links, five revolute

joints and one prismatic joint. Each joint connects two

consecutive links to each other. The links, joints and

dimensions are shown in Figure 2.

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 7

Fig. 2. Links and joint identification

2 D-H parameters

The widely adopted Denavit-Hartenberg (DH) convention

utilizes four parameters to define the relationship between the

reference frame of each link in a robotic manipulator. These

parameters 𝑎𝑖 , 𝑑𝑖 , 𝛼𝑖 , 𝑎𝑛𝑑 𝜃𝑖 are assigned to each link 𝑖 ∈
 [1, 𝑛] to transform the reference frame from link 𝑖 − 1 to

link 𝑖 using the fundamental transformation matrices. The

coordinate system is established using the D-H convention,

with the corresponding parameters outlined in Table 1. For

this analysis, the coordinate configuration shown in Figure 2

is selected, and the D-H algorithm is applied to assign the

appropriate parameters, as detailed in Table 1.

Table 1 Parameters of the D-H robotic manipulator

III. FORWARD KINEMATIC ANALYSIS

Forward kinematics analysis is the process of calculating the position and orientation of the end- effector with given joints

angles so by substituting parameters in the homogenous transformation matrix from joint 𝑖 to joint 𝑖 + 1:

 𝑇𝑖
𝑖−1 = [

cθi −sθicαi sθi sαi 𝑎i cθi

sθi cθicαi −cθisαi 𝑎i sθi

0 sαi cαi 𝑑i

0 0 0 1

] (1)

The order of transformations follows a consecutive sequence, beginning from the first joint and continuing to the nth joint.

Equation (2) represents the total transformation up to the end-effector.

 𝑇𝑖
0 = 𝑇1

0 . 𝑇2
1 . 𝑇3

2 . . 𝑇𝑖
𝑖−1 = [𝑅𝑛

0 𝑃𝑛
0

0 1
] (2)

 = [

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

]

 𝑇6
0 = [

c12c3456 s12 c12 s3456 Px

s12 c3456 − c12 s12 𝑠3456 Py

s3456 0 − c3456 pz

0 0 0 1

] (3)

Where:

px = L3 c12 c345 + L4 s12 + c12(L2 s34 + L1 c3)

py = L3 s12 c345 − L4 c12 + s12(L2 c34 + L1 s3)

 Joint i αi-1 (degree) ai-1 (cm) θi (degree) di (cm)

0-1 1 Base 0 0 q1 H

1-2 2 Shoulder 90 0 q2 0

2-3 3 Elbow 0 L1 q3 0

3-4 4 Elbow 0 L2 q4 0

4-5 5 Wrist 0 L3 q5 0

5-6 6 Gripper 90 0 q6 L4

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 8

pz = H + L3 s345 + L2 s3

IV. ИНВЕРСНЫЙ КИНЕМАТИЧЕСКИЙ АНАЛИЗ

When working with inverse kinematics, we use the total transformation matrix from equation (2) and multiply it by the

inverse of the initial transformation matrix. This allows us to calculate the joint angles by comparing the matrix elements in equation

(4).

 (𝑇n
0)−1 × 𝑇n

0 = 𝑇2
1 . . . 𝑇n

n−1 (4)

where: (𝑇n
0)−1 =

𝐴𝑑𝑗 (𝑇n
0)

𝐷𝑒𝑡 (𝑇n
0)

To solve 𝑞5 , multiply each side by 𝑇1
−1 we will get:

 A1
−1 ∗ [

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

] = A2
1 ∗ A3

2 ∗ A4
3 ∗ A5

4 ∗ A6
5 (5)

We can obtain:

[

c1nx + 𝑆1ny c1ox + 𝑆1oy c1ax + 𝑆1ay c1px + 𝑆1py

−s1nx + 𝐶1ny −s1ox + 𝐶1oy −s1ax + 𝐶1ay −𝑆1px + 𝑆1py

nz oz az pz − H
0 0 0 1

] =

[

. . . L1c2c3 + L2c2s34 + L3c2c345 + L4s2

. . . L1s2c3 + L2s2s34 + L3s2c345 − L4s2

. . . L3s345 + L2s34 + L1s3

0 0 0 1

] (6)

Both matrix elements in Eq. (6) are equated to each other (right-hand side = and the left-hand side) and the resultant 𝑞

values are extracted. By taking (1 row, 4 column) (2 row, 4 column):
c1px + s1py = L1c2c3 + L2c2s34 + L3c2c345 + L4s2 (7)

−s1px + c1py = L1s2c3 + L2s2s34 + L3s2c345 − L4s2 (8)

Squaring and adding the two equations, we get:

(px
2 + py

2) = (L1c3)
2 + L2

2 + L3
2 + d4 s245

2 + 2 ∗ L1L2c3c4 + 2 ∗ L1L3c45c3 +

2 ∗ L2L3c4c45 − 2 ∗ L1 d4 c3 s245 − 2 ∗ d4 L2 s4c245 − 2 ∗ d4 L3 s45c245

We can solve for (cosq5, sinq5) as follows:

c5 =
𝑝𝑥

2 + 𝑝𝑦
2 − (𝐿1c3)

2 − 𝐿2
2 − 𝐿3

2 − (L4 s245)
2

2 ∗ 𝐿2 𝐿3

s5 = ∓√1 − c5
2 = ∓√1 −

(𝑝𝑥
2 + 𝑝𝑦

2 − (𝐿1c3)2 − 𝐿2
2 − 𝐿3

2 − L4 s245)2

(2 ∗ 𝐿2 𝐿3)2

 𝑞5 = Atan2(S5, C5) (9)

From Eq. (6) we can get:

 pz − H = L3s345 + L2s34 + L1s3 (10)

 s34 =
pz−H−L3s345−L1s3

L2
 (11)

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 9

 𝑞34 = Atan2 [
pz − H − L3s345−L1s3

L2
, ∓√1 − (

pz − H − L3s345−L1s3

L2

)
2

] (12)

 𝑞4 = 𝑞34 − 𝑞3

Multiplying each side of Eq. (2) with 𝑇1
−1 ∗ 𝑇2

−1

 A1
−1 ∗ A2

−1 ∗ [

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

] = A3
2 ∗ A4

3 ∗ A5
4 ∗ A6

5 (13)

We can obtain:

 [

c1c2 nx + c1s2 ny + s1nz c1c2 ox + c1s2 oy + s1oz c1c2 ax + c1s2 ay + s1az c1c2 px + c1 s2 py + s1 pz

−s1c2 nx − s1s2 ny + c1nz −s1c2 ox − s1s2 oy + c1oz −s1c2 ax − s1s2 ay + c1az −s1c2 px − s1 s2 py + c1 pz

s2 nx − c2 ny s2 ox − c2 oy s2 ax − c2 ay s2 px−c2 py − H

0 0 0 1

]

 = [

c3456 0 s3456 𝐿3 c345 + 𝐿2 c34 + 𝐿1c3

s3456 0 −c3456 𝐿3 s345 + 𝐿2 s34 + 𝐿1s3

0 1 0 L4
0 0 0 1

] (14)

Equating elements (3,4) of the right-hand side matrix and the left-hand side matrix of Eq. (14), we can obtain:

s2 px−c2 py − H = L4

s2 px−c2 py = L4 + 𝐻

𝑞2 = Atan2(px, −py) ∓ [√px
2 + py

2−(L4 + 𝐻)2, (L4 + 𝐻)] (15)

From Eq. (2) we can obtain:

ax = с12 s3456

ay = s12 s3456

Dividing the two equations:

 𝑆56

С56
=

ay

ax
𝑞12 = Atan2(ay, ax) (16)

 𝑞1 = 𝑞12 − 𝑞2 (17)

Now multiply each side of Eq. (2) by A1
−1 ∗ A2

−1 ∗ A3
−1:

 A1
−1 ∗ A2

−1 ∗ A3
−1 [

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

] = A4
3 ∗ A5

4 ∗ A6
5 (18)

 [

c1c23 c1s23 s1 −L1c1c2

−s1c23 −s1s23 c1 L1s1s2

s23 −c23 0 −L1s2 − H
0 0 0 1

] . [

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

] =

 [

c456 0 s456 L3c45 + L2c4

c456 0 −c456 L3s45 + L2s4
0 1 0 L4

0 0 0 1

] (19)

Equating elements (3, 4) from the two sides of Eq. (19):

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 10

s23 p𝑥 − c23p𝑦 − 𝐿1s2 − H = L4

s23 p𝑥 − c23p𝑦 = 𝐿1s2 + H + L4

𝑞23 = Atan2(p𝑥, −py) ∓ Atan2(√𝑝𝑥
2 + 𝑝𝑦

2 − (𝐿1s2 + H + L4)2, 𝐿1s2 H + L4) (20)

 𝑞3 = 𝑞23 − 𝑞2 (21)

From the Eq. (2) we can also obtain:

az = − c3456

 𝐶1234 = −az 𝑞3456 = Atan2 (√1 − a𝑧
2, a𝑧) (22)

 𝑞6 = 𝑞3456 − 𝑞3 − 𝑞4 − 𝑞5 (23)

V. Linear and Angular Velocity

 In the context of robotic manipulator kinematics, velocity refers to the rate at which an object or a point on the object is

changing its position. In robotic manipulators, linear and angular velocity are important concepts in the field of robotics, particularly

when dealing with robot manipulators.

• Linear velocity refers to the rate at which an object moves along a straight path. In the context of a robot

manipulator, it represents the speed at which a point on the robot moves in a straight line. In a robot manipulator, the linear velocity

of a point on the end-effector is crucial for tasks involving movements in a straight line, such as reaching a specific position in the

workspace.

• Angular velocity is significant for tasks involving rotational movements, such as rotating an object. It is also

crucial for controlling the orientation of the end-effector. The angular velocity of each joint in a robot manipulator affects the overall

motion and orientation of the end-effector.

Linear velocity and angular velocity calculation:

For a revolute joint, the linear velocity and angular velocity calculations can be expressed using the DH parameters and

the basic principles of kinematics.

𝑣𝑖+1
𝑖+1 = 𝑅𝑖

𝑖+1 . (𝑣𝑖
𝑖 + 𝜔𝑖

𝑖 × 𝑝𝑖+1
𝑖) (1)

𝜔𝑖+1
𝑖+1 = 𝑅𝑖

𝑖+1 . 𝜔𝑖
𝑖 + 𝑞̇𝑖+1 . 𝑧𝑖+1

𝑖+1 (2)

For a prismatic joint, the linear velocity and angular velocity calculations are a simpler compared to a revolute joint because

prismatic joints involve translational motion instead of rotational motion.

𝑣𝑖+1
𝑖 = 𝑣𝑖

𝑖 + 𝜔𝑖
𝑖 × 𝑝𝑖+1

𝑖 (3)

 𝜔𝑖+1
𝑖+1 = 𝑅𝑖

𝑖+1 . 𝜔𝑖
𝑖 (4)

where: 𝑅𝑖
𝑖+1 relative rotation matrix representing the orientation of frame 𝑖 + 1 with respect to frame 𝑖. 𝑧𝑖+1

𝑖+1 unit vector

along the rotation axis of joint 𝑖 + 1 expressed in its own coordinate frame. 𝑞̇𝑖+1 joint velocity of joint 𝑖 + 1. 𝜔𝑖+1
𝑖+1 represents the

angular velocity of the 𝑖 + 1 frame.

• In joint 1 (Revolute joint 𝒒𝟏):

T1
0 = [

c1 −s1 0 0
s1 c1 0 0
0 0 1 H
0 0 0 1

], 𝑣0
0 = [

0
0
0
] ; 𝜔0

0 = [
0
0
0
]

𝜔1
1 (𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) = 𝑅0

1 . 𝜔0
0 + 𝑞1 .̇ 𝑧1

1 = [
c1

−s1

0

s1

c1

0

0
0
1
] . [

0
0
0
] + [

0
0
𝑞1̇

] = [
0
0
𝑞1̇

] (5)

𝑣1
1(𝐿𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) = 𝑅0

1 . (𝑣0
0 + 𝜔0

0 × 𝑝1
0) = [

c1

−s1

0

s1

c1

0

0
0
1
] . ([

0
0
0
] + [

0
0
0
] × [

0
0
𝐻

]) = [
0
0
0
] (6)

• Joint 2 (Revolute joint 𝒒𝟐)

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 11

T2
1 = [

c2 0 s2 0
s2 0 −c2 0
0 1 0 0
0 0 0 1

] ; 𝜔1
1 = [

0
0
𝑞1̇

] ; 𝑣1
1 = [

0
0
0
]

𝜔2
2(𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) = 𝑅1

2 . 𝜔1
1 + 𝑞2 .̇ 𝑧2

2 = [

c2

0
s2

s2

0
−c2

0
1
0
] . [

0
0
𝑞1̇

] + [
0
0
𝑞2̇

] = [
0
𝑞1̇

𝑞2̇

] (7)

𝑣2
2(𝐿𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) = 𝑅1

2 . (𝑣1
1 + 𝜔1

1 × 𝑝2
1) = [

c2

0
s2

s2

0
−c2

0
1
0
] . ([

0
0
0
] + [

0
0
𝑞1̇

] × [
0
0
0
]) = [

0
0
0
] (8)

• Joint 3 (Revolute joint 𝒒𝟑)

T3
2 = [

c3 −s3 0 c3. L1

s3 c3 0 s3. L1

0 0 1 0
0 0 0 1

] ; 𝜔2
2 = [

0
𝑞1̇

𝑞2̇

] ; 𝑣2
2 = [

0
0
0
]

𝜔3
3(𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) = 𝑅2

3 . 𝜔2
2 + 𝑞3 .̇ 𝑧3

3 = [
c3

−s3

0

s3

c3

0

0
0
1
] . [

0
𝑞1̇

𝑞2̇

] + [
0
0
𝑞3̇

] = [

s3𝑞1̇

c3 𝑞1̇

𝑞2̇ + 𝑞3̇

] (9)

𝑣3
3 = 𝑅2

3 . (𝑣2
2 + 𝜔2

2 × 𝑝1
2) = [

c3

−s3

0

s3

c3

0

0
0
1
] . ([

0
0
0
] + [

0
𝑞1̇

𝑞2̇

] × [
c3. L1

s3. L1

0
]) = [

 − L1c3 s3 𝑞2̇ + L1c3 s3 𝑞2̇
 L1s3 s3 𝑞2̇ + L1c3 c3 𝑞2̇

− L1 c3 𝑞1̇

] (10)

• Joint 4 (Revolute joint 𝒒𝟒)

T4
3 = [

c4 −s4 0 c4. L2

s4 c4 0 s4. L2

0 0 1 0
0 0 0 1

] ; 𝜔3
3 = [

s3𝑞1̇

c3 𝑞1̇

𝑞2̇ + 𝑞3̇

] ; 𝑣3
3 = [

0
 L1s3 s3 𝑞2̇ + L1c3 c3 𝑞2̇

− L1 c3 𝑞1̇
]

𝝎𝟒
𝟒(𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) = 𝑅3

4 . 𝜔3
3 + 𝑞4 .̇ 𝑧4

4 = [
c4

−s4

0

s4

c4

0

0
0
1
] . [

s3𝑞1̇

c3 𝑞1̇

𝑞2̇ + 𝑞3̇

] + [
0
0
𝑞4̇

] = [

s34𝑞1̇

c34 𝑞1̇

𝑞2̇ + 𝑞3̇ + 𝑞4̇

] (11)

𝒗𝟒
𝟒 = 𝑅3

4 . (𝑣3
3 + 𝜔3

3 × 𝑝2
3) = [

c4

−s4

0

s4

c4

0

0
0
1
] . ([

0
 L1s3 s3 𝑞2̇ + L1c3 c3 𝑞2̇

− L1 c3 𝑞1̇

] + [

s3𝑞1̇

c3 𝑞1̇

𝑞2̇ + 𝑞3̇

] × [
c4. L2

s4. L2

0
])

 = [

−L2 s4 𝑞2̇ − L2 s4 𝑞3̇
L1 s3 s3 𝑞2̇ + L1 c3 c3 𝑞2̇ + L2 c4 𝑞2̇ + L2 c4 𝑞3̇

−L1 c3 𝑞1̇ − L2 c34 𝑞1̇

] (12)

• Joint 5 (Revolute joint 𝒒𝟓)

T6
5 = [

c5 −s5 0 c5. L3

s5 c5 0 s5. L3

0 0 1 0
0 0 0 1

] ; 𝜔4
4 = [

s34𝑞1̇

c34 𝑞1̇

𝑞2̇ + 𝑞3̇ + 𝑞4̇

] ; 𝑣4
4 = [

−L2 s4 𝑞2̇ − L2 s4 𝑞3̇
L1 s3 s3 𝑞2̇ + L1 c3 c3 𝑞2̇ + L2 c4 𝑞2̇ + L2 c4 𝑞3̇

−L1 c3 𝑞1̇ − L2 c34 𝑞1̇

]

𝝎𝟓
𝟓 = 𝑅4

5 . 𝜔4
4 + 𝑞5 .̇ 𝑧4

4 = [
c5

−s5

0

s5

c5

0

0
0
1
] . [

s34𝑞1̇

c34 𝑞1̇

𝑞2̇ + 𝑞3̇ + 𝑞4̇

] + [
0
0
𝑞5̇

] = [

s345𝑞1̇

c345 𝑞1̇

𝑞̇2 + 𝑞3̇ + 𝑞4̇ + 𝑞5̇

] (13)

𝒗𝟓
𝟓(𝐿𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) = 𝑅4

5 . (𝑣4
4 + 𝜔4

4 × 𝑝3
4)

= [
c5

−s5

0

s5

c5

0

0
0
1
] . ([

−L2 s4 𝑞2̇ − L2 s4 𝑞3̇
L1 s3 s3 𝑞2̇ + L1 c3 c3 𝑞2̇ + L2 c4 𝑞2̇ + L2 c4 𝑞3̇

−L1 c3 𝑞1̇ − L2 c34 𝑞1̇

] + [

s34𝑞1̇

c34 𝑞1̇

𝑞2̇ + 𝑞3̇ + 𝑞4̇

] × [
c5. L3

s5. L3

0
])

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 12

= [

−L2 c5 s4 𝑞2̇ − L2 s4 c5 𝑞3 −̇ L3c5 s5(𝑞2̇ + 𝑞3̇ + 𝑞4̇) + s5(L1 s3 s3 𝑞2̇ + L1 c3 c3 𝑞2̇ + L2 c4 𝑞2̇ + L2 c4 𝑞3̇)

−s5(−L2 s4 𝑞2̇ − L2 s4 𝑞3̇) + c5 (L1 s3 s3 𝑞2̇ + L1 c3 c3 𝑞2̇ + L2 c4 𝑞2̇ + L2 c4 𝑞3)̇

−L1 c3 𝑞1̇ − L2 c34 𝑞1̇

](14)

• Joint 6 (prismatic joint 𝒒𝟔)

𝐴6
5 = A6 = [

c6 0 s6 0
s6 0 −c6 0
0 1 0 𝐿4

0 0 0 1

] ; 𝜔5
5 = [

s345𝑞1̇

c345 𝑞1̇

𝑞̇2 + 𝑞3̇ + 𝑞4̇ + 𝑞5̇

]

𝐯𝟓
𝟓 = [

−L2 c5 s4 𝑞2̇ − L2 s4 c5 𝑞3 −̇ L3c5 s5(𝑞2̇ + 𝑞3̇ + 𝑞4̇) + s5(L1 s3 s3 𝑞2̇ + L1 c3 c3 𝑞2̇ + L2 c4 𝑞2̇ + L2 c4 𝑞3̇)

−s5(−L2 s4 𝑞2̇ − L2 s4 𝑞3̇) + c5 (L1 s3 s3 𝑞2̇ + L1 c3 c3 𝑞2̇ + L2 c4 𝑞2̇ + L2 c4 𝑞3)̇

−L1 c3 𝑞1̇ − L2 c34 𝑞1̇

]

𝝎𝟔
𝟔 = 𝑅5

6 . 𝜔5
5 = [

c6

0
−s6

s6

0
c6

0
1
0
] . [

s345𝑞1̇

c345 𝑞1̇

𝑞̇2 + 𝑞3̇ + 𝑞4̇ + 𝑞5̇

] = [

s3456 𝑞1̇

𝑞̇2 + 𝑞3̇ + 𝑞4̇ + 𝑞5̇

c3456 𝑞1̇

] (15)

𝒗𝟔
𝟔(𝐿𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) = 𝑣5

5 + 𝜔5
5 × 𝑝6

5

= [

−L2 c5 s4 𝑞2̇ − L2 s4 c5 𝑞3 −̇ L3c5 s5(𝑞2̇ + 𝑞3̇ + 𝑞4̇) + s5(L1 s3 s3 𝑞2̇ + L1 c3 c3 𝑞2̇ + L2 c4 𝑞2̇ + L2 c4 𝑞3̇)

−s5(−L2 s4 𝑞2̇ − L2 s4 𝑞3̇) + c5 (L1 s3 s3 𝑞2̇ + L1 c3 c3 𝑞2̇ + L2 c4 𝑞2̇ + L2 c4 𝑞3)̇

−L1 c3 𝑞1̇ − L2 c34 𝑞1̇

]

+ [

s345𝑞1̇

c345 𝑞1̇

𝑞̇2 + 𝑞3̇ + 𝑞4̇ + 𝑞5̇

] × [
0
0
𝐿4

] =

= [

−L2 c5 s4 𝑞2̇ − L2 s4 c5 𝑞3 −̇ L3c5 s5(𝑞2̇ + 𝑞3̇ + 𝑞4̇) + s5(L1 s3 s3 𝑞2̇ + L1 c3 c3 𝑞2̇ + L2 c4 𝑞2̇ + L2 c4 𝑞3̇) + 𝐿4 c345 𝑞1̇

−s5(−L2 s4 𝑞2̇ − L2 s4 𝑞3̇) + c5 (L1 s3 s3 𝑞2̇ + L1 c3 c3 𝑞2̇ + L2 c4 𝑞2̇ + L2 c4 𝑞3)̇ − 𝐿4 s345 𝑞1̇

−L1 c3 𝑞1̇ − L2 c34 𝑞1̇

] (16)

VI. Geometric Jacobian

The direct kinematic function for the manipulator is represented by the homogeneous transformation matrix 𝑇𝑒
𝑏(𝑞), which

specifies the position and orientation of the end effector relative to the reference base.

 𝑇𝑒
𝑏(𝑞) = [

𝑛𝑒
𝑏(𝑞) 𝑜𝑒

𝑏(𝑞) 𝑎𝑒
𝑏(𝑞) 𝑝𝑒

𝑏(𝑞)
0 0 0 1

] (17)

where 𝑛𝑒 , 𝑜𝑒 , 𝑎𝑛𝑑 𝑎𝑒 are the unit vectors of a frame related to the end effector, and 𝑝𝑒 is the position vector of the origin

of such a frame with respect to the base frame. q is the (𝑛𝑥1) vector of joint variables.

Determining the link between the joint velocities and the end-effector linear and angular velocities is the aim of differential

kinematics. The mapping is defined by a matrix known as the geometric Jacobian, which is dependent on the configuration of the

manipulator. In general, we describe end effector linear velocity 𝑝̇ and angular velocity 𝜔 as functions of joint velocities 𝑞̇.

 𝑉(6×1) = [
𝑞̇
𝜔

]
(6×1)

= 𝐽(𝑞) 𝑞̇ = [
𝐽𝑃(3×𝑛)

𝐽𝑂(3×𝑛)
]
(6×𝑛)

𝑞̇(𝑛×1) (18)

The (6 × 𝑛) matrix J is the manipulators geometric Jacobian, which is a function of the joint variables in general.

1 Jacobian Computation

This section presents the derivation of the Jacobian matrix for six degrees of freedom with a prismatic joint. The

manipulator is comprised of five revolute joints and one prismatic joint (n = 6). In this context, we will outline the systematic process

of deriving Jacobian matrices. We have shown that the Jacobian matrices can be represented as (6 × 𝑛) matrices. The vector J can

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 13

be divided into three column vectors. The vector J can be divided into (3 × 1) three column vectors. J matrices in our manipulator

have the dimensions (6 × 6). Additionally, it can be displayed as:

 𝐽 = [
𝐽𝑝1 𝐽𝑝2 𝐽𝑝3 𝐽𝑝4 𝐽𝑝5 𝐽𝑝6

𝐽𝑂1 𝐽𝑂2 𝐽𝑂3 𝐽𝑂4 𝐽𝑂5 𝐽𝑂6
] (19)

𝐽(𝑞) = [
 z0 × (p𝑒− p0)

 z0

 z1 × (pe− p1)
 z1

 z2 × (pe− p2)

 z2

 z3 × (pe− p3)
 z3

 z4 × (pe− p4)

 z4

 z5

0
]

The Jacobian can be calculated from the following equation:

 𝐽𝑝𝑖 = {
𝑧𝑖−1 × (p−𝑝i−1); for revolute joint i

zi−1; for prismatic joint i
 (20)

 𝐽𝑂𝑖 = {
𝑧𝑖−1; for revolute joint i

 0; for prismatic joint i
 (21)

Where P represents the end effector's position in relation to the base reference, as shown in Figure 5. 𝑝i−1 is the position

of each revolute joint in relation to the base frame, which can be calculated using the first three elements of the fourth column of

the transformation matrix 𝑇𝑛
0.

𝑝𝑖−1 = 𝑅1
0(𝑞1). . . 𝑅𝑖−1

𝑖−2(𝑞𝑖−1) 𝑝0 (22)

Where 𝑖 = 1: 6 and 𝑝0 = [0 0 0 1]𝑇 allows selecting the fourth desired column.

Fig. 5. Vectors needed for Jacobian computation

The 𝑧𝑖−1 is the joint axis vector of each revolute joint and can be expressed by:

𝑧𝑖−1 = 𝑅1
0(𝑞1). . . 𝑅𝑖−1

𝑖−2(𝑞𝑖−1) 𝑧0 (23)

Where 𝑖 = 1: 6 and 𝑧0 = [0 0 1]𝑇 allows selecting the third desired column.

 z0 = [0 0 1]𝑇

 z1 = [0 0 1]𝑇

 z2 = [𝑠12 −𝑐12 0]𝑇

 z3 = [𝑠12 −𝑐12 0]𝑇

 z4 = [𝑠12 −𝑐12 0]𝑇

 z5 = [𝑠12 −𝑐12 0]𝑇

When the joints are revolute the p−𝑝i−1 must be calculated from the Eq (24)

 p−𝑝i−1 = 𝐴0
1 . . . 𝐴𝑛

𝑛−1𝑥̅ − 𝐴0
1 . . . 𝐴𝑖−1

𝑖−2 𝑥̅ (24)

𝑥̅ is equal to the vector [0 0 0 1]𝑇. So,

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 14

(𝑝e − 𝑝0) 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑒 = [

𝑝𝑥

𝑝𝑦

𝑝𝑧

]

(𝑝e − 𝑝1)𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑒 = [

𝑝𝑥

𝑝𝑦

𝑝𝑧 − 𝐻
]

(𝑝e − 𝑝2)𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑒 = [

𝑝𝑥

𝑝𝑦

𝑝𝑧 − 𝐻
]

(𝑝e − 𝑝3)𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑒 = [

𝑝𝑥 − 𝐿1𝑐3𝑐12

𝑝𝑦 − 𝐿1𝑐3𝑠12

𝑝𝑧 − 𝐿1𝑠3 − 𝐻
]

(𝑝e − 𝑝4)𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑒 = [

𝑝𝑥 − 𝑐12 (𝐿2𝑐34 + 𝐿1𝑐3)
𝑝𝑦 − 𝑠12 (𝐿2𝑐34 + 𝐿1𝑐3)

𝑝𝑧 − 𝐻 − 𝐿2𝑠34 − 𝐿1𝑠3

]

𝐹𝑜𝑟 𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝑗𝑜𝑖𝑛 (𝑝e − 𝑝5)𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝑛𝑜𝑡

2 SINGULARITY ANALYSIS

• At joint 1 (Revolute joint): In the provided mathematical notation related to singularity analysis for a robotic

manipulator with a revolute joint (joint 1), joint 1's position and Jacobian matrices for linear and angular velocities are defined.

 𝐴0 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

], 𝑝0 = [
0
0
0
], (𝑝e − 𝑝0) = [

𝑝𝑥

𝑝𝑦

𝑝𝑧

] , 𝑧0 = [
0
0
1
]

 𝐽𝐿1
= [[

0
0
1
] × (𝑝e − 𝑝0)] = [

−𝑝𝑦

𝑝𝑦

0
], 𝐽𝐴1

= z0 = [
0
0
1
]

 𝐽1 = [
𝐽𝐿1(𝐿𝑖𝑛𝑒𝑎𝑟)

𝐽𝐴1(𝑎𝑛𝑔𝑢𝑙𝑎𝑟)
] = [[

0
0
1
] × (𝑝e − 𝑝0)

 z0

] =

[

−𝑝𝑦

𝑝𝑥

0
0
0
1]

 (25)

• At joint 2 (Revolute joint):

 A1 = 𝑇1
0 = [

c1 −s1 0 0
s1 c1 0 0
0 0 1 H
0 0 0 1

], 𝑝1 = [
0
0
𝐻

], (𝑝e − 𝑝1) = [

𝑝𝑥

𝑝𝑦

𝑝𝑧 − 𝐻
] , z1 = [

0
0
1
]

 𝐽𝐿2
= [[

0
0
1
] × (𝑝e − 𝑝1)] = [

−𝑝𝑥

𝑝𝑦

0
], 𝐽𝐴2

= z1 = [
0
0
1
]

 𝐽2 = [
𝐽𝐿2

𝐽𝐴2
] = [[

0
0
1
] × (𝑝𝑒 − 𝑝1)

 z1

] =

[

−𝑝𝑦

𝑝𝑥

0
0
0
1]

 (26)

• At joint 3 (Revolute joint):

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 15

 A2 = 𝑇1
0. 𝑇2

1 = [

− − 𝑠12 0
− − −𝑐12 0
− − 0 H
− − − 1

], 𝑝2 = [
0
0
𝐻

], (𝑝e − 𝑝2) = [

𝑝𝑥

𝑝𝑦

𝑝𝑧 − 𝐻
] , 𝑧2 = [

𝑠12

−𝑐12

0
]

 𝐽𝐿3
= [[

𝑠12

−𝑐12

0
] × (𝑝𝑒 − 𝑝2)] = [

−𝑐2 (𝑝𝑧 − 𝐻)
−𝑠2 (𝑝𝑧 − 𝐻)
𝑠2 𝑝𝑦 − 𝑐2 𝑝𝑥

], 𝐽𝐴3
= z2 = [

𝑠12

−𝑐12

0
]

 𝐽3 = [
𝐽𝐿3

𝐽𝐴3

] = [[
𝑠12

−𝑐12

0
] × (𝑝𝑒 − 𝑝2)

 z2

] =

[

−𝑐12 (𝑝𝑧 − 𝐻)
−𝑠12 (𝑝𝑧 − 𝐻)
𝑠12 𝑝𝑦 + 𝑐12 𝑝𝑥

𝑠12
−𝑐12

0]

 (27)

• At joint 4 (Revolute joint):

 A3 = 𝑇1
0. 𝑇2

1. 𝑇3
2 = [

− − 𝑠12 𝐿1𝑐3𝑐12

− − −𝑐12 𝐿1𝑐3𝑠12

− − 0 𝐻 + 𝐿1𝑠3

− − − 1

] , 𝑝3 = [
𝐿1𝑐3𝑐12

𝐿1𝑐3𝑠12

𝐻 + 𝐿1𝑠3

] , (𝑝e − 𝑝3) = [

𝑝𝑥 − 𝐿1𝑐3𝑐12

𝑝𝑦 − 𝐿1𝑐3𝑠12

𝑝𝑧 − 𝐿1𝑠3 − 𝐻
]

 𝐽𝐿4
= [

 −𝑐12 (𝑝𝑧 − 𝐿1𝑠3 − 𝐻)
− 𝑠12(𝑝𝑧 − 𝐿1𝑠3 − 𝐻)

 𝑠12(𝑝𝑦 − 𝐿1𝑐3𝑠12) + 𝑐12(𝑝𝑥 − 𝐿1𝑐3𝑐12)
], 𝐽𝐴4

= [
 𝑠12

 −𝑐12

0
] , 𝑧3 = [

𝑠12

−𝑐12

0
]

 𝐽4 = [
𝐽𝐿4

𝐽𝐴4

] = [[
𝑠12

−𝑐12

0
] × (𝑝e − 𝑝3)

 z3

] =

[

 −𝑐12 (𝑝𝑧 − 𝐿1𝑠3 − 𝐻)
− 𝑠12(𝑝𝑧 − 𝐿1𝑠3 − 𝐻)

 𝑠12(𝑝𝑦 − 𝐿1𝑐3𝑠12) + 𝑐12(𝑝𝑥 − 𝐿1𝑐3𝑐12)
 𝑠12

 −𝑐12

0]

 (28)

• At joint 5 (Revolute joint):

 A4 = 𝑇1
0. 𝑇2

1. 𝑇3
2. 𝑇4

3 = [

− − 𝑠12 𝑐12 (𝐿2𝑐34 + 𝐿1𝑐3)
− − −𝑐12 𝑠12 (𝐿2𝑐34 + 𝐿1𝑐3)
− − 0 𝐻 + 𝐿2𝑠34 + 𝐿1𝑠3

− − − 1

] , 𝑝4 = [

𝑐12 (𝐿2𝑐34 + 𝐿1𝑐3)
𝑠12 (𝐿2𝑐34 + 𝐿1𝑐3)
𝐻 + 𝐿2𝑠34 + 𝐿1𝑠3

],

(𝑝e − 𝑝4) = [

𝑝𝑥 − 𝑐12 (𝐿2𝑐34 + 𝐿1𝑐3)
𝑝𝑦 − 𝑠12 (𝐿2𝑐34 + 𝐿1𝑐3)

𝑝𝑧 − 𝐻 − 𝐿2𝑠34 − 𝐿1𝑠3

] , 𝑧4 = [
𝑠12

−𝑐12

0
]

𝐽𝐿5
= [

− 𝑐12(𝑝𝑧 − 𝐻 − 𝐿2𝑠34 − 𝐿1𝑠3)
− 𝑠12(𝑝𝑧 − 𝐻 − 𝐿2𝑠34 − 𝐿1𝑠3)

𝑠12 (𝑝𝑦 − 𝑠12 (𝐿2𝑐34 + 𝐿1𝑐3)) + 𝑐12(𝑝𝑥 − 𝑐12 (𝐿2𝑐34 + 𝐿1𝑐3))
] , 𝐽𝐴5

 = 𝑧4 = [
𝑠12

−𝑐12

0
]

𝐽5 = [
𝐽𝐿5

𝐽𝐴3

] = [[
𝑠12

−𝑐12

0
] × (𝑝e − 𝑝4)

 z4

] =

[

− 𝑐12(𝑝𝑧 − 𝐻 − 𝐿2𝑠34 − 𝐿1𝑠3)
− 𝑠12(𝑝𝑧 − 𝐻 − 𝐿2𝑠34 − 𝐿1𝑠3)

𝑠12 (𝑝𝑦 − 𝑠12 (𝐿2𝑐34 + 𝐿1𝑐3)) + 𝑐12(𝑝𝑥 − 𝑐12 (𝐿2𝑐34 + 𝐿1𝑐3))
𝑠12

−𝑐12

0]

 (29)

• At joint 6 (Revolute joint):

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 16

 A5 = 𝑇1
0. 𝑇2

1. 𝑇3
2. 𝑇4

3. 𝑇5
4 = [

− − 𝑠12 −
− − −𝑐12 −
− − 0 −
− − − 1

] , 𝑧𝑖−1 [Prismatic joint] = 𝑧5 = [
𝑠12

−𝑐12

0
]

 𝐽𝐿6
= 𝑧5 = [

𝑠12

−𝑐12

0
], 𝐽𝐴6

= [
0
0
0
]

 𝐽6 = [
𝐽𝐿6

𝐽𝐴6

] = [
𝑧5

0
] =

[

𝑠12

−𝑐12

0
0
0
0]

 (30)

Now we can write the Jacobian matrix as shown in equation (30):

 J = [J1 J2 J3 J4 J5 J6] (31)

The linear Jacobian 𝐽𝐿 and angular Jacobean 𝐽A, will become:

 J = [
𝐽𝐿𝑖𝑛𝑒𝑎𝑟

𝐽𝐴𝑛𝑔𝑢𝑙𝑎𝑟
] = [

 JL1 JL2 JL3 JL4 JL5 JL6

 JA1 JA2 JA3 JA4 JA5 JA6
] (32)

𝐽L

= [
−𝑝𝑦

𝑝𝑥

0

−𝑝𝑦

𝑝𝑥

0

−𝑐12 (𝑝𝑧 − 𝐻)
 −𝑠12 (𝑝𝑧 − 𝐻]
𝑠12 𝑝𝑦 + 𝑐12 𝑝𝑥

 −𝑐12 (𝑝𝑧 − 𝐿1𝑠3 − 𝐻)
− 𝑠12(𝑝𝑧 − 𝐿1𝑠3 − 𝐻)

 𝑠12(𝑝𝑦 − 𝐿1𝑐3𝑠12) + 𝑐12(𝑝𝑥 − 𝐿1𝑐3𝑐12)

− 𝑐12(𝑝𝑧 − 𝐻 − 𝐿2𝑠34 − 𝐿1𝑠3)
− 𝑠12(𝑝𝑧 − 𝐻 − 𝐿2𝑠34 − 𝐿1𝑠3)

𝑠12 (𝑝𝑦 − 𝑠12 (𝐿2𝑐34 + 𝐿1𝑐3)) + 𝑐12(𝑝𝑥 − 𝑐12 (𝐿2𝑐34 + 𝐿1𝑐3))

𝑠12

−𝑐12

0
]

 𝐽A = [
0 0 𝑠12

0 0 −𝑐12

1 1 0

𝑠12 𝑠12 0
−𝑐12 −𝑐12 0

0 0 0
] (33)

The general Jacobian become J:

=

[

−𝑝𝑦

𝑝𝑥

0
0
0
1

−𝑝𝑦

𝑝𝑥

0
0
0
1

−𝑐12 (𝑝𝑧 − 𝐻)
−𝑠12 (𝑝𝑧 − 𝐻)
𝑠12 𝑝𝑦 + 𝑐12 𝑝𝑥

𝑠12
−𝑐12

0

−𝑐12 (𝑝𝑧 − 𝐿1𝑠3 − 𝐻)
− 𝑠12(𝑝𝑧 − 𝐿1𝑠3 − 𝐻)

 𝑠12(𝑝𝑦 − 𝐿1𝑐3𝑠12) + 𝑐12(𝑝𝑥 − 𝐿1𝑐3𝑐12)
𝑠12

−𝑐12

0

− 𝑐12(𝑝𝑧 − 𝐻 − 𝐿2𝑠34 − 𝐿1𝑠3)
− 𝑠12(𝑝𝑧 − 𝐻 − 𝐿2𝑠34 − 𝐿1𝑠3)

𝑠12 (𝑝𝑦 − 𝑠12(𝐿2𝑐34 + 𝐿1𝑐3)) + 𝑐12(𝑝𝑥 − 𝑐12(𝐿2𝑐34 + 𝐿1𝑐3))
𝑠12

−𝑐12

0

𝑠12

−𝑐12

0
0
0
0]

The general Jacobian become J:

J =

[

J11

J21

0
0
0
1

J12

J22

0
0
0
1

J13

J23

J33

𝑠12
−𝑐12

0

J14

J24

J34

𝑠12
−𝑐12

0

J15

J25

J35
𝑠12

−𝑐12

0

s12

−c12

0
0
0
0]

J11 = −(L3 s12 c345 − L4 c12 + s12(L2 c34 + L1 s3))

J12 = −(L3 s12 c345 − L4 c12 + s12(L2 c34 + L1 s3))

J13 = −𝑐12 (L2 s34 + L1 s3 + L4 − 𝐻)

J14 = −𝑐12(𝐿2 𝑠34 + L4 − H)

J15 = − c12(L4 − H)

J21 = L3 c12 c345 + L4 s12 + c12(L2 s34 + L1 c3)

J22 = L3 c12 c345 + L4 s12 + c12(L2 s34 + L1 c3)

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 17

J23 = −s12 (L2 s34 + L1 s3 + L4 − H)

J24 = − s12 (L2 s34 + L4 − H)

J25 = − s12(L4 − H)

J26 = −c12

J33 = 𝑠12 (L3 s12 c345 − L4 c12 + s12(L2 c34 + L1 s3)) + 𝑐12 (L3 c12 c345 + L4 s12 + c12(L2 s34 + L1 c3))

J34 = s12(L3 s12 c345 − L4 c12 + s12(L2 c34 + L1 s3) − L1c3s12) + c12(L3 c12 c345 + L4 s12 + c12(L2 s34 + L1 c3) − L1c3c12)

J35 = 𝑠12 (L3 s12 c345 − L4 c12 + s12(L2 c34 + L1 s3) − 𝑠12 (𝐿2𝑐34 + 𝐿1𝑐3)) + 𝑐12 (L3 c12 c345 + L4 s12 + c12(L2 s34 + L1 c3)
− 𝑐12 (𝐿2𝑐34 + 𝐿1𝑐3))

VII. Kinematic Singularity

Singularities in manipulators have non-local

implications and arise from derivatives rank deficiency.

There are different types of singularities for serial and parallel

manipulators, and their analysis is important for engineering.

For serial manipulators, it is the singularities of the kinematic

mapping/forward kinematics and trajectories that are of

interest, whereas for fully parallel manipulators it is those of

the constraint function defining the configuration space and

of the projection onto the articular space (inverse kinematics).

The meaning of singularities in engineering has several

aspects:

1) Loss of freedom: The derivative of

kinematic mapping, also known as forward kinematics, is the

process of converting joint velocities into generalised end-

effector velocities, which include both linear and angular

velocities. In the robotics literature, this linear transformation

is commonly referred to as the manipulator Jacobian. A

decrease in rank results in a reduction of the image's

dimension, signifying a reduction of one or more degrees in

the end effector's instantaneous motion.

2) Workspace: When a manipulator is at a

boundary point of its workspace, the manipulator is

necessarily at a singular point of its kinematic mapping,

though the converse is not the case. Interior components of

the singular set separate regions with different numbers or

topological types of inverse kinematics. These are usually

associated with a change of posture in some component of the

manipulator. Therefore, knowledge of the manipulator

singularities provides valuable information about its

workspace [6].

3) Loss of control: In close proximity to a

singularity, this matrix is ill-defined. If the control algorithm

fails, the joint velocities and accelerations may reach levels

that are not sustainable. On the other hand, force control

techniques that are suitable for parallel manipulators may lead

to excessive joint forces or torques when the projection into

the joint space approaches singularities.

VIII. MATLAB CODE EXPLANATION

1 Transfer matrix’s function

A function in MATLAB is defined to accept the D-H parameters as input and give the value 𝐴𝑖−1
𝑖−2 as output:

2 Inserting D-H Parameters

In this part, we manually input the Denavit-Hartenberg (D-H) parameters into the code.

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 18

3 Creating Transfer Matrices

By determining a transfer matrix for each transformation and post multiplying them, we obtain the transformation matrix

for 𝐴𝑒𝑒
0 , which is referred to as 𝑇6.

4 Creating 𝑝𝑖−1, 𝑧𝑖−1, and 𝑃

To compute the Jacobian matrices, we generate the 𝑝𝑖−1, 𝑧𝑖−1, and 𝑃 matrices.

5 Jacobian Matrix computation

In this part of program, we compute the Jacobian matrix . To get equations that are more simple terms, we apply the

simplify command. To obtain the decoupled singularities, the Jacobians of the (3 × 3) blocks are calculated.

6 Jacobian Matrice Determinant

In the end, the determinant for each Jacobian is computed. Streamlining commands aid in achieving a more concise

outcome.

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 19

The determinant of the Jacobian matrix for your RRRRRP manipulator is:

Det J = a2 a3 sin(theta3) sin (theta 2+theta3 + theta4) cos(theta5)

Singularities occur when:

• sin(theta3) =0, theta3 = 0, π

• sin (theta 2+theta3 + theta4) =0, theta 2+theta3 + theta4=0, π

• cos(theta5) =0, theta5= -+π/2

Below is a table of results for singularity conditions in the RRRRRP manipulator.

Singularity Description Condition

Wrist Singularity (Axes

Alignment)

Occurs when the axes of the last three joints

(4, 5, 6) align.

Θ5 = - π/2 or + π/2

Elbow Singularity

Fully Extended

Fully Extended

θ2+θ3+θ4=0 Fully Extended

Elbow Singularity

Fully Folded

Fully Folded

θ2+θ3+θ4= π Fully Folded

Base Singularity Base joint aligned with arm direction θ1 = 0 or θ1 = π

Planar Singularity The manipulator’s links become collinear,

reducing degrees of freedom.

θ2+θ3+θ4= - π, + π

Workspace Singularity Prismatic Joint Fully Extended 𝑑5 = 𝑑𝑚𝑖𝑛 ,

𝑑5 = 𝑑𝑚𝑎𝑥

Fully retracted, fully extended

Fig. 3. 3D Surface Plot (theta_3) vs. (theta_5)

Fig. 4. Contour Plot theta_3 vs. theta_4

CONCLUSION:

In this article, we have thoroughly examined the

geometric Jacobians and kinematic singularities of a 6-DOF

robotic manipulator, including a prismatic joint. Through the

systematic derivation of the Jacobian matrix, we have

demonstrated the relationship between joint velocities and the

end-effector’s linear and angular velocities. The analysis

highlighted the occurrence of rank deficiencies in the

Jacobian, which correspond to critical kinematic

singularities. These singularities, identified through the

determinant of the Jacobian, restrict the manipulator’s

movement and can lead to potential control issues.

Mohammad Y Alwardat et al, International Journal of Advanced Research in Computer Science, 16 (1), Jan-Feb 2025, 6-20

© 2023-2025, IJARCS All Rights Reserved 20

REFERENCES

[1] G. K. S. a. J. Claassens, "An Analytical Solution for the Inverse

Kinematics of a Redundant 7DoF Manipulator with Link

Offsets," IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2010.

[2] Xu,W.; She, Y.; Xu, Y. Analytical and semi-analytical inverse

kinematics of SSRMS-type manipulators with single joint

locked failure. Acta Astronaut. 2014, 1, 201–217.

[3] Busson, D.; Bearee, R.; Olabi, A. Task-oriented rigidity

optimization for 7 DOF redundant manipulators. IFAC-

PapersOnLine 2017, 1, 14588–14593.

[4] Xu,W.; Zhang, J.; Liang, B.; Li, B. Singularity analysis and

avoidance for robot manipulators with nonspherical wrists. IEEE

Trans. Ind. Electron. 2016, 63, 277–290.

[5] Jun,W.; HongTao,W.; Rui, M.; Liang’an, Z. A study on avoiding

joint limits for inverse kinematics of redundant manipulators

using improved clamping weighted least-norm method. JMST

2018, 32, 1367–1378.

[6] An, H.H.; Clement, W.I.; Reed, B. Analytical inverse kinematic

solution with self-motion constraint for the 7-DOF restore robot

arm. In Proceedings of the 2014 IEEE/ASME International

Conference on Advanced Intelligent Mechatronics, Besacon,

France, 8–11 July 2014; pp. 1325–1330.

[7] Faria, C.; Ferreira, F.; Erlhagen,W.; Monteiro, S.; Bicho, E.

Position-based kinematics for 7-DoF serial manipulators with

global configuration control, joint limit and singularity

avoidance. Mech. Mach. Theory 2018, 121, 317–334.

[8] Xu, W.; Zhang, J.; Qian, H.; Chen, Y.; Xu, Y. Identifying the

singularity conditions of Canadarm2 based on elementary

Jacobian transformation. In Proceedings of the 2013 26th

IEEE/RSJ International Conference on Intelligent Robots and

Systems, Tokyo, Japan, 3–7 November 2013; pp. 795–800.

[9] Chiaverini, S.; Siciliano, B.; Egeland, O. Review of the damped

least-squares inverse kinematics with experiments on an

industrial robot manipulator. IEEE Trans. Control Syst. Technol.

1994, 2, 123–134.

[10] Nenchev, D.N.; Tsumaki, Y.; Takahashi, M. Singularity-

consistent kinematic redundancy resolution for the S-R-S

manipulator. In Proceedings of the 2004 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (IEEE

Cat. No.04CH37566), Sendai, Japan, 28 September–2 October

2004; pp. 3607–3612.

[11] Oetomo, D.; Ang, M.H., Jr. Singularity robust algorithm in

serial manipulators. Robot. Comput. Integr. Manuf. 2009, 25,

122–134.

[12] Hollerbach, J.M. Optimum Kinematic Design for a Seven

Degree of Freedom Manipulator. In International Symposium of

Robotics Research; Mit Press: Cambridge, MA, USA, 1985.

[13] Shimizu, M.; Yoon, W.; Kitagaki, K. A Practical Redundancy

Resolution for 7 DOF Redundant Manipulators with Joint

Limits. In Proceedings of the 2007 IEEE International

Conference on Robotics and Automation, Rome, Italy, 21 May

2007; pp. 4510–4516.

[14] Busson, D.; Bearee, R.; Olabi, A. Task-oriented rigidity

optimization for 7 DOF redundant manipulators. IFAC-

PapersOnLine 2017, 1, 14588–14593.

[15] Chen, G.; Zhang, L.; Jia, Q.; Sun, H. Singularity analysis of

redundant space robot with the structure of Canadarm2. Math.

Probl. Eng. 2014, 2014, 735030.

