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Abstract: This study examines the effectiveness of Maximum Likelihood Classification (MLC) and Spectral Angle Mapping (SAM) methods in 

classifying land use types across a mixed-use landscape. Using an error matrix assessment based on 791 ground-reference points, the study 

evaluates the classification accuracy for different land use classes, including Paddy Fields, Water Bodies, Forests, Sugarcane, Cassava, Eucalyptus 

Plantations, and Built-up Areas. Results reveal that MLC achieved higher accuracy in classifying Paddy Fields and Sugarcane, demonstrating a 

strong overall accuracy of 83.944% with a Kappa coefficient of 0.808, indicating robust classification reliability. SAM, with an overall accuracy 

of 79.267% and a Kappa coefficient of 0.752, showed strengths in specific classes but struggled with spectral overlap in mixed or similar land 

cover types, particularly Built-up Areas and certain plantation classes. The study’s findings suggest that MLC’s probabilistic approach is more 

suitable for complex land cover patterns, whereas SAM performs best in distinguishing classes with distinct spectral properties. The comparative 

insights inform the selection of classification methods based on landscape characteristics, offering guidance for improved land use mapping 

accuracy in remote sensing applications. 
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I. INTRODAUCTION  

The study of land use and land cover (LULC) plays a 
crucial role in understanding the spatial dynamics of terrestrial 
ecosystems and human-environment interactions. By 
analyzing LULC, researchers and policymakers can assess 
environmental changes, monitor urban expansion, manage 
natural resources, and plan for sustainable development. 
Tracking these changes helps inform decision-making 
processes that affect biodiversity conservation, agriculture, 
water management, and climate adaptation efforts.  

One key approach in LULC studies is the classification of 
land use types. Land use classification categorizes areas based 
on the observed human activities and natural characteristics, 
such as agricultural lands, forests, urban areas, and water 
bodies [1]. This structured approach enables a more 
systematic understanding of landscape patterns and their 
functions, assisting in resource allocation and ecological 
preservation [2]. Different classification schemes, including 
hierarchical and non-hierarchical systems, have been 
developed to accommodate various levels of detail and to 
address diverse research and policy needs. 

In recent years, Borabue district in Maha Sarakham 
province has shown a high rate of expansion in land use and 
structural development. A significant factor in this growth is 
the presence of Highway No. 23, also known as Chaeng Sanit 
Road, which connects Ban Phai District in Khon Kaen 
Province through Borabue to Maha Sarakham City. This 
connectivity has led to increased density of residential areas, 
businesses, and retail establishments. Additionally, the area 
has notable agricultural land use, particularly in rice 
cultivation. These factors highlight the importance of studying 
and analyzing land use classification in this region. 

With advancements in remote sensing technology, satellite 
imagery has become an indispensable tool for Land Use and 
Land Cover (LU/LC) classification, especially in rapidly 
developing areas like Borabue district. Remote sensing 
technology, when combined with satellite data, has 
revolutionized the study of natural resources, significantly 
reducing the need for extensive fieldwork and enabling 
efficient data collection over large areas [3]. This technology 
allows for the systematic analysis of different land use types 
by applying principles from various physics disciplines. 
Through the use of electromagnetic waves that interact with 
objects on Earth’s surface and are captured by sensor systems, 
remote sensing provides detailed, temporal data [4]. By 
recording these interactions over multiple time intervals, 
remote sensing offers comprehensive insights into land use 
changes and trends [5],[6]. 

This study aims to utilize remote sensing in the 
classification of land use in Borabue district by analyzing 
Sentinel-2 satellite images with a resolution of 10 meters [7]. 
Through the use of the Semi-Automatic classification plugin, 
and suitable algorithms, the study seeks to understand current 
land use patterns in Borabue district and determine which 
algorithms are most effective for such classification [8],[9]. 

II. MATERIAL AND METHODOLOGY 

A. Study Area 

Borabue district is located in the southwestern part of 
Maha Sarakham province, approximately 26 kilometers from 
Maha Sarakham district and about 460 kilometers from 
Bangkok. The area consists of flat plains interspersed with low 
hills, sloping from west to east. The soil is primarily sandy 
loam, which has limited water retention capacity. The 
underlying geological structure is composed of Maha 
Sarakham rock formations and salt rock layers. The district 
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has no major rivers, only small streams formed by rainwater 
runoff that flows down from the hilly areas into shallow 
creeks. Due to the topography, these streams have gradually 
become shallower over time, making it difficult to store water 
during the dry season. The primary land use in Borabue is 
agricultural, with most residents engaged in rice farming, crop 
cultivation, and livestock rearing [10]. 

 

B. Data Collection for Training Land Use Classes 

The first step involves collecting representative training 
data for each land use class. Satellite imagery, such as 
Sentinel-2 or Landsat data, is selected and prepared to 
represent diverse land cover types present in the study area. 
Field data collection or visual interpretation from high-
resolution images is then conducted to identify and label 
specific areas for training. This training dataset serves as a 
reference for distinguishing land use categories, such as built-
up land (U), paddy field (A1), sugarcane (A203), casava 
(A204), eucalyptus (A3), forest (F) and water bodies (W), in 
the classification process. 

 

C. Maximum Likelihood Classification (MLC) 

The classifiers discussed rely on defining decision 
boundaries within a feature space by measuring the 
multispectral distances between training classes. The MLC 
method is probability-based: it assigns each pixel to the class 
for which it has the highest likelihood based on its features 
[11]. This probability is calculated across predefined classes, 
with the pixel being allocated to the class with the highest 
probability score. MLC remains a widely used supervised 
classification method [12-14], relying on Bayes' theorem (as 
shown in Equation 1) and assuming that training data statistics 
for each class are normally (Gaussian) distributed in each 
spectral band [15]. 

 

𝑃(𝐺𝑘 𝑥)⁄ =
𝑃(𝑥 𝐺𝑘)𝑃(𝐺𝑘)⁄

𝑃(𝑥)
 

where  
𝑃(𝐺𝑘) is the prior probability of category k.  
𝑃(𝑥 𝐺𝑘)⁄ is conditional probability of observing x 
from Gk. 
𝑃(𝑥)is the same for each category. 
 

For data with multiple peaks (bi-modal or n-modal 

distributions), each peak may indicate distinct classes, which 

should ideally be trained separately to meet the Gaussian 

distribution assumption. 

 

D. Spectral Angle Mapping (SAM)  

SAM is an angle-based classification method that 
compares the spectral angle between a pixel's spectral 
signature and reference spectra. This technique is relatively 
unaffected by differences in illumination, making it 
particularly effective for distinguishing land cover types with 
similar reflectance properties. SAM works by measuring the 
angular difference between a test spectrum and a reference 
spectrum obtained from laboratory measurements, field data, 
or satellite observations. The algorithm assigns pixels to 
classes by evaluating the similarity between spectral vectors: 
a smaller angle indicates a closer match. In other words, the 
smaller the angle between two spectra, the higher their 
similarity; conversely, a larger angle suggests less similarity 

[16-20]. For example, the angle (α) between the test spectrum 
of category a and the reference spectrum of category b in a 
two-band image can be calculated as shown in Equation (2). 

 

𝑐𝑜𝑠−1 = [
∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖−1

(∑ 𝑎𝑖
2𝑛

𝑖−1 )
1
2⁄ (∑ 𝑏𝑖

2𝑛
𝑖−1 )

1
2⁄
] 

 
Where 

n is number of bands 

 𝑎𝑖 is test spectrum 

 𝑏𝑖 is reference spectrum 
 

E. Accuracy Assessment with Error Matrix 

To assess classification accuracy, an error matrix (or 
confusion matrix) is constructed. This matrix compares the 
classified results with validation data or reference points, 
calculating overall accuracy, user’s accuracy, producer’s 
accuracy, and the Kappa coefficient. This step evaluates the 
reliability of each classification method in accurately 
representing the land use classes. 

 

III. RESULTS 

A. Results of land use classification 

The land use classification results obtained from the 
Maximum Likelihood Classification (MLC) and Spectral 
Angle Mapping (SAM) methods revealed that the classified 
built-up areas (U), MLC classified 71.29 square kilometers, or 
7,129 hectare, accounting for 10.19% of the total area, while 
SAM classified 39.77 square kilometers, or 3,977 hectare rai, 
representing 5.69% of the area. The classified water bodies 
(W), MLC classified 14.71 square kilometers, or 1,471 
hectare, or 2.10% of the total area, whereas SAM classified 
31.80 square kilometers, or 3,180 hectare, or 4.55% of the 
area. The classified of forests (F), MLC classified 35.58 
square kilometers, or 3,558 hectare, which makes up 5.09% of 
the area, while SAM classified 20.95 square kilometers, or 
2,095 hectare, representing 2.99% of the area. The classified 
of sugarcane plantations (A203), MLC classified 101.39 
square kilometers, or 10,139 hectare, covering 14.49% of the 
area, compared to SAM’s classification of 108.82 square 
kilometers, or 10,882 hectare, or 15.56% of the area. The 
classified of cassava fields (A204), MLC classified 133.26 
square kilometers, or 13,326 hectare, amounting to 19.05% of 
the total area, whereas SAM classified 163.92 square 
kilometers, or 16,392 rai, making up 23.43% of the area. The 
classified of eucalyptus plantations (A3), MLC classified 
68.80 square kilometers, or 6,880 hectare, which accounts for 
9.83% of the area, while SAM classified 54.42 square 
kilometers, or 5,442 hectare, or 7.78% of the area. The 
classified of paddy fields (A1), MLC classified 274.52 square 
kilometers, or 27,452 hectare, covering 39.24% of the area, 
while SAM classified 279.85 square kilometers, or 27,985 
hectare, representing 40.01% of the area. This comparison 
shows that the SAM method classifies water bodies, 
sugarcane, and cassava plantations with higher area 
percentages, whereas MLC identifies more extensive areas for 
built-up and eucalyptus plantations. Each classification 
technique provides a distinct perspective on land cover 
distribution in the study area. The results from both the MLC 
and SAM are presented in Tables 1 and 2, while the land use 
classification maps are shown in Figures 1 and 2, respectively. 

(1) 

(2) 
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Table 1: The areas and percentage values of land use classes from 

MLC classification 

LU Class 
Area 

Sq.Km Hectare Percentage  

Built-up (U) 71.29 7129 10.19 

Water bodies (W) 14.71 1471 2.1 

Forest (F) 35.58 3558 5.09 

Sugarcane (A203) 101.39 10139 14.49 

Casava (A204) 133.26 13326 19.05 

Eucalyptus (A3) 68.8 6880 9.83 

Paddy field (A1) 274.52 27452 39.24 

Total 699.54 69954 100 

 
Table 2: The areas and percentage values of land use classes from 

SAM classification 

LU Class 
Area 

Sq.Km Hectare Percentage  

Built-up (U) 39.77 3977 5.69 

Water bodies (W) 31.8 318 4.55 

Forest (F) 20.95 2095 2.99 

Sugarcane (A203) 108.82 10882 15.56 

Casava (A204) 163.92 16392 23.43 

Eucalyptus (A3) 54.42 5442 7.78 

Paddy field (A1) 279.85 27985 40.01 

Total 699.54 69954 100 

 
 
 
 
 
 
 
 
 

 
 

Figure 1: The land use classification maps from MLC  

 
 

Figure 2: The land use classification maps from SAM  

 

B. Accuracy Assessment with Error Matrix 

The Error Matrix table is generated from an accuracy 
assessment, which overlays 791 ground-truth reference points 
collected from field surveys with the land classification results 
obtained from two classification algorithms: Maximum 
Likelihood Classification (MLC) and Spectral Angle Mapping 
(SAM). This table is used to evaluate both the accuracy and 
potential errors in classification results. Two key metrics are 
included in the assessment: Overall Accuracy, which 
represents the overall percentage of correctly classified points 
across all land use categories, and the Kappa Coefficient, a 
statistical measure of classification consistency or agreement. 
As shown in Tables 3 and 4, the results for MLC show an 
Overall Accuracy of 83.944% and a Kappa Coefficient of 
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0.808, indicating a high level of classification reliability. For 
SAM, the Overall Accuracy is 79.267%, with a Kappa 
Coefficient of 0.752, reflecting moderate agreement. These 
metrics allow for a quantitative comparison of the 
classification performance for each algorithm. 

 
Table 3: Confusion matrices and kappa coefficient of land use 

classified from MLC 

Class 
Reference data   

A1 A203 A204 A3 F2 U W Total 

A1 162 0 3 0  20 0 185 

A203 6 26 31 2 1 1 0 67 

A204 1 17 115 0 0 0 0 133 

A3 2 3 1 54 6 0 0 66 

F2 0 0 5 5 82 0 0 92 

U 13 0 1 1 1 118 5 139 

W 0 0 0 0 0 2 107 109 

Total 184 46 156 62 90 141 112 791 

 
Table 4: Confusion matrices and kappa coefficient of land use 

classified from SAM 

Class 
Reference data   

A1 A203 A204 A3 F2 U W Total 

A1 159 1 4 0 0 39 1 204 

A203 4 17 29 13 3 6 1 73 

A204 4 13 74 21 28 2 3 145 

A3 0 8 28 25 4 0 0 65 

F2 0 5 18 3 55 0 0 81 

U 9 1 1 0 0 46 8 65 

W 8 1 2 0 0 48 99 158 

Total 184 46 156 62 90 141 112 791 

 

C. Comparison of Classification Accuracy between MLC 

and SAM 

The comparative analysis between the MLC and SAM 
reveals notable differences in classification accuracy and error 
rates across land use types, as shown in the error matrix and 
associated kappa coefficients for each method. 

High accuracy classes (paddy fields and sugarcane): In 
MLC, paddy fields (A1) and sugarcane (A203) are classified 
with a high degree of accuracy, similar to SAM. However, 
MLC provides a slightly higher accuracy for these classes, as 
reflected by the higher overall accuracy of 83.944% compared 
to SAM’s 79.267%. Paddy fields particularly benefit from 
MLC's probabilistic approach, which utilizes both variance 
and covariance within each class, allowing it to effectively 
differentiate these large, uniform areas from other land use 
types. Sugarcane fields also exhibit high accuracy in MLC, 
with a lower misclassification rate compared to SAM, likely 
due to the method’s ability to leverage the probabilistic 
distribution, thereby reducing spectral confusion. 

Moderate accuracy classes (water bodies, deciduous 
forests, and cassava fields): water bodies (W), deciduous 
forests (F2), and cassava fields (A204) display moderate 
classification accuracy in both methods, but MLC generally 
shows higher classification consistency in these classes. MLC 
achieves this by better accounting for spectral variation within 

classes, minimizing misclassification with adjacent land cover 
types. SAM, however, occasionally misclassifies water bodies 
and deciduous forests due to the spectral similarity with 
vegetated and non-vegetated surfaces along water boundaries 
and forest edges. In SAM, cassava fields experience a 
moderate degree of confusion with other vegetation types, 
likely due to shared spectral properties. MLC, on the other 
hand, reduces this overlap by leveraging its probabilistic 
model, though some misclassification still occurs. 

Low accuracy classes (built-up areas, sugarcane, and 
eucalyptus plantations): built-up areas (U) and eucalyptus 
plantations (A3) show lower classification accuracy in both 
methods, but MLC provides slightly better accuracy. For 
example, built-up areas are prone to misclassification in SAM 
due to spectral overlap with barren and vegetated surfaces, 
whereas MLC’s probabilistic model allows for improved 
separation despite moderate overlap with other classes. 
Eucalyptus plantations face notable challenges in both 
methods due to spectral resemblance with other vegetation 
types. MLC slightly outperforms SAM here by offering 
marginally better separation, though SAM’s angle-based 
classification approach struggles with mixed land covers 
where spectral angles overlap. 

Overall accuracy and kappa coefficients: The overall 
accuracy of MLC (83.944%) surpasses that of SAM 
(79.267%), as MLC achieves a more refined classification in 
most land cover types, particularly those with spectral 
complexity or within mixed-use areas. This trend is supported 
by the kappa coefficient, which is higher for MLC (0.808) than 
SAM (0.752), indicating that MLC demonstrates stronger 
agreement between classified and reference data. The 
probabilistic approach of MLC tends to perform better in 
diverse land covers with mixed spectral signatures, while 
SAM’s vector-based angle measurement has limited 
effectiveness when separating classes with subtle spectral 
differences. 

IV. DISCUSSION 

The comparative analysis of land use classification results 
from MLC and SAM methods highlights the strengths and 
limitations of each approach across different land cover types. 
High accuracy in paddy fields and sugarcane: MLC 
demonstrated higher accuracy for paddy fields (A1) and 
sugarcane (A203) classifications due to its probabilistic 
model, which leverages class variance and covariance to 
handle similar spectral properties within these classes. SAM, 
although generally effective in distinguishing clear spectral 
patterns, yielded slightly lower accuracy in these areas, 
possibly due to its reliance on angular measurements, which 
can be limited when identifying classes with similar spectral 
characteristics. The distinction between these two methods 
indicates that MLC is better suited for classes with uniform 
land cover where spectral variance can be effectively 
managed. 

The comparative analysis of land use classification results 
from MLC and SAM methods highlights the strengths and 
limitations of each approach across different land cover types. 
High accuracy in paddy fields and sugarcane: MLC 
demonstrated higher accuracy for paddy fields (A1) and 
sugarcane (A203) classifications due to its probabilistic 
model, which leverages class variance and covariance to 
handle similar spectral properties within these classes. SAM, 
although generally effective in distinguishing clear spectral 
patterns, yielded slightly lower accuracy in these areas, 
possibly due to its reliance on angular measurements, which 
can be limited when identifying classes with similar spectral 
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characteristics. The distinction between these two methods 
indicates that MLC is better suited for classes with uniform 
land cover where spectral variance can be effectively 
managed. 

Low accuracy in built-up areas and eucalyptus plantations: 
built-up areas (U) and eucalyptus plantations (A3) 
experienced the lowest classification accuracy in both 
methods. SAM, in particular, struggled with Built-up Areas 
due to spectral overlap with barren and vegetated surfaces, 
leading to increased misclassification. The MLC approach, 
while slightly better, also faced challenges in these classes, as 
eucalyptus plantations often share spectral signatures with 
other vegetation types. This finding suggests that both 
methods have limitations in urban and plantation areas, where 
spectral similarities among mixed-use or single-crop 
plantations reduce classification reliability. 

Overall accuracy and kappa coefficient: The overall 
accuracy of MLC (83.944%) exceeded that of SAM 
(79.267%), with MLC’s higher kappa coefficient (0.808) 
indicating greater agreement between classified and reference 
data. This consistency implies that MLC is more robust for 
this dataset, particularly in areas where spectral variance is 
complex or mixed-use land covers create classification 
challenges. The SAM method, while effective in areas with 
unique spectral properties, had lower reliability for mixed land 
covers, as evidenced by its kappa coefficient (0.752). 

The comparative results underscore the benefits of MLC 
in handling diverse land cover types due to its probabilistic 
approach, which enhances classification accuracy in spectrally 
complex regions. SAM, although a viable alternative in certain 
classes, is better suited to distinguish land cover types with 
clear and distinct spectral profiles. For future studies, 
combining MLC with ancillary data or other classifiers may 
enhance classification in challenging areas, such as urban 
zones and specific plantation types, to address spectral overlap 
and improve overall accuracy. 
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