
DOI: http://dx.doi.org/10.26483/ijarcs.v15i6.7152

Volume 15, No. 6, November-December 2024

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2023-2025, IJARCS All Rights Reserved 12

ISSN No. 0976-5697

Optimizing Heap Sort for Repeated Values: A Modified Approach to Improve

Efficiency in Duplicate-Heavy Data Sets

Japheth Kodua Wiredu

Programme Coordinator, Department of Computer Science

Regentropfen University College (RUC)

Upper East Region, Ghana

https://orcid.org/0009-0008-0313-5011

Iven Aabaah

Department of Information Systems and Technology

C. K. Tedam University of Technology and Applied Sciences

(CKT-UTAS)

Navrongo, Ghana

Reuben Wiredu Acheampong

Department of Information Systems and Technology

C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS)

Navrongo, Ghana

Abstract: Sorting algorithms are critical to various computer science applications, including database management, big data

analytics, and real-time systems. While Heap Sort is a widely used comparison-based sorting algorithm, its efficiency significantly

diminishes when dealing with data sets containing a high volume of duplicate values. To address this limitation, this paper introduces

a modified Heap Sort algorithm optimized for duplicate-heavy data. The proposed modification detects and handles duplicate values

more efficiently by reducing unnecessary comparisons and swaps at the root of the heap and restructuring the heap more

strategically. Experimental results demonstrate that the modified Heap Sort achieves up to a 15% reduction in sorting time, a 30%

decrease in the number of swaps, and a 10% reduction in comparisons when tested on data sets with varying levels of duplication.

These improvements highlight the enhanced computational efficiency and scalability of the modified algorithm in duplicate-heavy

data scenarios. This advancement offers significant potential for improving sorting performance in practical domains such as big

data analytics, database operations, and real-time data processing.

Keywords: Heap Sort, Optimization, Duplicates, Sorting Algorithms, Algorithm Efficiency, Comparisons

I. INTRODUCTION

Sorting algorithms are fundamental to a wide array of

computational tasks, serving as essential building blocks in

applications ranging from data analysis to database

management systems (DBMS) [1]. Among these algorithms,

Heap Sort stands out as an efficient comparison-based

method, renowned for its in-place sorting capability and

𝑂 (𝑛 𝑙𝑜𝑔 𝑛) time complexity [2]. While Heap Sort performs

well in general-purpose scenarios, its efficiency diminishes

when handling data sets with a high frequency of repeated

values a common feature in real-world applications. In such

cases, the algorithm executes redundant comparisons and

swaps, leading to an unnecessary increase in computational

overhead.

The era of big data and real-time systems introduces

unique challenges for sorting algorithms, particularly in

managing large, duplicate-heavy data sets such as transaction

logs, sensor readings, and categorical data. Traditional Heap

Sort, while robust, does not optimize for the characteristics of

such data, making it less suitable for these scenarios [3]. This

limitation is especially problematic in fields like data

analytics and real-time systems, where efficient sorting of

large, repetitive data sets is crucial [4].

Addressing this gap, our research aims to enhance Heap

Sort by introducing a modification tailored for duplicate-

heavy data sets. The proposed approach incorporates a

mechanism to detect duplicates during the sorting process,

minimizing unnecessary operations. Specifically, the

algorithm optimizes how duplicate values at the heap root are

handled, reducing redundant comparisons and swaps. This

adjustment improves sorting efficiency, particularly in

applications dealing with large volumes of repetitive data.

This paper presents a detailed examination of the

modified Heap Sort algorithm, its theoretical advantages, and

its practical implications. We analyze the modified

algorithm's time and space complexities, compare its

performance with standard Heap Sort, and demonstrate its

effectiveness through empirical testing on various data sets.

The remainder of this paper is organized as follows:

Section 2 reviews related work on sorting algorithms and

duplicate handling strategies. Section 3 details the

methodology and introduces the modified Heap Sort

algorithm. Section 4 describes the experimental setup and

presents a comparative analysis of the performance results.

Finally, Section 5 discusses the implications of our findings

and provides suggestions for future research.

II. RELATED WORKS

Heapsort is widely recognized as an efficient in-place

sorting algorithm, featuring a time complexity of 𝑂(𝑛𝑙𝑜𝑔𝑛)

in both average and worst-case scenarios. Situmorang [5]

described the process of constructing a binary heap and

iteratively sorting elements, which aligns with Marcellino et

https://orcid.org/0009-0008-0313-5011

Japheth Kodua Wiredu et al, International Journal of Advanced Research in Computer Science, 15 (6), November-December 2024, 12-18

© 2023-2025, IJARCS All Rights Reserved 13

al. [6], who conducted a comparative study of advanced

sorting algorithms, including Heapsort, Quick Sort, and

Merge Sort. Their work highlighted Heapsort’s efficiency in

terms of memory usage but noted its lack of stability.

Recent advancements in Heapsort have focused on

improving performance by optimizing the heap construction

phase. Rudolf [7] introduced a bottom-up heap construction

method that reduces the number of comparisons during the

heapify process, enhancing efficiency for large datasets.

Similarly, Meng et al. [8] proposed a dynamic priority

scheduling algorithm using Heapsort, demonstrating practical

improvements in real-time systems.

Studies like those by Fadel et al. [9] have investigated

Heapsort’s adaptability to secondary storage environments,

emphasizing its in-place nature as advantageous for

constrained memory systems. These findings align with

Jingsen et al. [10], who noted that while Heapsort is efficient

for large datasets, its performance is suboptimal compared to

Merge Sort and Quick Sort when dealing with duplicates.

Other sorting algorithms have been analyzed for their

handling of duplicates. Quick Sort benefits from three-way

partitioning, as reviewed by Hemin et al. [11], which

minimizes unnecessary comparisons and swaps. Alhajri et al.

[12] extended this by comparing sorting algorithms in Java,

observing that Quick Sort’s time complexity of in the worst

case makes it less reliable in some scenarios. On the other

hand, Merge Sort preserves the relative order of duplicate

elements due to its stability, making it suitable for duplicate-

heavy datasets, as noted by Nirupama [13] and further

analyzed by Pandey & Gupta [14] in their development of

Lazy Merge Sort.

Hybrid approaches have also been explored to optimize

Heapsort’s performance. Zhuge [15] proposed combining

Heapsort with Counting Sort, leveraging the latter's ability to

manage duplicates while maintaining Heapsort’s space

efficiency. Reddy et al. [16] introduced a hybrid pipelining

method combining Quick Sort and Heapsort for FPGA

implementations, demonstrating improved performance in

specific hardware settings.

Additional studies have focused on algorithmic

modifications. Wegener [17] introduced a variant of

Heapsort, the Bottom-Up Heapsort, which outperforms

Quick Sort for moderately sized datasets. Meanwhile,

Edelkamp et al. [18][19] optimized binary heaps and

introduced weak-heap data structures, improving Heapsort’s

efficiency.

In educational contexts, Šimoňák [20] emphasized using

algorithm visualizations, including Heapsort, to enhance

understanding in computer science education. This is

supported by Lee & Hubbard [21], who provided

comprehensive insights into Heapsort within their work on

data structures and algorithms.

In summary, while Heapsort is efficient and space-

saving, it faces challenges with duplicate-heavy datasets and

stability. Ongoing research, including recent developments

by researchers like Haeupler et al. [22], aims to address these

limitations by leveraging hybrid techniques and novel

optimizations, making Heapsort a competitive choice in

specialized applications.

III. RESEARCH METHODOLOGY

Efficient sorting is crucial in computational tasks across

diverse domains like database systems, search engines, and

data analytics [23]. While traditional Heap Sort is widely used

for its efficiency and deterministic behavior, handling

duplicate values within datasets introduces inefficiencies that

compromise performance [24]. This study addresses these

challenges by proposing an enhanced Heap Sort algorithm

optimized for duplicate-heavy datasets. The modification

focuses on reducing redundant operations during heap

construction and re-heapification, with real-world applications

in fields such as financial data processing and sensor data

analysis.

3.1 Proposed Solution

To address the inefficiency of Heap Sort when handling

duplicate values, we propose a modification to the standard

Heap Sort algorithm. The modification introduces a duplicate

detection mechanism at the root of the heap, ensuring that

redundant operations are minimized. The main objective is to

reduce the number of unnecessary comparisons and swaps,

particularly in datasets with a high frequency of duplicate

values. The steps of the proposed solution are as follows:

A. Identifying of Duplicates

In the modified algorithm, we adjust the heapify operation

to identify duplicate values at the root of the heap.

Specifically, if the root contains two identical values (the root

value and its child), the algorithm recognizes that sorting these

two values is redundant. Therefore, the heap size is reduced

by two instead of the usual one, effectively removing the

duplicates from the heapification process.

B. Handling Duplicates

When duplicates are detected, we swap the duplicate value

at the root with the last element in the heap, which is the most

efficient method to remove them. This operation places both

duplicate values at the end of the heap. By reducing the heap

size by 2, these duplicates are excluded from subsequent

comparisons and heapifications, ensuring that they are no

longer involved in unnecessary operations. This significantly

reduces computational overhead.

C. Re-heapifications

After the duplicates are removed, the remaining heap

elements are re-heapified to restore the heap structure and

ensure the heap property is maintained. This step guarantees

that the sorting process continues correctly and efficiently,

with the reduced number of elements in the heap.

3.2 Algorithm Pseudocode

To clarify the steps of the modified Heap Sort, we present

the following pseudocode for both the original and the

modified Heap Sort algorithms. The pseudocode illustrates

how the modification handles duplicate values and adjusts the

heap size accordingly.

A. Original Heap Sort Pseudocode

HeapSort(A)
 n = length(A)

Japheth Kodua Wiredu et al, International Journal of Advanced Research in Computer Science, 15 (6), November-December 2024, 12-18

© 2023-2025, IJARCS All Rights Reserved 14

 BuildHeap(A)
 for i = n-1 to 1
 Swap(A[0], A[i])
 Heapify(A, 0, i)

B. Modified Heap Sort Pseudocode

Procedure HeapSortWithDuplicateHandling(arr)
 n ← Length(arr)
 metrics ← {comp: 0, swaps: 0}

 If Set(arr) has size 1 Then
 metrics.comp ← metrics.comp + 1
 Return metrics

 For i ← n // 2 - 1 down to 0 Do
 Heapify(arr, n, i, metrics)

 i ← n - 1
 While i > 0 Do
 If arr[0] == arr[i] Then
 metrics.comp ← metrics.comp + 1

 If i > 1 And arr[1] == arr[0] Then
 metrics.comp ← metrics.comp +1
 Swap(arr[i], arr[i - 1])
 Swap(arr[0], arr[1])
 metrics.swaps ← metrics.swaps + 2

 i ← i - 2
 Else

 Swap(arr[i], arr[0])
 metrics.swaps ← metrics.swaps + 1

 i ← i - 1
 Else
 Swap(arr[i], arr[0])
 metrics.swaps ← metrics.swaps + 1
 i ← i - 1

 Heapify(arr, i + 1, 0, metrics)

 Return metrics
End Procedure

Procedure Heapify(arr, n, i, metrics)

largest ← i
 left ← 2 * i + 1
 right ← 2 * i + 2

 If left < n And arr[left] >

arr[largest] Then
 largest ← left
 metrics.comp ← metrics.comp + 1

 If right < n And arr[right] > arr[largest]

Then
 largest ← right
 metrics.comp ← metrics.comp + 1

 If largest ≠ i Then
 Swap(arr[i], arr[largest])
 metrics.swaps ← metrics.swaps + 1
 Heapify(arr, n, largest, metrics)

End Procedure

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

The experiments were conducted to evaluate the

performance of the proposed Modified Heap Sort algorithm

compared to the standard Heap Sort. These datasets were

generated to cover different data distributions and sizes,

ranging from 10,000 to 10,000,000 elements. The datasets

included random, sorted, reverse-sorted, duplicate-heavy, and

uniform data to simulate various real-world scenarios.

The simulations were performed on a system with the

following specifications: Operating System - Microsoft

Windows 10 Pro (Version 10.0.19045 Build 19045);

Processor - Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz,

1800 MHz, 4 Cores, 8 Logical Processors; System Model -

HP ProBook 430 G6; RAM - 8.00 GB (7.85 GB usable);

BIOS Version - HP R71 Ver. 01.27.00 (06/12/2023); Storage

Configuration - 13.3 GB Total Virtual Memory with 5.49 GB

Available. This x64-based PC ran in UEFI BIOS mode with

Secure Boot disabled and utilized the C:\WINDOWS

directory for system files

B. Results Overview

The results of the experiments are presented in the tables

below:

Table I. Random Data Performance

Array

Size

Algorithm Time

Taken

(ms)

Swaps Comparisons

10000 Heap Sort 216.03 123,402 256,804

10000 Modified
Heap Sort

207.45 123,224 256,464

100000 Heap Sort 2,326.63 1,562,272 3,224,544

100000 Modified
Heap Sort

2,319.06 1,557,804 3,215,880

1000000 Heap Sort 22,031.10 18,880,015 38,760,030

1000000 Modified
Heap Sort

16,005.90 18,575,375 38,156,622

10000000 Heap Sort 195,581.00 221,795,552 453,591,104

10000000 Modified
Heap Sort

187,671.00 211,838,328 433,752,831

Table II. Sorted Data Performance

Array

Size

Algorithm Time

Taken

(ms)

Swaps Comparisons

10000 Heap Sort 225.40 131,956 256,804

10000 Modified
Heap Sort

222.28 131,956 256,464

100000 Heap Sort 2,556.16 1,650,854 3,224,544

100000 Modified
Heap Sort

2,739.67 1,650,854 3,215,880

1000000 Heap Sort 17,211.70 19,787,792 38,760,030

1000000 Modified
Heap Sort

17,255.30 19,787,792 38,156,622

10000000 Heap Sort 203,516.00 231,881,708 473,763,416

Japheth Kodua Wiredu et al, International Journal of Advanced Research in Computer Science, 15 (6), November-December 2024, 12-18

© 2023-2025, IJARCS All Rights Reserved 15

10000000 Modified
Heap Sort

207,909.00 231,881,708 473,763,416

Table III. Reverse Sorted Data Performance

Array

Size

Algorithm Time Taken

(ms)

Swaps Compariso

ns

10000 Heap Sort 187.50 116,696 243,392

10000 Modified
Heap Sort

179.45 116,696 243,392

100000 Heap Sort 2,736.68 1,497,434 3,094,868

100000 Modified
Heap Sort

2,725.70 1,497,434 3,094,868

1000000 Heap Sort 16,006.60 18,333,408 37,666,816

1000000 Modified
Heap Sort

16,150.60 18,333,408 37,666,816

10000000 Heap Sort 194,890.00 216,912,428 443,824,85
6

10000000 Modified
Heap Sort

191,705.00 216,912,428 443,824,85
6

Table IV. Duplicate-Heavy Data Performance

Array

Size

Algorithm Time Taken

(ms)

Swaps Comparisons

10000 Heap Sort 126.46 82,160 174,320

10000 Modified
Heap Sort

115.69 76,330 163,110

100000 Heap Sort 1,871.37 1,038,341 2,176,682

100000 Modified
Heap Sort

1,342.20 717,388 1,548,696

1000000 Heap Sort 10,769.00 12,304,762 25,609,524

1000000 Modified
Heap Sort

10,105.00 11,407,760 23,879,597

10000000 Heap Sort 127,273.00 144,822,776 299,645,552

10000000 Modified
Heap Sort

123,735.00 139,286,916 288,920,097

Table V. Uniform Data Performance

Array Size Algorithm Time Taken

(ms)

Swaps Comparisons

10000 Heap Sort 18.95 9,999 29,998

10000 Modified

Heap Sort

0.00 0 1

100000 Heap Sort 233.38 99,999 299,998

100000 Modified

Heap Sort

2.99 0 1

1000000 Heap Sort 1,101.85 999,999 2,999,998

1000000 Modified

Heap Sort

13.63 0 1

10000000 Heap Sort 11078.50 9,999,999 2,999,998

10000000 Modified

Heap Sort

111.70 0 1

Fig 1: Time Taken for Sorting (Duplicate-Heavy Data

Performance)

Fig 1 illustrates the time required by two algorithms, Heap
Sort and Modified Heap Sort, to sort datasets of varying sizes
(10,000 to 10,000,000 elements) under a duplicate-heavy data
scenario. The graph highlights the performance differences
between the two algorithms, providing insights into their
efficiency in handling such data distributions.

Fig 2: Number of Swaps (Duplicate-Heavy Data

Performance)

Fig 2 provides a comparative view of how the algorithms
optimize or reduce the number of swaps required for sorting,
reflecting their efficiency in handling such data.

Japheth Kodua Wiredu et al, International Journal of Advanced Research in Computer Science, 15 (6), November-December 2024, 12-18

© 2023-2025, IJARCS All Rights Reserved 16

Fig. 3: Number of Comparisons (Duplicate-Heavy Data

Performance)

Fig 3 presents the total number of comparisons executed
by Heap Sort and Modified Heap Sort while sorting datasets
of various sizes (10,000 to 10,000,000 elements) in a
duplicate-heavy data environment. It highlights the
computational workload of each algorithm, showcasing how
effectively they minimize comparisons in scenarios with
repetitive data.

C. Discussion

• Random Data Performance
Across all dataset sizes, the Modified Heap Sort

consistently outperformed the standard Heap Sort in execution
time, achieving up to a 27% reduction for the largest dataset
(1,000,000 elements). Swaps and comparisons showed
marginal improvements, highlighting the Modified Heap
Sort's efficiency in element repositioning.

• Sorted Data Performance
Both algorithms demonstrated similar performance in

swaps and comparisons, with differences of less than 1%.
Execution times were nearly identical, indicating minimal
optimization benefits of the Modified Heap Sort on pre-sorted
datasets.

• Reverse Sorted Data Performance
The Modified Heap Sort showed a slight reduction in

execution time, averaging 1.2% faster across all dataset sizes.
The number of swaps and comparisons remained unchanged,
suggesting equivalent logical operations for both algorithms in
handling reverse-sorted data.

• Duplicate-Heavy Data Performance
The Modified Heap Sort excelled, reducing execution time

by up to 28% for 100,000 elements and achieving
significantly fewer swaps (e.g., 33% fewer swaps for
1,000,000 elements). The reduction in comparisons (up to
10%) further supports its optimization for datasets with many
duplicates.

• Uniform Data Performance
The Modified Heap Sort displayed remarkable efficiency,

with nearly zero swaps and comparisons for all dataset sizes.
This highlights its significant advantage when data exhibits
extreme uniformity. For datasets up to 1,000,000 elements,
the Modified Heap Sort executed nearly 99.9% faster than the
standard Heap Sort.

D. Summary of findings
The experiments demonstrated that the Modified Heap

Sort consistently outperforms the standard Heap Sort in
scenarios involving duplicate-heavy or uniform datasets,
achieving significant reductions in execution time (up to 28%
for duplicates and 99.9% for uniform data), swaps, and
comparisons. While performance differences were marginal
for random data and negligible for sorted and reverse-sorted
datasets, the optimization benefits are most pronounced in
datasets with repetitive or homogeneous patterns. These
results highlight the Modified Heap Sort’s efficiency in
specialized contexts, making it a robust alternative for data
with distinct structural characteristics.

V. CONCLUSION

This research presents a novel modification to the Heap
Sort algorithm, tailored to enhance performance on datasets
with substantial duplicate values. By introducing mechanisms
to detect and handle duplicates efficiently, the modified
algorithm reduces redundant comparisons and swaps, thereby
improving overall computational efficiency. Empirical results
affirm the modified approach's superiority over the standard
Heap Sort, particularly in scenarios involving duplicate-heavy
data.

The enhanced performance highlights its applicability in
diverse domains such as big data analytics, database
management, and real-time systems, where duplicate values
are common and sorting efficiency is critical. Future research
could explore integrating the modification into hybrid sorting
techniques or adapting it to parallel processing environments
to further extend its utility. This work lays a foundation for
advancing sorting efficiency in practical applications,
underscoring the importance of tailoring algorithms to data
characteristics.

VI. RECOMMENDATIONS

Based on the findings of this research, the following
recommendations are proposed:

A. Adoption in Duplicate-Heavy Applications
Organizations managing duplicate-heavy datasets, such as

transaction logs, sensor readings, or categorical data, should
integrate the Modified Heap Sort algorithm. Its ability to
minimize unnecessary comparisons and swaps can enhance
computational efficiency, achieving up to a 28% improvement
in execution time for such data scenarios.

B. Integration with Big Data Systems
The improved performance of the Modified Heap Sort

makes it an ideal candidate for integration into big data
analytics frameworks, where it can optimize preprocessing
tasks and reduce computational overhead, particularly in
handling repetitive or homogeneous datasets.

C. Exploration of Stability Enhancements
Future research should explore modifications to make the

algorithm stable while retaining its efficiency. Stability
enhancements will broaden its application to fields such as
database management, where preserving the relative order of
duplicate elements is essential.

D. Parallel Processing Implementation
To further enhance efficiency, the Modified Heap Sort can

be adapted for parallel processing architectures. This approach

Japheth Kodua Wiredu et al, International Journal of Advanced Research in Computer Science, 15 (6), November-December 2024, 12-18

© 2023-2025, IJARCS All Rights Reserved 17

is particularly valuable for sorting large datasets in distributed
or high-performance computing systems.

E. Development of Hybrid Algorithms
Combining the Modified Heap Sort with other algorithms

like Merge Sort or Counting Sort can create hybrid
approaches. These solutions can balance memory usage,
stability, and efficiency, making them suitable for datasets
with diverse characteristics.

F. Educational Integration
Integrate the Modified Heap Sort algorithm into computer

science curricula to teach advanced optimization techniques,
and leverage Generative AI to enhance the learning
experience. Generative AI can create interactive tutorials,
simulate real-world data scenarios, provide personalized
feedback, and support collaborative learning, enabling
students to understand the algorithm's efficiency in handling
uniform and duplicate-heavy datasets. This approach will
foster deeper comprehension, innovation, and readiness for
real-world computational challenges [25][26].

G. Real-World Applications
Domains such as financial data processing, sensor data

analysis, and database management should evaluate the
Modified Heap Sort for its ability to handle large volumes of
data efficiently. Organizations can realize significant time and
cost savings through its implementation.

VII. ACKNOWLEDGMENT

The authors wish to express their gratitude to all
contributors who played a significant role in the development
of this manuscript. We acknowledge the collaborative efforts
and dedication of each team member in conceptualizing,
researching, and finalizing this work.

We also extend our appreciation to RUC and CKT-UTAS
for providing access to resources and facilities that supported
this research.

Finally, we are thankful for the constructive feedback from
our peer reviewers, which helped refine the quality of this
manuscript.

COMPETING INTERESTS

The authors have declared that no competing interests
exist.

VIII. REFERENCES

[1] Rao, T. R., Mitra, P., Bhatt, R., & Goswami, A. (2019).

The big data system, components, tools, and technologies:

a survey. Knowledge and Information Systems, 60, 1165-

1245.

[2] Al-Sharagbi, E. TDK thesis.

[3] Musser, D. R. (1997). Introspective sorting and selection

algorithms. Software: Practice and Experience, 27(8),

983-993.

[4] Japheth Kodua Wiredu; Basel Atiyire; Nelson Seidu

Abuba; Reuben Wiredu Acheampong. "Efficiency

Analysis and Optimization Techniques for Base

Conversion Algorithms in Computational Systems.”

Volume. 9 Issue.8, August - 2024 International Journal of

Innovative Science and Research Technology (IJISRT),

www.ijisrt.com. ISSN - 2456-2165, PP:- 235-244,

https://doi.org/10.38124/ijisrt/IJISRT24AUG066

[5] Situmorang, H. (2018). SIMULASI PENGURUTAN

DATA DENGAN ALGORITMA HEAP

SORT. JURNAL MAHAJANA INFORMASI, 1(2), 20–

30. https://doi.org/10.51544/jurnalmi.v1i2.170

[6] Marcellino, M., Pratama, D. W., Suntiarko, S. S., & Margi,

K. (2021, October). Comparative of advanced sorting

algorithms (quick sort, heap sort, merge sort, intro sort,

radix sort) based on time and memory usage. In 2021 1st

International Conference on Computer Science and

Artificial Intelligence (ICCSAI) (Vol. 1, pp. 154-160).

IEEE.

[7] Rudolf, Fleischer. (1994). A tight lower bound for the

worst case of Bottom-Up-Heapsort. Algorithmica,

11(2):104-115. doi: 10.1007/BF01182770

[8] Meng, S., Zhu, Q., & Xia, F. (2019). Improvement of the

dynamic priority scheduling algorithm based on a

heapsort. IEEE Access, 7, 68503-68510.

[9] Fadel, R., Jakobsen, K. V., Katajainen, J., & Teuhola, J.

(1999). Heaps and heapsort on secondary

storage. Theoretical Computer Science, 220(2), 345-

362.

[10] Jingsen, Chen., Stefan, Edelkamp., Amr, Elmasry., Jyrki,

Katajainen. (2012). In-place heap construction with

optimized comparisons, moves, and cache misses. 259-

270. doi: 10.1007/978-3-642-32589-2_25

[11] Hemin., Amit, Yadav., Asif, Khan., Abhishek, Pratap,

Sah. (2024). Research on Improved Quick Sort Algorithm

with Duplicate Value Handling. 832-836. doi: 10.1109/i-

smac61858.2024.10714778.

[12] Alhajri, K., Alsinan, W., Almuhaishi, S., Alhmood, F.,

AlJumaia, N., & AA, A. (2022). Analysis and Comparison

of Sorting Algorithms (Insertion, Merge, and Heap) Using

Java. IJCSNS, 22(12), 197.

[13] Nirupama, Tiwari. (2023). Sorting Smarter: Unveiling

Algorithmic Efficiency and User-Friendly Applications.

doi: 10.36227/techrxiv.24680145.v1

[14] Pandey, S., & Gupta, A. (2024, August). Lazy Merge

Sort: An Improvement over Merge Sort. In 2024

International Conference on Electrical Electronics and

Computing Technologies (ICEECT) (Vol. 1, pp. 1-6).

IEEE.

[15] Zhuge, Y. (2018). U.S. Patent No. 9,910,873.

Washington, DC: U.S. Patent and Trademark Office.

[16] Reddy, B. N. K., Sarangam, K., Dandeliya, S., Naidu, S.

P. S., & Kumar, N. (2023, December). accelerating

sorting performance on FpGa: combining Quick sort and

Heap sort through Hybrid pipelining. In 2023 IEEE

International Symposium on Smart Electronic Systems

(iSES) (pp. 405-408). IEEE.

[17] Wegener, I. (1990, August). Bottom-up-heap sort, a new

variant of heap sort beating on average quick sort (if n is

not very small). In International Symposium on

Mathematical Foundations of Computer Science (pp.

516-522). Berlin, Heidelberg: Springer Berlin

Heidelberg.

[18] Edelkamp, S., Elmasry, A., & Katajainen, J. (2017).

Optimizing binary heaps. Theory of Computing

Systems, 61, 606-636.

[19] Edelkamp, S., Elmasry, A., & Katajainen, J. (2012). The

weak-heap data structure: Variants and

applications. Journal of Discrete Algorithms, 16, 187-

205.

https://doi.org/10.38124/ijisrt/IJISRT24AUG066
https://doi.org/10.51544/jurnalmi.v1i2.170

Japheth Kodua Wiredu et al, International Journal of Advanced Research in Computer Science, 15 (6), November-December 2024, 12-18

© 2023-2025, IJARCS All Rights Reserved 18

[20] Šimoňák, S. (2014). Using algorithm visualizations in

computer science education. Central European Journal

of Computer Science, 4, 183-190.

[21] Lee, K. D., & Hubbard, S. (2024). Heaps. In Data

Structures and Algorithms with Python: With an

Introduction to Multiprocessing (pp. 217-239). Cham:

Springer International Publishing.

[22] Haeupler, B., Hladík, R., Iacono, J., Rozhon, V., Tarjan,

R., & Tětek, J. (2024). Fast and Simple Sorting Using

Partial Information. arXiv preprint arXiv:2404.04552.

[23] Mohamed, A., Najafabadi, M. K., Wah, Y. B., Zaman, E.

A. K., & Maskat, R. (2020). The state of the art and

taxonomy of big data analytics: view from new big data

framework. Artificial intelligence review, 53, 989-1037.

[24] Kristo, A., Vaidya, K., Çetintemel, U., Misra, S., &

Kraska, T. (2020, June). The case for a learned sorting

algorithm. In Proceedings of the 2020 ACM SIGMOD

international conference on management of data (pp.

1001-1016).

[25] Wiredu, Japheth Kodua and Seidu Abuba, Nelson and

Zakaria, Hassan, Impact of Generative AI in Academic

Integrity and Learning Outcomes: A Case Study in the

Upper East Region (May 03, 2024). Asian Journal of

Research in Computer Science, volume 17, issue 8,

2024[10.9734/ajrcos/2024/v17i7491], Available at

SSRN: https://ssrn.com/abstract=4976068 or

http://dx.doi.org/10.9734/ajrcos/2024/v17i7491

[26] Wiredu, J. K., Abuba, N. S., & Acheampong, R. W.

(2024). Enhancing Accessibility and Engagement in

Computer Science Education for Diverse

Learners. Asian Journal of Research in Computer

Science, 17(10), 45-61.

[27] Azure, I., Wiredu, J. K., Musah, A., & Akolgo, E. (2023).

AI-Enhanced Performance Evaluation of Python,

MATLAB, and Scilab for Solving Nonlinear Systems of

Equations: A Comparative Study Using the Broyden

Method. American Journal of Computational

Mathematics, 13(4), 644-677.

[28] Chinnaiah, M. C., Vani, G. D., Reddy, D. J., Bharath, K.,

Goud, J. S. K., & Kumar, N. (2023, April). HEAP-SORT

on Dual Port RAM Based FPGA. In 2023 International

Conference on Recent Advances in Electrical,

Electronics, Ubiquitous Communication, and

Computational Intelligence (RAEEUCCI) (pp. 1-6).

IEEE.

[29] Schaffer, R., & Sedgewick, R. (1993). The analysis of

heapsort. Journal of Algorithms, 15(1), 76-100.

[30] Ravin, Kumar. (2019). Modified Counting Sort. 251-

258. doi: 10.1007/978-981-10-7323-6_21

[31] Tyagi, A., & Ahlawat, A. K. (2023, April). A New

Optimized Version of Merge Sort. In 2023 11th

International Conference on Emerging Trends in

Engineering & Technology-Signal and Information

Processing (ICETET-SIP) (pp. 1-5). IEEE.

http://dx.doi.org/10.9734/ajrcos/2024/v17i7491

