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Abstract: This article investigates the kinematic singularities and geometric Jacobians of a 6-DOF robotic manipulator, incorporating a prismatic
joint, from the perspective of singularity theory. The study begins by deriving the forward kinematics using the Denavit-Hartenberg (D-H)
convention and examines the Jacobian matrices to identify configurations where the Jacobian matrix becomes rank-deficient, signaling the presence
of kinematic singularities. These singularities pose critical challenges, such as restricting end-effector mobility and leading to infinite solutions in
inverse kinematics. The determinant of the Jacobian matrix is employed to detect singular configurations, and the implications for motion control
and trajectory planning are discussed. Through a detailed analysis and MATLAB simulations, the article highlights the importance of singularity
avoidance and provides a deeper understanding of the manipulator's kinematic behavior. The findings emphasize the need for strategic design and
motion planning to ensure optimal performance and stability in robotic manipulation tasks.

Keywords: Robotic manipulator, kinematic singularities, geometric Jacobian, prismatic joint, Denavit-Hartenberg, inverse kinematics.

. INTRODUCTION

The kinematics of robotic manipulators are
fundamental to their performance in a wide range of
applications, including industrial automation, medical
robotics, and service robots. A key aspect of this study is the
manipulator Jacobian, which serves as the differential
kinematic map relating joint velocities to the end-effector’s
linear and angular velocities. Understanding the behavior of
the Jacobian is crucial for trajectory planning, velocity
control, force control, and solving the inverse kinematics
problem. However, one of the most significant challenges in
manipulator kinematics is the occurrence of kinematic
singularities, which arise when the Jacobian loses rank,
resulting in a loss of degrees of freedom in the system. These
singularities limit the motion capabilities of the manipulator
and can lead to control issues, such as infinite solutions for
inverse kinematics.

This article focuses on a robotic manipulator with
six degrees of freedom (6-DOF) and a prismatic joint.
Through the derivation of the geometric Jacobian, we explore
the impact of joint configurations on the rank of the Jacobian
matrix and identify the positions where singularities occur.
We employ the Denavit-Hartenberg (D-H) convention for the
kinematic modeling of the manipulator and investigate how
the Jacobian’s determinant can be used to detect singularities.
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By analyzing the manipulator’s kinematics and examining the
conditions for singular configurations, this study provides
valuable insights into the limitations and potential risks of
robotic manipulators, as well as strategies for avoiding these
singularities.

1. MANIPULATORS

A manipulator is a type of robotic system
comprising a series of mechanical links interconnected by
joints, all controlled by a computer. These manipulators form
a kinematic chain, with each link connected to the next by a
joint. This report specifically investigates rotary joints, which
serve as the connection between two adjacent links. The axis
of rotation, defined as the intersection of links [; and [;,,
plays a critical role in the kinematic structure of the
manipulator, while the joint variables represent the relative
displacement between consecutive links. In this study, we
focus on a robotic manipulator with six degrees of freedom,
incorporating a prismatic joint within its kinematic
configuration.

1 Links and Joint Identification

The manipulator consists of four links, five revolute
joints and one prismatic joint. Each joint connects two
consecutive links to each other. The links, joints and
dimensions are shown in Figure 2.
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Fig. 2. Links and joint identification

2 D-H parameters

The widely adopted Denavit-Hartenberg (DH) convention
utilizes four parameters to define the relationship between the
reference frame of each link in a robotic manipulator. These
parameters a;, d;, a;, and 6; are assigned to each link i €
[1,n] to transform the reference frame from link i — 1 to

link i using the fundamental transformation matrices. The
coordinate system is established using the D-H convention,
with the corresponding parameters outlined in Table 1. For
this analysis, the coordinate configuration shown in Figure 2
is selected, and the D-H algorithm is applied to assign the
appropriate parameters, as detailed in Table 1.

Table 1 Parameters of the D-H robotic manipulator

Joint i ai-1 (degree) ai-1 (cm) 0; (degree) di (cm)
0-1 1Base 0 0 01 H
1-2 2 Shoulder 90 0 02 0
2-3 3 Elbow 0 L 03 0
3-4 4 Elbow 0 L, Q4 0
4-5 5 Wrist 0 Ls Os 0
5-6 6 Gripper 90 0 Js L4

I1. FORWARD KINEMATIC ANALYSIS

Forward kinematics analysis is the process of calculating the position and orientation of the end- effector with given joints
angles so by substituting parameters in the homogenous transformation matrix from joint i to joint i + 1:

Coi  —SeiCai  SeiSai  QiCei
ri-1 _ |S6i  CeiCai  TCoiSai @i Sei 1)
L ] Sai Cai d;
04} al 1
0 0 0 1

The order of transformations follows a consecutive sequence, beginning from the first joint and continuing to the n™ joint.
Equation (2) represents the total transformation up to the end-effector.

) 0 0
T = TP .T} . TZ.Ti = [Rn B @)
0 1
nX OX aX pX
— (% 9 3 Py
nZ 0Z aZ pZ
o 0 0 1
C12C3456 S12 Ci2 Szas6  Px
T = S12 C3456 —Ciz  S12 S3as6 Py (3)
S3456 0 —C3456 D2z
0 0 0 1

Where:
Px = L3 €12 C345 + Lasiz + €12( Ly s3s + Lyc3)

Py = L3 S12 C345 — LaCip + S12( Ly C34 + Ly S3)
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p; = H + L3Sgus + Ly s3
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When working with inverse kinematics, we use the total transformation matrix from equation (2) and multiply it by the
inverse of the initial transformation matrix. This allows us to calculate the joint angles by comparing the matrix elements in equation

(4).

I TXTY = T Ty @
Cosn—1 _ Adj (T)
where: (Ty)™" = )

To solve g5 , multiply each side by T; 1 we will get:

Ny Ox 3ax DPx

_ n, oy a, P
Al* y y y yzAl*AZ*A3*A4—*A5 5
1 n, o, a, P, 2 3 4 5 6 ®)
o 0 0 1
We can obtain:
ciny + Siny €104 + 510y Ciay + S1ay C1px + S1py
—$iny + Ciny —sy04 + G0y —sjag + Giay  —Sipx + Sipy _
n, 0z a; Pz — H
0 0 0 1
Licycg + LyCySay + Li3CyCays + Lysy
L1s,€3 + LpS2534 + L3SaCags5 — Lysy 6
L L L ©)
e 3S345 1T LaS34 + LgS3
0 0 O 1

Both matrix elements in Eq. (6) are equated to each other (right-hand side = and the left-hand side) and the resultant g
values are extracted. By taking (1 row, 4 column) (2 row, 4 column):
(7)

C1Px + 81Dy = L1CoC3 + LyCyS34 + L3CyCaus + Lus,
—S1DPx + 1Py = L155C3 + L38,834 + LzSyCau5 — Lys; ®
Squaring and adding the two equations, we get:
(pZ + pf,) = (L1C3)% 4+ 12 + 13 4+ dy Spas” + 2 % LiLycscy + 2 # LiLacyscs +
2 LyLlacyCys — 2% Ly dy C3 5245 — 2% dy Ly S4Cou5 — 2 % dy L3 S45C245
We can solve for (cosqs, sinqs) as follows:

o = Pz +pj — (L1c3)* — L5 — L5 — (Ly S245)°
> 2% L, Ly

ss=F [1-c2=7F 1_(p§+p32,—(L1c3)2—L§—L%—L45245)2
i ° @+ Ly Ly)?

©)

qs = AtanZ(SS, Cs)

From Eg. (6) we can get:

p; —H = L3S345 + LS54 + LysS3 (10)
_ Pz—H-L3s3a5-Lis3 (11)

S34 L
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p; —H — L3Sgus—Lys3 _

— H — L3S345—L;53\2
’+j1_<pz 35345 13) (12)

q34 = Atan2 L L
s = 434 — q3
Multiplying each side of Eq. (2) with T, = T; 1
nX OX aX pX
1, A-1 4| Oy 3 Py| _ a2, A3 4 A%, A5
A7 x Ay * n, o, a, p,| Az * Ay * Ag * Ay (13)
0o 0 0 1

We can obtain:

C1C2 Ny + €4Sy Ny + 51N, €1C, 0 + €4S, 0y + 510,

CiCzax + iS5z ay + 512,
_51C2 ax - 5152 ay + Claz

C1C2Px + €1 S2 Py + S1 P,
—S1C2Px —S1S2Py t+ C1P;

—S1Cy Ny — 1S Ny + €N,  —S1C; Ox — 5157 0y + €10,
SpNy —Cy Ny S, 0 — C2 0y Spax — Cyay Sy Px—C2Ppy —H
0 0 0 1
Caas6 O Szase L3 Caus + Ly C3q +LyC3
Szase 0 —Casse L3z Szus + Ly S3q+LyS3 (14)
0 1 0 L,
0 0 0 1

Equating elements (3,4) of the right-hand side matrix and the left-hand side matrix of Eq. (14), we can obtain:
S2Px—C2py —H = Ly

S2Px—C Py =Ly + H

q> = Atan2(py, —py) F [ Jpxz +py2—(Ly + H)2, (Ly + H) (15)
From Eq. (2) we can obtain:
Ay = €12 S3456
Ay = 51253456
Dividing the two equations:
Sse g, = Atan2(ay,ay) (16)
Cse ay q12 yr 9x
qd1 = q12 — 42 (17)
Now multiply each side of Eq. (2) by A7® = A3? = A3t:
1’lX OX aX pX
_ _ _+In, o, a, p
AT x A7' + AT n}ZI O}ZI az p}ZI = A} AL + A} (18)
0o 0 0 1
C1C23 €823 S1 —Licic, Ny Ox ay Px
—S1C23 —S1S23 C Lis;s; ) Ny 0y ay Py| _
323 _C23 0 —L152 - H rlZ OZ aZ pZ
0 0 0 1 0O 0 0 1
Case 0 Suse  LzCus +Locy
Case 0 —Cys6 LzSys + LSy
0 1 0 L, (19)
0 0 0 1

Equating elements (3, 4) from the two sides of Eq. (19):
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S23Px — C23Py — L1S; —H =14

S23Px — C23Py = Li1S; + H+ Ly

23 = Atan2(p,, —py) F Atan2(\/pZ + pi — (L1s, + H+ Ly)% Lys; H+L,) (20)

3 =423 — 42 (21)
From the Eq. (2) we can also obtain:

Az = — C3456
Ci234 = —2; G345¢ = Atan2 (/1 - azz!az) (22)
96 = 43456 — 43 — 44 — Qs (23)

V. Linear and Angular Velocity

In the context of robotic manipulator kinematics, velocity refers to the rate at which an object or a point on the object is
changing its position. In robotic manipulators, linear and angular velocity are important concepts in the field of robotics, particularly
when dealing with robot manipulators.

. Linear velocity refers to the rate at which an object moves along a straight path. In the context of a robot
manipulator, it represents the speed at which a point on the robot moves in a straight line. In a robot manipulator, the linear velocity
of a point on the end-effector is crucial for tasks involving movements in a straight line, such as reaching a specific position in the
workspace.

. Angular velocity is significant for tasks involving rotational movements, such as rotating an object. It is also
crucial for controlling the orientation of the end-effector. The angular velocity of each joint in a robot manipulator affects the overall
motion and orientation of the end-effector.

Linear velocity and angular velocity calculation:

For a revolute joint, the linear velocity and angular velocity calculations can be expressed using the DH parameters and
the basic principles of kinematics.

Vil =R (it wp X piy) ()
i+1 _

i+1 i . i+1
Wiy =R 0+ Qi -z 2

For a prismatic joint, the linear velocity and angular velocity calculations are a simpler compared to a revolute joint because
prismatic joints involve translational motion instead of rotational motion.

Viy1 = Vi 0 X Piyy (3)
Wil =R ] @)

where: R relative rotation matrix representing the orientation of frame i + 1 with respect to frame i. z'*1 unit vector
along the rotation axis of joint i + 1 expressed in its own coordinate frame. ¢;,, joint velocity of joint i + 1. w!f1 represents the
angular velocity of the i + 1 frame.

o In joint 1 (Revolute joint q4):
S B .
o_|S1 @ o_1lal. o =
=y o 1 H'”O_g'(”"_g
0 0 0 1
c; s; 0] [O 0 0
w} (Angular velocity) = R} .wd + q; . z{ = [—sl cy Ol Jol+|of= IO] (5)
0 0 11 Lol L4y d1
€ S1 0 0 0 0 0
vi(Linear velocity) = R} . (v + wd x p?) =|-s; ¢, of.{|o|+]o|x [o|] =]0] (6)
0 01 0 0 H 0

. Joint 2 (Revolute joint q5)
© 2023-2025, IJARCS All Rights Reserved 10
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c; 0 sy

0o 2o 0 0

T = |52 ¢ O pt=lol;vi=|o

01 0 0 g 0
00 0 1 1

0
0

G

0
0

q>

[0
= q'1l (7
p

[-f o

€2 S2 0
w3(Angular velocity) = R? .wl +q,.z2= [0 0 1f.
S2 =C2 0

+

0
0

G

0
0
0

+

Gz S22 0
vZ(Linear velocity) = R .(vi + w} x p3) =0 0 1].
S2 =C2 0

. Joint 3 (Revolute joint q3)

C3 —S3
S3  C3

c3.Lq] 0 0
536L1 ; wy = [q&l;v% = [Ol
Gz 0

0
|41
‘P

N

o= OO

0
0

qs

S3q1
C3q1
q: +qs

+]0]|= (9)

w3 (Angular velocity) = R3 .w3 +q3. 23 =|—s3 ¢3 0
| 0 0 1

c3.Lq —Lics s34z + Licz sz gz
X |s5.Li| | = Lis3s3 4, + Liczc3 gz [ (10)

0 —Liczqq

[ C3  S3 Ol

0
1
q2

0
0
0

C3 s3 0
vi=R}.(vi+ w3 X p?)=|-s; ¢c3 0]. +

0 01

. Joint 4 (Revolute joint q,)

C4 _S4 0 C4.L2
3_[sa ¢ 0 sply|, 5 _
T=lg o0 1 o [[®
0 0 O 1

S3q1
C3 q1

0
;v = [ Lisgs3 4, + Licscs Cbl
G2 + 43

—Liczqq

0
0

qs

S3441
C34 q1
gz t 43t 4,

Cy. Ly
X [54. L2|>
0

S3G1
C3 q1
q: + g3

+ =

Cy Sy 0
l. (11)

wj(Angular velocity) = R .w3 + q; . z§ = [—54 ¢, 0
0 0 1

S3G1
C3 1
G2 + 43

Cy Sz 0 0
vi=Ri.(vi+wd x pd)= [—54 Cy 0] <[ Lisz3sz g2+ Liczcsgz| +

0 01 —Licq

—L2s4 42 — Ly sS4 g3
=|Liszss o+ Liczcsgr+Llycugy +Lycuqgs| (12)
—Lics gy —Lycaaqgy

. Joint 5 (Revolute joint gq5)

o

Cs —Ss
Sg Cg 0

0 0 1 0
0 0 0 1

ce.L .
58 S34q1

C34 G1
G2 + 43+ s

Se. L . . . .
>3 wg = LiS383 g+ Licscs g+ Lycagy +Lycyqs

—Lys4 42 — Ly sS4 g3
; vg =
—Lics3 g — Ly c34qy

0
0

qs

S345G1
C345 1
4> + 43+ 44+ (s

S34q1
C34 q1
q> t 4zt 4,

Cs S5 0
Wi =R} .wf+qs.zt=|-S5 ¢ 0
0 01

+

(13)

v3(Linear velocity) = R} . (vi + w} x p?)

Cs S5 0 —L2ss G2 — Lz sS4 g3 S34G1 Cs. L3
=|—ss €5 0|.||Lis3s3 g2 +Licz3c3qgr+Lcag,+Locuqs|+ C34 q1 X |ss.L3
0 01 =Ly 341 — Ly caaqy 4>+ g3+ 4, 0
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—Lz sS4 G2 — Ly s, Cs5q3 —Lscs Ss( Gz + g3 + Ga) +55(LyS353 g2 + Ly c3 ¢34, + Ly ¢u G2 + Ly ca G3)
= —S5(—Ly Sy G2 — Ly s4 G3) + 5 (L1383 G + Ly c3¢34, + Ly caGa + Ly caq3) (14)
—Ly ¢3¢ —Lyc3aqy

. Joint 6 (prismatic joint q¢)
0 0 .
w0 - 0 Sa4s1
Ad=Ag =0 6 ; wE = C345 1
01 0 L G2 + s + s + 4
0 0 0 1 2 3 4 5

—Lycs 84 G2 — Ly sscsqs —Lzcs ss( Gz + Gz + Ga) +5s(LyS3 53 G + Ly c3 ¢3 G2 + Ly ¢4 G2 + Ly ¢4 G3)
Vs = —s5(—LySy G2 — Ly sy G3) + C5 (LyS3S3 G2 + Ly €33 G2 + L €4 G2 + Ly €4 G3)
—Lics gy —Lycaaqy

C Se 0 S345G1 S3456 G1
w¢=R¢.wi=[0 0 1]. C345 1 =Gz +q3 +qs + 45| (15)
—Se C6 01 LGy +qs+qs+gs C3456 G1

v&(Linear velocity) = v + w: X pg

—Lyc5 84 G2 — LS4 Cs5 g3 — Lzcs S5(qz + Gs + Ga) +55(LyS353 G + Ly c3 €3 G2 + Ly ¢4 G2 + Ly €4 G3)
= —S5(—Lys4 G2 — Ly s4 G3) + 5 (Lys3s3 G + Ly c3c34, + Ly ca gy + Ly cyqs)
—Lics g — Ly c344

S345G1 0
+ C345 1 x[0f=
q; t 43t 44t qs L,
—LycsS4 G2 — LS4 s q3 —Lscs Ss( G2 + g3 + Ga) +55(LyS3 83 G2 + Ly €3 €3 G2 + Ly ¢4 G2 + Ly €4 G3) + Ly Caus G
= —s5(—L2Ss G2 — Lz Sy G3) + 5 (LyS3S3 g2 + Ly €3 ¢34, + Ly ca Gy + Ly Cq q3) — Ly S3us G (16)

—Lic3 1 — Ly ¢34 G4

VI. Geometric Jacobian

The direct kinematic function for the manipulator is represented by the homogeneous transformation matrix T2 (q), which
specifies the position and orientation of the end effector relative to the reference base.

_[né@ o0l(@ al(a) pi(@)
T (q) = e\ el acla) peC )

where n,, 0., and a, are the unit vectors of a frame related to the end effector, and p, is the position vector of the origin
of such a frame with respect to the base frame. q is the (nx1) vector of joint variables.

Determining the link between the joint velocities and the end-effector linear and angular velocities is the aim of differential
kinematics. The mapping is defined by a matrix known as the geometric Jacobian, which is dependent on the configuration of the
manipulator. In general, we describe end effector linear velocity p and angular velocity w as functions of joint velocities g.

14 _ . [Prexm .
Viex1) = [w](ex1) =J(@q= ] q(nx1) (18)

0(3xn) (6xm)

The (6 X n) matrix J is the manipulators geometric Jacobian, which is a function of the joint variables in general.

1 Jacobian Computation

This section presents the derivation of the Jacobian matrix for six degrees of freedom with a prismatic joint. The
manipulator is comprised of five revolute joints and one prismatic joint (n = 6). In this context, we will outline the systematic process
of deriving Jacobian matrices. We have shown that the Jacobian matrices can be represented as (6 x n) matrices. The vector J can

© 2023-2025, IJARCS All Rights Reserved 12
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be divided into three column vectors. The vector J can be divided into (3 x 1) three column vectors. J matrices in our manipulator
have the dimensions (6 x 6). Additionally, it can be displayed as:

]=[{p1 ]pz ]p3 ]p4- ]p5 ]p6 (19)
01

Joz Jos Joa Jos Joe

J(q) = [Zo X (Pe=Po) Z1X(Pe=P1) 2ZzX(Pe=P2) 23X (Pe=P3) ZaX(Pe—Ps) Zs
q Zg Zq Z Z3 Zy 0

The Jacobian can be calculated from the following equation:

_ { z;_1 X (p—pi_1); forrevolute jointi (20)
Jpi = Zi_1; for prismatic joint i
_( zi—y; forrevolute jointi
Joi = { 0; for prismatic joint i (21)

Where P represents the end effector's position in relation to the base reference, as shown in Figure 5. p;_; is the position
of each revolute joint in relation to the base frame, which can be calculated using the first three elements of the fourth column of
the transformation matrix T,2.

Pi-1 = R?(%)---Rii:f(qi—ﬂ Po (22)

Wherei = 1:6and p, = [0 0 0 1]7 allows selecting the fourth desired column.

‘ :

Fig. 5. Vectors needed for Jacobian computation

The z;_, is the joint axis vector of each revolute joint and can be expressed by:

Zi—1 = R?(ql)"'Rii:%(qi—l) Zo (23)
Wherei = 1:6and z, = [0 0 1]7 allows selecting the third desired column.
z,=[0 0 1]"
zz=[0 0 1]
Z, =[s12 —cz 0]
z3 = [S12 —¢1z O]T
7, =[S12 —c12 O]
zg = [S12 —ciz O]T
When the joints are revolute the p—p;_, must be calculated from the Eq (24)
p—piis = AL AN — AL A2 % (24)
¥ isequal tothe vector [0 0 0 1]7.So,

© 2023-2025, IJARCS All Rights Reserved 13
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Dx
(Pe — Do) Revotute = |Py
Pz

Dx
by
Pz — H

(Pe — P1)Revolute =

Px
Py
Pz — H

(Pe — D2)Revotute =

Px — Licscp
(Pe — P3)Revotute = | Py — Licssi,
pz —Liss—H

Dx — C12 (L2C34 + LiC3)
(pe - p4)Revolute = |Py — S12 (L2C34 + L1C3)
Py —H — LyS34 — LqS3

For prismatic join (pe — Ps)prismatic N0t

2 SINGULARITY ANALYSIS

o At joint 1 (Revolute joint): In the provided mathematical notation related to singularity analysis for a robotic
manipulator with a revolute joint (joint 1), joint 1's position and Jacobian matrices for linear and angular velocities are defined.
1000 0] Px 0
o100 _ _ _
Ay = ,Po =|0[, (e —Dpo) =|Py|, 20 = |0
0 010 0 D 1
000 1 : ’
0 [—Dy 0
Ju, = [0 X e =P =Py |, Jay=120=10
1 L 0 1
-p,
0 Dx
J = ]Ll(Linear) ] _ 110 x (Pe — o) _10 (25)
Aq(angular) 1 0
Zg 0
1
. At joint 2 (Revolute joint):
Cl _Sl 0 O 0 px 0
Ay =T¢ Soa 0 0,p1= 0f (Pe —p1) = by |, z,=|0
0 0 1 H o p,—H 1
0 0 0 1 ?
0 —Px 0
Ju, =[[0]| X @e —PD|=|Py |, Ja,=21=|0
1 0 1
—py
0 Px
=[] = 18] @7 = 6 (29)
A2 1 8
Z1
L1 ]

. At joint 3 (Revolute joint):

© 2023-2025, IJARCS All Rights Reserved 14
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- 5(1:2 g 0 Px 51
A, = Tlo' Tz1 =1_ _ 012 H 02 =0 (e —p2) = Py |,z, = [_012]
H p,—H 0
- - — 1
[ S12 7 —c;(p, —H) S12
Ji, = [_012 XPe—0)|=|=S2(0:—H)|, Ja,= 2= [_012]
0 Sz py —C2Px 0
—c12 (p, — H)
J [ S12 —s12 (p, — H)
Js = L3] — _812 X (pe — D2) S12 Py t C12 Px (27)
A3 S12
—C12
0
. At joint 4 (Revolute joint):
T on i1C3C12 Liczcyr Px — Liczcrp
Ay=TP. T3 T = _ (0)12 Hl_f?’LSlZ D3 = | Licssiz |, (e —p3) = | Py — L1C3s12
_ _ — 1 1 H + Lys3 p;—Liss—H

—C12 (p; — L1533 — H) S12 S12
i, = — 8512(p; — L153 — H) v Ja, = [—C12], Z3 = [_C12
S12(Py — L1€3512) + €12(Px — L1C5¢12) 0 0

—C12 (p; — L1s3 — H)

S12 — S12(p; — L1s3 — H)
Ji= [, ] C12 X (Pe = P3) = | S12(Py — L1€3812) + C12(Px — L1C3012) (28)
S12
l —C12
0
. At joint 5 (Revolute joint):

S12 €12 (LzC34 + Lyc3)

ot i _ ¢ 519 (LyCag + LyCa) 12 (LaC34 + L1c3)
Ay=T.T,. T3. Ty =| 012 1-112+L2 3 _|_ng yPa = [S12 (LaC34 + Lyc3) |,
- -7 25314 153 H+ LySs34 + Lys;
Px — €12 (LyC34 + Lic3) S12 1
(Pe — Pa) = |Py — S12 (L2C34 + L1c3) |, Zy = [_512
Pz —H — L3834 — Lys3 U

= C12(p; — H — L3534 — LyS3) S12
Jis = =512z = H — L2534 — L1S3) yJas =24 = [_Cn]

S12 (Py = S12 (LaC3s + L1€3)) + c12(Px — €12 (L2€34 + Lyc3)))| 0
— C12(p; —H — LyS34 — LyS3) ]
v 512 —S12(0; —H — LyS34 — LyS3)
LS] C12 X (Pe=P4) | — [512 (Py — 512 (L2C3q + Lic3)) + c12(Px — €12 (L2C34 + LyC3)) 29)
S12
—C12
0

. At joint 6 (Revolute joint):

© 2023-2025, IJARCS All Rights Reserved 15
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S12

S12
- - ¢, -
Ag = Tlo- Tzl- T32- T43- T54 =l1_ _ 012 __|»Zi-1 [Prismaticjoint] = 45 = [_012]
- - - 1
S12 0]
Jig =25 = [_Clz], Jag = |0
0 0.
S12 7
) —C12
Le Zs 0
]6 Ae] [0 ] 0 ( )
0
0
Now we can write the Jacobian matrix as shown in equation (30):
J=10J1J2J3Jals J6 1 (31)
The linear Jacobian J; and angular Jacobean J,, will become:
_ [Juinear 1 _ [Jr1 Jiz Juz Jua Jus Jue
= = (32)
Angular Ja1 Jaz Jaz Jasa Jas Jas

Ju
—C12 (p; — L153 — H)
—S12(p; — L1535 — H)

—Py Py —C12 (p; —H)
=| Px DPx —S12 (pz - H]

—C12(p; — H — L3534 — LyS3)
= S12(p; = H — L3534 — L153)

S12
—C12

0 0 s12py +ci2bx S12(py — L13S12) + C12(Px — L1C3C12)  S12 (0y — S12 (LaC34 + L1€3)) + €12(Dx — €12 (LaC34 + Lic3)) O

0 0 sy S12 S;12 0
Ja= [0 0 —cip —c12 —Cp2 Ol
11 0 0 0 o0
The general Jacobian become J:
—C¢12 (pz — L1s3 — H)

= $12(p; — L1553 — H)
S12(Py — L1€3512) + c12(Px — L1c5012)

—S12 (pz - H)

[_py Py —c12(pz—H)
S12 Dy + C12 Dx

Il
_
mocooX
moool

S12 S12
—C12 —C12
0 0

The general Jacobian become J:

Jin a2 J13 J1a J1s S12
Jor T2z J23 J24 I2s —C12

= 0 0 J33 J34 J3s 0

0 0 S12 S12 S12 0

0 0 —C12  —C12  —Cpp 0

1 1 0 0 0 0
Ji1 = —(Lz S12 €345 — LaCip + S12( Ly c34 + Ly s3))
Jiz = —(L3 S12 C345 — Ly €1z + S12( Ly c34 + Ly s3))

—C12(p; — H — LpS34 — LyS3)
—S12(p; — H — LpS34 — Ly53)
S12 (Py — S12(L2C34 + L1€3)) + C12(Px — C12(LaC3a + LyC3))

Jiz = —c12 (Lp S34 + Ly s3 + Ly — H)

Jia = —€12(Ly S34 + Ly — H)

Jis = — ¢12(Ly — H)

J21 = L3 €12 Caas5 + LaSiz + €12(LpS3s + Lyc3)

J22 = Lz €13 C345 + LaSiz + €12( Ly sss + Lyc3)

© 2023-2025, IJARCS All Rights Reserved

(33)

S12
—C12
0

S12
—C12

oS oo o

|
|
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J23 = =S12 (Lp s34 + Lys3 + Ly — H)

J24 = — 812 (Lz s34 + Ly — H)

J25 = — s12(Ly — H)

Jo6 = —C12

J3z3 = S12 (L3 S12 €345 — La €12 + S12( Ly C34 + Ly S3)) + €12 (Lg €1z €345 + LaSiz + C12( Ly S34 + Ly €3))

J3a = S12(L3 S12 C345 — LaCiz + S12(Lp €34 + Ly S3) — LiC3S12) + €12(L3 €1z Caas + Ly Siz + C12( Ly s34 + Ly c3) — Liczcqz)

J3s = S12 (L3 S12 Caas — Ly Cip + S12( Ly C34 + Ly S3) — S35 (LaCgs + Lic3)) + €12 (Lg €1z Caas + Ly S1z + €12( Ly s3a + Ly c3)

— €12 (LpC3s + Lyic3))

VII. Kinematic Singularity

Singularities in manipulators have non-local
implications and arise from derivatives rank deficiency.
There are different types of singularities for serial and parallel
manipulators, and their analysis is important for engineering.
For serial manipulators, it is the singularities of the kinematic
mapping/forward kinematics and trajectories that are of
interest, whereas for fully parallel manipulators it is those of
the constraint function defining the configuration space and
of the projection onto the articular space (inverse kinematics).
The meaning of singularities in engineering has several
aspects:

1) Loss of freedom: The derivative of
kinematic mapping, also known as forward kinematics, is the
process of converting joint velocities into generalised end-
effector velocities, which include both linear and angular
velocities. In the robotics literature, this linear transformation
is commonly referred to as the manipulator Jacobian. A
decrease in rank results in a reduction of the image's

VIIl. MATLAB CODE EXPLANATION

1 Transfer matrix’s function

dimension, signifying a reduction of one or more degrees in
the end effector's instantaneous motion.

2) Workspace: When a manipulator is at a
boundary point of its workspace, the manipulator is
necessarily at a singular point of its kinematic mapping,
though the converse is not the case. Interior components of
the singular set separate regions with different numbers or
topological types of inverse kinematics. These are usually
associated with a change of posture in some component of the
manipulator. Therefore, knowledge of the manipulator
singularities provides valuable information about its
workspace [6].

3) Loss of control: In close proximity to a
singularity, this matrix is ill-defined. If the control algorithm
fails, the joint velocities and accelerations may reach levels
that are not sustainable. On the other hand, force control
techniques that are suitable for parallel manipulators may lead
to excessive joint forces or torques when the projection into
the joint space approaches singularities.

A function in MATLAB is defined to accept the D-H parameters as input and give the value A'Z2 as output:

function [A]= DH(a, alpha, d, theta)

% D-H Ho eous Trasnformation Matrix (a alpha d theta)

A = [cos(theta) -sin(theta)*round(cos(alpha)) sin(theta)*round(sin(alpha))

a*cos (theta); sin(theta) cos(theta)*round(cos(alpha))

-cos (theta) *round (sin(alpha)) a*sin(theta); 0 round(sin(alpha))

round(cos(alpha)) d: 0 0 0 1]:
end

2 Inserting D-H Parameters

In this part, we manually input the Denavit-Hartenberg (D-H) parameters into the code.

© 2023-2025, IJARCS All Rights Reserved
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% Inverting D-H convention parameters

Al=Trans (0, 0, H, thl):
A2=Trans (0, pi/2, 0, th2):
A3=Trans (L1, 0, 0, th3):
A4=Trans (L2, 0, 0, thid):
AS=Trans (L3, 0, 0, thb):
A6=Trans (0, pi/2, L4, the):

3 Creating Transfer Matrices

By determining a transfer matrix for each transformation and post multiplying them, we obtain the transformation matrix

for A%, which is referred to as Tj.

% Creating Transfer matrices
T2=A1*A2;

T3=A1*A2*A3;

T4=A1*A2*A3*A4;
T5=A1*A2*A3*A4*A5;
T6=A1*A2*A3*A4*A5*A6;

4 Creating p;_1, z;_1, and P

To compute the Jacobian matrices, we generate the p;_4, z;_, and P matrices.

5 Creating =i

=z0= [0:0¢*
=1l= 21 (1=
=z2= T2 (1=
=3= T3 (1:

—
A

9]

zd4— T4 (1
z5— TS5 (1

WWwwwrE
LT T T T Qe
Www

9]

[l S N S

P=T6&6(1l:3,4) 7

5 Jacobian Matrix computation

In this part of program, we compute the Jacobian matrix . To get equations that are more simple terms, we apply the
simplify command. To obtain the decoupled singularities, the Jacobians of the (3 x 3) blocks are calculated.

Jacobian matrix Computation
J= simplifvy(
[cross (z0, P-p0) ,cross (zl,P-pl,
cross (z2,P-p2) ,cross(z3,P-p3),
cross (z4,P-p4) ,cross (z5, P-p5) 7

z0 , zl . z2

: (2*3) blocks Jacobians
J11=J(1:3,1:3)
J22=J(4:6,4:6)

6 Jacobian Matrice Determinant

In the end, the determinant for each Jacobian is computed.

outcome.

% Determinant Calculation
det00=simplify(det (J)):

detll=simplify(det (J11));
det22=simplify(det (J22));

© 2023-2025, IJARCS All Rights Reserved

Streamlining commands aid in achieving a more concise
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The determinant of the Jacobian matrix for your RRRRRP manipulator is:

Det J = a2 a3 sin(theta3) sin (theta 2+theta3 + thetad) cos(theta5)

Singularities occur when:

e sin(theta3) =0, theta3 =0,
e sin (theta 2+theta3 + thetad) =0, theta 2+theta3 + thetad=0, ©
e cos(theta5) =0, thetab= -+m/2

Below is a table of results for singularity conditions in the RRRRRP manipulator.

Singularity Description Condition
Wrist Singularity (Axes Occurs when the axes of the last three joints O5=-m/2 or+n/2
Alignment) (4,5, 6) align.

Elbow Singularity
Fully Extended

Fully Extended

02+03+04=0 Fully Extended

Elbow Singularity
Fully Folded

Fully Folded

02+03+064= & Fully Folded

Base Singularity Base joint aligned with arm direction

0l=0o0r0l ==

Planar Singularity The manipulator’s links become collinear,

reducing degrees of freedom.

02+03+04=-m, +

Workspace Singularity Prismatic Joint Fully Extended

ds = dmin
ds = dinax
Fully retracted, fully extended

Det(J) as a Function of (N and O

det(J)

Oy (rad) -4 -4 ()3 (rad)

Fig. 3. 3D Surface Plot (theta_3) vs. (theta_5)

__ftrad)

Fig. 4. Contour Plot theta_3 vs. theta_4

0.1

CONCLUSION:

In this article, we have thoroughly examined the
geometric Jacobians and kinematic singularities of a 6-DOF
robotic manipulator, including a prismatic joint. Through the
systematic derivation of the Jacobian matrix, we have

demonstrated the relationship between joint velocities and the
© 2023-2025, IJARCS All Rights Reserved

end-effector’s linear and angular velocities. The analysis
highlighted the occurrence of rank deficiencies in the
Jacobian, which correspond to critical kinematic
singularities. These singularities, identified through the
determinant of the Jacobian, restrict the manipulator’s
movement and can lead to potential control issues.
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