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Abstract: Sorting algorithms are critical to various computer science applications, including database management, big data 

analytics, and real-time systems. While Heap Sort is a widely used comparison-based sorting algorithm, its efficiency significantly 

diminishes when dealing with data sets containing a high volume of duplicate values. To address this limitation, this paper introduces 

a modified Heap Sort algorithm optimized for duplicate-heavy data. The proposed modification detects and handles duplicate values 

more efficiently by reducing unnecessary comparisons and swaps at the root of the heap and restructuring the heap more 

strategically. Experimental results demonstrate that the modified Heap Sort achieves up to a 15% reduction in sorting time, a 30% 

decrease in the number of swaps, and a 10% reduction in comparisons when tested on data sets with varying levels of duplication. 

These improvements highlight the enhanced computational efficiency and scalability of the modified algorithm in duplicate-heavy 

data scenarios. This advancement offers significant potential for improving sorting performance in practical domains such as big 

data analytics, database operations, and real-time data processing. 

Keywords: Heap Sort, Optimization, Duplicates, Sorting Algorithms, Algorithm Efficiency, Comparisons 

I. INTRODUCTION  

Sorting algorithms are fundamental to a wide array of 

computational tasks, serving as essential building blocks in 

applications ranging from data analysis to database 

management systems (DBMS) [1]. Among these algorithms, 

Heap Sort stands out as an efficient comparison-based 

method, renowned for its in-place sorting capability and 

𝑂 (𝑛 𝑙𝑜𝑔 𝑛) time complexity [2]. While Heap Sort performs 

well in general-purpose scenarios, its efficiency diminishes 

when handling data sets with a high frequency of repeated 

values a common feature in real-world applications. In such 

cases, the algorithm executes redundant comparisons and 

swaps, leading to an unnecessary increase in computational 

overhead. 

The era of big data and real-time systems introduces 

unique challenges for sorting algorithms, particularly in 

managing large, duplicate-heavy data sets such as transaction 

logs, sensor readings, and categorical data. Traditional Heap 

Sort, while robust, does not optimize for the characteristics of 

such data, making it less suitable for these scenarios [3]. This 

limitation is especially problematic in fields like data 

analytics and real-time systems, where efficient sorting of 

large, repetitive data sets is crucial [4]. 

Addressing this gap, our research aims to enhance Heap 

Sort by introducing a modification tailored for duplicate-

heavy data sets. The proposed approach incorporates a 

mechanism to detect duplicates during the sorting process, 

minimizing unnecessary operations. Specifically, the 

algorithm optimizes how duplicate values at the heap root are 

handled, reducing redundant comparisons and swaps. This 

adjustment improves sorting efficiency, particularly in 

applications dealing with large volumes of repetitive data. 

This paper presents a detailed examination of the 

modified Heap Sort algorithm, its theoretical advantages, and 

its practical implications. We analyze the modified 

algorithm's time and space complexities, compare its 

performance with standard Heap Sort, and demonstrate its 

effectiveness through empirical testing on various data sets. 

The remainder of this paper is organized as follows: 

Section 2 reviews related work on sorting algorithms and 

duplicate handling strategies. Section 3 details the 

methodology and introduces the modified Heap Sort 

algorithm. Section 4 describes the experimental setup and 

presents a comparative analysis of the performance results. 

Finally, Section 5 discusses the implications of our findings 

and provides suggestions for future research. 

II. RELATED WORKS 

Heapsort is widely recognized as an efficient in-place 

sorting algorithm, featuring a time complexity of 𝑂(𝑛𝑙𝑜𝑔𝑛) 

in both average and worst-case scenarios. Situmorang [5] 

described the process of constructing a binary heap and 

iteratively sorting elements, which aligns with Marcellino et 
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al. [6], who conducted a comparative study of advanced 

sorting algorithms, including Heapsort, Quick Sort, and 

Merge Sort. Their work highlighted Heapsort’s efficiency in 

terms of memory usage but noted its lack of stability. 

Recent advancements in Heapsort have focused on 

improving performance by optimizing the heap construction 

phase. Rudolf [7] introduced a bottom-up heap construction 

method that reduces the number of comparisons during the 

heapify process, enhancing efficiency for large datasets. 

Similarly, Meng et al. [8] proposed a dynamic priority 

scheduling algorithm using Heapsort, demonstrating practical 

improvements in real-time systems. 

Studies like those by Fadel et al. [9] have investigated 

Heapsort’s adaptability to secondary storage environments, 

emphasizing its in-place nature as advantageous for 

constrained memory systems. These findings align with 

Jingsen et al. [10], who noted that while Heapsort is efficient 

for large datasets, its performance is suboptimal compared to 

Merge Sort and Quick Sort when dealing with duplicates. 

Other sorting algorithms have been analyzed for their 

handling of duplicates. Quick Sort benefits from three-way 

partitioning, as reviewed by Hemin et al. [11], which 

minimizes unnecessary comparisons and swaps. Alhajri et al. 

[12] extended this by comparing sorting algorithms in Java, 

observing that Quick Sort’s time complexity of in the worst 

case makes it less reliable in some scenarios. On the other 

hand, Merge Sort preserves the relative order of duplicate 

elements due to its stability, making it suitable for duplicate-

heavy datasets, as noted by Nirupama [13] and further 

analyzed by Pandey & Gupta [14] in their development of 

Lazy Merge Sort. 

Hybrid approaches have also been explored to optimize 

Heapsort’s performance. Zhuge [15] proposed combining 

Heapsort with Counting Sort, leveraging the latter's ability to 

manage duplicates while maintaining Heapsort’s space 

efficiency. Reddy et al. [16] introduced a hybrid pipelining 

method combining Quick Sort and Heapsort for FPGA 

implementations, demonstrating improved performance in 

specific hardware settings. 

Additional studies have focused on algorithmic 

modifications. Wegener [17] introduced a variant of 

Heapsort, the Bottom-Up Heapsort, which outperforms 

Quick Sort for moderately sized datasets. Meanwhile, 

Edelkamp et al. [18][19] optimized binary heaps and 

introduced weak-heap data structures, improving Heapsort’s 

efficiency. 

In educational contexts, Šimoňák [20] emphasized using 

algorithm visualizations, including Heapsort, to enhance 

understanding in computer science education. This is 

supported by Lee & Hubbard [21], who provided 

comprehensive insights into Heapsort within their work on 

data structures and algorithms. 

In summary, while Heapsort is efficient and space-

saving, it faces challenges with duplicate-heavy datasets and 

stability. Ongoing research, including recent developments 

by researchers like Haeupler et al. [22], aims to address these 

limitations by leveraging hybrid techniques and novel 

optimizations, making Heapsort a competitive choice in 

specialized applications. 

 

III. RESEARCH METHODOLOGY 

Efficient sorting is crucial in computational tasks across 

diverse domains like database systems, search engines, and 

data analytics [23]. While traditional Heap Sort is widely used 

for its efficiency and deterministic behavior, handling 

duplicate values within datasets introduces inefficiencies that 

compromise performance [24]. This study addresses these 

challenges by proposing an enhanced Heap Sort algorithm 

optimized for duplicate-heavy datasets. The modification 

focuses on reducing redundant operations during heap 

construction and re-heapification, with real-world applications 

in fields such as financial data processing and sensor data 

analysis. 

 

3.1 Proposed Solution 

To address the inefficiency of Heap Sort when handling 

duplicate values, we propose a modification to the standard 

Heap Sort algorithm. The modification introduces a duplicate 

detection mechanism at the root of the heap, ensuring that 

redundant operations are minimized. The main objective is to 

reduce the number of unnecessary comparisons and swaps, 

particularly in datasets with a high frequency of duplicate 

values. The steps of the proposed solution are as follows: 

A. Identifying of Duplicates 

In the modified algorithm, we adjust the heapify operation 

to identify duplicate values at the root of the heap. 

Specifically, if the root contains two identical values (the root 

value and its child), the algorithm recognizes that sorting these 

two values is redundant. Therefore, the heap size is reduced 

by two instead of the usual one, effectively removing the 

duplicates from the heapification process. 

 

B. Handling Duplicates 

When duplicates are detected, we swap the duplicate value 

at the root with the last element in the heap, which is the most 

efficient method to remove them. This operation places both 

duplicate values at the end of the heap. By reducing the heap 

size by 2, these duplicates are excluded from subsequent 

comparisons and heapifications, ensuring that they are no 

longer involved in unnecessary operations. This significantly 

reduces computational overhead. 

 

C. Re-heapifications 

After the duplicates are removed, the remaining heap 

elements are re-heapified to restore the heap structure and 

ensure the heap property is maintained. This step guarantees 

that the sorting process continues correctly and efficiently, 

with the reduced number of elements in the heap. 

 

3.2 Algorithm Pseudocode 

To clarify the steps of the modified Heap Sort, we present 

the following pseudocode for both the original and the 

modified Heap Sort algorithms. The pseudocode illustrates 

how the modification handles duplicate values and adjusts the 

heap size accordingly. 

 

A. Original Heap Sort Pseudocode 

 
HeapSort(A) 
    n = length(A) 
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    BuildHeap(A) 
    for i = n-1 to 1 
        Swap(A[0], A[i]) 
        Heapify(A, 0, i) 

 
B. Modified Heap Sort Pseudocode 

 
Procedure HeapSortWithDuplicateHandling(arr) 
    n ← Length(arr) 
    metrics ← {comp: 0, swaps: 0} 

 
    If Set(arr) has size 1 Then 
        metrics.comp ← metrics.comp + 1 
        Return metrics   
 
    For i ← n // 2 - 1 down to 0 Do 
        Heapify(arr, n, i, metrics) 

 
    i ← n - 1 
    While i > 0 Do 
        If arr[0] == arr[i] Then 
          metrics.comp ← metrics.comp + 1 
 

           If i > 1 And arr[1] == arr[0] Then 
              metrics.comp ← metrics.comp +1 
              Swap(arr[i], arr[i - 1]) 
              Swap(arr[0], arr[1]) 
              metrics.swaps ← metrics.swaps + 2 

                i ← i - 2 
            Else 

                Swap(arr[i], arr[0]) 
                metrics.swaps ← metrics.swaps + 1 

                i ← i - 1 
        Else 
            Swap(arr[i], arr[0]) 
            metrics.swaps ← metrics.swaps + 1 
            i ← i - 1 
 
        Heapify(arr, i + 1, 0, metrics) 
 
    Return metrics 
End Procedure 
 
Procedure Heapify(arr, n, i, metrics)    

largest ← i 
    left ← 2 * i + 1 
    right ← 2 * i + 2 
 
        If left < n And arr[left] > 

arr[largest] Then 
        largest ← left 
        metrics.comp ← metrics.comp + 1 

 
    If right < n And arr[right] > arr[largest] 

Then 
        largest ← right 
        metrics.comp ← metrics.comp + 1 
 
    If largest ≠ i Then 
        Swap(arr[i], arr[largest]) 
        metrics.swaps ← metrics.swaps + 1 
        Heapify(arr, n, largest, metrics) 

End Procedure 

IV. EXPERIMENTS AND RESULTS 

A. Experiment Setup 

The experiments were conducted to evaluate the 

performance of the proposed Modified Heap Sort algorithm 

compared to the standard Heap Sort. These datasets were 

generated to cover different data distributions and sizes, 

ranging from 10,000 to 10,000,000 elements. The datasets 

included random, sorted, reverse-sorted, duplicate-heavy, and 

uniform data to simulate various real-world scenarios.  

The simulations were performed on a system with the 

following specifications: Operating System - Microsoft 

Windows 10 Pro (Version 10.0.19045 Build 19045); 

Processor - Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz, 

1800 MHz, 4 Cores, 8 Logical Processors; System Model - 

HP ProBook 430 G6; RAM - 8.00 GB (7.85 GB usable); 

BIOS Version - HP R71 Ver. 01.27.00 (06/12/2023); Storage 

Configuration - 13.3 GB Total Virtual Memory with 5.49 GB 

Available. This x64-based PC ran in UEFI BIOS mode with 

Secure Boot disabled and utilized the C:\WINDOWS 

directory for system files 

 

B. Results Overview 

The results of the experiments are presented in the tables 

below: 

Table I.  Random Data Performance 

Array 

Size 

Algorithm Time 

Taken 

(ms) 

Swaps Comparisons 

10000 Heap Sort 216.03 123,402 256,804 

10000 Modified 
Heap Sort 

207.45 123,224 256,464 

100000 Heap Sort 2,326.63 1,562,272 3,224,544 

100000 Modified 
Heap Sort 

2,319.06 1,557,804 3,215,880 

1000000 Heap Sort 22,031.10 18,880,015 38,760,030 

1000000 Modified 
Heap Sort 

16,005.90 18,575,375 38,156,622 

10000000 Heap Sort 195,581.00 221,795,552 453,591,104 

10000000 Modified 
Heap Sort 

187,671.00 211,838,328 433,752,831 

 

Table II.  Sorted Data Performance 

Array 

Size 

Algorithm Time 

Taken 

(ms) 

Swaps Comparisons 

10000 Heap Sort 225.40 131,956 256,804 

10000 Modified 
Heap Sort 

222.28 131,956 256,464 

100000 Heap Sort 2,556.16 1,650,854 3,224,544 

100000 Modified 
Heap Sort 

2,739.67 1,650,854 3,215,880 

1000000 Heap Sort 17,211.70 19,787,792 38,760,030 

1000000 Modified 
Heap Sort 

17,255.30 19,787,792 38,156,622 

10000000 Heap Sort 203,516.00 231,881,708 473,763,416 
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10000000 Modified 
Heap Sort 

207,909.00 231,881,708 473,763,416 

 

Table III.  Reverse Sorted Data Performance 

Array 

Size 

Algorithm Time Taken 

(ms) 

Swaps Compariso

ns 

10000 Heap Sort 187.50 116,696 243,392 

10000 Modified 
Heap Sort 

179.45 116,696 243,392 

100000 Heap Sort 2,736.68 1,497,434 3,094,868 

100000 Modified 
Heap Sort 

2,725.70 1,497,434 3,094,868 

1000000 Heap Sort 16,006.60 18,333,408 37,666,816 

1000000 Modified 
Heap Sort 

16,150.60 18,333,408 37,666,816 

10000000 Heap Sort 194,890.00 216,912,428 443,824,85
6 

10000000 Modified 
Heap Sort 

191,705.00 216,912,428 443,824,85
6 

 

Table IV.  Duplicate-Heavy Data Performance 

Array 

Size 

Algorithm Time Taken 

(ms) 

Swaps Comparisons 

10000 Heap Sort 126.46 82,160 174,320 

10000 Modified 
Heap Sort 

115.69 76,330 163,110 

100000 Heap Sort 1,871.37 1,038,341 2,176,682 

100000 Modified 
Heap Sort 

1,342.20 717,388 1,548,696 

1000000 Heap Sort 10,769.00 12,304,762 25,609,524 

1000000 Modified 
Heap Sort 

10,105.00 11,407,760 23,879,597 

10000000 Heap Sort 127,273.00 144,822,776 299,645,552 

10000000 Modified 
Heap Sort 

123,735.00 139,286,916 288,920,097 

 

Table V.  Uniform Data Performance 

Array Size Algorithm Time Taken 

(ms) 

Swaps Comparisons 

10000 Heap Sort 18.95 9,999 29,998 

10000 Modified 

Heap Sort 

0.00 0 1 

100000 Heap Sort 233.38 99,999 299,998 

100000 Modified 

Heap Sort 

2.99 0 1 

1000000 Heap Sort 1,101.85 999,999 2,999,998 

1000000 Modified 

Heap Sort 

13.63 0 1 

10000000 Heap Sort 11078.50 9,999,999 2,999,998 

10000000 Modified 

Heap Sort 

111.70 0 1 

 

 
Fig 1: Time Taken for Sorting (Duplicate-Heavy Data 

Performance) 
 

Fig 1 illustrates the time required by two algorithms, Heap 
Sort and Modified Heap Sort, to sort datasets of varying sizes 
(10,000 to 10,000,000 elements) under a duplicate-heavy data 
scenario. The graph highlights the performance differences 
between the two algorithms, providing insights into their 
efficiency in handling such data distributions. 

 
Fig 2: Number of Swaps (Duplicate-Heavy Data 

Performance) 
 

Fig 2 provides a comparative view of how the algorithms 
optimize or reduce the number of swaps required for sorting, 
reflecting their efficiency in handling such data. 
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Fig. 3: Number of Comparisons (Duplicate-Heavy Data 

Performance) 
 

Fig 3 presents the total number of comparisons executed 
by Heap Sort and Modified Heap Sort while sorting datasets 
of various sizes (10,000 to 10,000,000 elements) in a 
duplicate-heavy data environment. It highlights the 
computational workload of each algorithm, showcasing how 
effectively they minimize comparisons in scenarios with 
repetitive data. 
 

C. Discussion 
 

• Random Data Performance 
Across all dataset sizes, the Modified Heap Sort 

consistently outperformed the standard Heap Sort in execution 
time, achieving up to a 27% reduction for the largest dataset 
(1,000,000 elements). Swaps and comparisons showed 
marginal improvements, highlighting the Modified Heap 
Sort's efficiency in element repositioning. 

• Sorted Data Performance 
Both algorithms demonstrated similar performance in 

swaps and comparisons, with differences of less than 1%. 
Execution times were nearly identical, indicating minimal 
optimization benefits of the Modified Heap Sort on pre-sorted 
datasets. 

• Reverse Sorted Data Performance 
The Modified Heap Sort showed a slight reduction in 

execution time, averaging 1.2% faster across all dataset sizes. 
The number of swaps and comparisons remained unchanged, 
suggesting equivalent logical operations for both algorithms in 
handling reverse-sorted data. 

• Duplicate-Heavy Data Performance 
The Modified Heap Sort excelled, reducing execution time 

by up to 28% for 100,000 elements and achieving 
significantly fewer swaps (e.g., 33% fewer swaps for 
1,000,000 elements). The reduction in comparisons (up to 
10%) further supports its optimization for datasets with many 
duplicates. 

• Uniform Data Performance 
The Modified Heap Sort displayed remarkable efficiency, 

with nearly zero swaps and comparisons for all dataset sizes. 
This highlights its significant advantage when data exhibits 
extreme uniformity. For datasets up to 1,000,000 elements, 
the Modified Heap Sort executed nearly 99.9% faster than the 
standard Heap Sort. 

 

D. Summary of findings  
The experiments demonstrated that the Modified Heap 

Sort consistently outperforms the standard Heap Sort in 
scenarios involving duplicate-heavy or uniform datasets, 
achieving significant reductions in execution time (up to 28% 
for duplicates and 99.9% for uniform data), swaps, and 
comparisons. While performance differences were marginal 
for random data and negligible for sorted and reverse-sorted 
datasets, the optimization benefits are most pronounced in 
datasets with repetitive or homogeneous patterns. These 
results highlight the Modified Heap Sort’s efficiency in 
specialized contexts, making it a robust alternative for data 
with distinct structural characteristics. 

 

V. CONCLUSION 

This research presents a novel modification to the Heap 
Sort algorithm, tailored to enhance performance on datasets 
with substantial duplicate values. By introducing mechanisms 
to detect and handle duplicates efficiently, the modified 
algorithm reduces redundant comparisons and swaps, thereby 
improving overall computational efficiency. Empirical results 
affirm the modified approach's superiority over the standard 
Heap Sort, particularly in scenarios involving duplicate-heavy 
data. 

The enhanced performance highlights its applicability in 
diverse domains such as big data analytics, database 
management, and real-time systems, where duplicate values 
are common and sorting efficiency is critical. Future research 
could explore integrating the modification into hybrid sorting 
techniques or adapting it to parallel processing environments 
to further extend its utility. This work lays a foundation for 
advancing sorting efficiency in practical applications, 
underscoring the importance of tailoring algorithms to data 
characteristics. 

VI. RECOMMENDATIONS 

Based on the findings of this research, the following 
recommendations are proposed: 

A. Adoption in Duplicate-Heavy Applications 
Organizations managing duplicate-heavy datasets, such as 

transaction logs, sensor readings, or categorical data, should 
integrate the Modified Heap Sort algorithm. Its ability to 
minimize unnecessary comparisons and swaps can enhance 
computational efficiency, achieving up to a 28% improvement 
in execution time for such data scenarios. 

 
B. Integration with Big Data Systems 
The improved performance of the Modified Heap Sort 

makes it an ideal candidate for integration into big data 
analytics frameworks, where it can optimize preprocessing 
tasks and reduce computational overhead, particularly in 
handling repetitive or homogeneous datasets. 

 
C. Exploration of Stability Enhancements 
Future research should explore modifications to make the 

algorithm stable while retaining its efficiency. Stability 
enhancements will broaden its application to fields such as 
database management, where preserving the relative order of 
duplicate elements is essential. 

 
D. Parallel Processing Implementation 
To further enhance efficiency, the Modified Heap Sort can 

be adapted for parallel processing architectures. This approach 
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is particularly valuable for sorting large datasets in distributed 
or high-performance computing systems. 

 
E. Development of Hybrid Algorithms 
Combining the Modified Heap Sort with other algorithms 

like Merge Sort or Counting Sort can create hybrid 
approaches. These solutions can balance memory usage, 
stability, and efficiency, making them suitable for datasets 
with diverse characteristics. 

 
F. Educational Integration 
Integrate the Modified Heap Sort algorithm into computer 

science curricula to teach advanced optimization techniques, 
and leverage Generative AI to enhance the learning 
experience. Generative AI can create interactive tutorials, 
simulate real-world data scenarios, provide personalized 
feedback, and support collaborative learning, enabling 
students to understand the algorithm's efficiency in handling 
uniform and duplicate-heavy datasets. This approach will 
foster deeper comprehension, innovation, and readiness for 
real-world computational challenges [25][26]. 

 
G. Real-World Applications 
Domains such as financial data processing, sensor data 

analysis, and database management should evaluate the 
Modified Heap Sort for its ability to handle large volumes of 
data efficiently. Organizations can realize significant time and 
cost savings through its implementation. 

VII. ACKNOWLEDGMENT 

The authors wish to express their gratitude to all 
contributors who played a significant role in the development 
of this manuscript. We acknowledge the collaborative efforts 
and dedication of each team member in conceptualizing, 
researching, and finalizing this work. 

We also extend our appreciation to RUC and CKT-UTAS 
for providing access to resources and facilities that supported 
this research. 

Finally, we are thankful for the constructive feedback from 
our peer reviewers, which helped refine the quality of this 
manuscript. 

 
COMPETING INTERESTS  

The authors have declared that no competing interests 
exist. 

VIII. REFERENCES 

[1] Rao, T. R., Mitra, P., Bhatt, R., & Goswami, A. (2019). 

The big data system, components, tools, and technologies: 

a survey. Knowledge and Information Systems, 60, 1165-

1245. 

[2] Al-Sharagbi, E. TDK thesis. 

[3] Musser, D. R. (1997). Introspective sorting and selection 

algorithms. Software: Practice and Experience, 27(8), 

983-993. 

[4] Japheth Kodua Wiredu; Basel Atiyire; Nelson Seidu 

Abuba; Reuben Wiredu Acheampong. "Efficiency 

Analysis and Optimization Techniques for Base 

Conversion Algorithms in Computational Systems.” 

Volume. 9 Issue.8, August - 2024 International Journal of 

Innovative Science and Research Technology (IJISRT), 

www.ijisrt.com. ISSN - 2456-2165, PP:- 235-244, 

https://doi.org/10.38124/ijisrt/IJISRT24AUG066 

[5] Situmorang, H. (2018). SIMULASI PENGURUTAN 

DATA DENGAN ALGORITMA HEAP 

SORT. JURNAL MAHAJANA INFORMASI, 1(2), 20–

30. https://doi.org/10.51544/jurnalmi.v1i2.170 

[6] Marcellino, M., Pratama, D. W., Suntiarko, S. S., & Margi, 

K. (2021, October). Comparative of advanced sorting 

algorithms (quick sort, heap sort, merge sort, intro sort, 

radix sort) based on time and memory usage. In 2021 1st 

International Conference on Computer Science and 

Artificial Intelligence (ICCSAI) (Vol. 1, pp. 154-160). 

IEEE. 

[7] Rudolf, Fleischer. (1994). A tight lower bound for the 

worst case of Bottom-Up-Heapsort. Algorithmica, 

11(2):104-115. doi: 10.1007/BF01182770 

[8] Meng, S., Zhu, Q., & Xia, F. (2019). Improvement of the 

dynamic priority scheduling algorithm based on a 

heapsort. IEEE Access, 7, 68503-68510. 

[9] Fadel, R., Jakobsen, K. V., Katajainen, J., & Teuhola, J. 

(1999). Heaps and heapsort on secondary 

storage. Theoretical Computer Science, 220(2), 345-

362. 

[10] Jingsen, Chen., Stefan, Edelkamp., Amr, Elmasry., Jyrki, 

Katajainen. (2012). In-place heap construction with 

optimized comparisons, moves, and cache misses.  259-

270. doi: 10.1007/978-3-642-32589-2_25 

[11] Hemin., Amit, Yadav., Asif, Khan., Abhishek, Pratap, 

Sah. (2024). Research on Improved Quick Sort Algorithm 

with Duplicate Value Handling.  832-836. doi: 10.1109/i-

smac61858.2024.10714778. 

[12] Alhajri, K., Alsinan, W., Almuhaishi, S., Alhmood, F., 

AlJumaia, N., & AA, A. (2022). Analysis and Comparison 

of Sorting Algorithms (Insertion, Merge, and Heap) Using 

Java. IJCSNS, 22(12), 197. 

[13] Nirupama, Tiwari. (2023). Sorting Smarter: Unveiling 

Algorithmic Efficiency and User-Friendly Applications.   

doi: 10.36227/techrxiv.24680145.v1 

[14] Pandey, S., & Gupta, A. (2024, August). Lazy Merge 

Sort: An Improvement over Merge Sort. In 2024 

International Conference on Electrical Electronics and 

Computing Technologies (ICEECT) (Vol. 1, pp. 1-6). 

IEEE. 

[15] Zhuge, Y. (2018). U.S. Patent No. 9,910,873. 

Washington, DC: U.S. Patent and Trademark Office. 

[16] Reddy, B. N. K., Sarangam, K., Dandeliya, S., Naidu, S. 

P. S., & Kumar, N. (2023, December). accelerating 

sorting performance on FpGa: combining Quick sort and 

Heap sort through Hybrid pipelining. In 2023 IEEE 

International Symposium on Smart Electronic Systems 

(iSES) (pp. 405-408). IEEE. 

[17] Wegener, I. (1990, August). Bottom-up-heap sort, a new 

variant of heap sort beating on average quick sort (if n is 

not very small). In International Symposium on 

Mathematical Foundations of Computer Science (pp. 

516-522). Berlin, Heidelberg: Springer Berlin 

Heidelberg. 

[18] Edelkamp, S., Elmasry, A., & Katajainen, J. (2017). 

Optimizing binary heaps. Theory of Computing 

Systems, 61, 606-636. 

[19] Edelkamp, S., Elmasry, A., & Katajainen, J. (2012). The 

weak-heap data structure: Variants and 

applications. Journal of Discrete Algorithms, 16, 187-

205. 

https://doi.org/10.38124/ijisrt/IJISRT24AUG066
https://doi.org/10.51544/jurnalmi.v1i2.170


Japheth Kodua Wiredu et al, International Journal of Advanced Research in Computer Science, 15 (6), November-December 2024, 12-18 

 

© 2023-2025, IJARCS All Rights Reserved              18 

[20] Šimoňák, S. (2014). Using algorithm visualizations in 

computer science education. Central European Journal 

of Computer Science, 4, 183-190. 

[21] Lee, K. D., & Hubbard, S. (2024). Heaps. In Data 

Structures and Algorithms with Python: With an 

Introduction to Multiprocessing (pp. 217-239). Cham: 

Springer International Publishing. 

[22] Haeupler, B., Hladík, R., Iacono, J., Rozhon, V., Tarjan, 

R., & Tětek, J. (2024). Fast and Simple Sorting Using 

Partial Information. arXiv preprint arXiv:2404.04552. 

[23] Mohamed, A., Najafabadi, M. K., Wah, Y. B., Zaman, E. 

A. K., & Maskat, R. (2020). The state of the art and 

taxonomy of big data analytics: view from new big data 

framework. Artificial intelligence review, 53, 989-1037. 

[24] Kristo, A., Vaidya, K., Çetintemel, U., Misra, S., & 

Kraska, T. (2020, June). The case for a learned sorting 

algorithm. In Proceedings of the 2020 ACM SIGMOD 

international conference on management of data (pp. 

1001-1016). 

[25] Wiredu, Japheth Kodua and Seidu Abuba, Nelson and 

Zakaria, Hassan, Impact of Generative AI in Academic 

Integrity and Learning Outcomes: A Case Study in the 

Upper East Region (May 03, 2024). Asian Journal of 

Research in Computer Science, volume 17, issue 8, 

2024[10.9734/ajrcos/2024/v17i7491], Available at 

SSRN: https://ssrn.com/abstract=4976068 or 

http://dx.doi.org/10.9734/ajrcos/2024/v17i7491 

[26] Wiredu, J. K., Abuba, N. S., & Acheampong, R. W. 

(2024). Enhancing Accessibility and Engagement in 

Computer Science Education for Diverse 

Learners. Asian Journal of Research in Computer 

Science, 17(10), 45-61. 

[27] Azure, I., Wiredu, J. K., Musah, A., & Akolgo, E. (2023). 

AI-Enhanced Performance Evaluation of Python, 

MATLAB, and Scilab for Solving Nonlinear Systems of 

Equations: A Comparative Study Using the Broyden 

Method. American Journal of Computational 

Mathematics, 13(4), 644-677. 

[28] Chinnaiah, M. C., Vani, G. D., Reddy, D. J., Bharath, K., 

Goud, J. S. K., & Kumar, N. (2023, April). HEAP-SORT 

on Dual Port RAM Based FPGA. In 2023 International 

Conference on Recent Advances in Electrical, 

Electronics, Ubiquitous Communication, and 

Computational Intelligence (RAEEUCCI) (pp. 1-6). 

IEEE. 

[29] Schaffer, R., & Sedgewick, R. (1993). The analysis of 

heapsort. Journal of Algorithms, 15(1), 76-100. 

[30] Ravin, Kumar. (2019). Modified Counting Sort.  251-

258. doi: 10.1007/978-981-10-7323-6_21 

[31] Tyagi, A., & Ahlawat, A. K. (2023, April). A New 

Optimized Version of Merge Sort. In 2023 11th 

International Conference on Emerging Trends in 

Engineering & Technology-Signal and Information 

Processing (ICETET-SIP) (pp. 1-5). IEEE. 

 

 

 

 

 

 

 

 

 
 

http://dx.doi.org/10.9734/ajrcos/2024/v17i7491

