Main Article Content

Harrold Molinyawe Gueta
Mia Villar Villarica
Allen Atienza Llorca
Mark Angelo Torres Mercado


The objective of this research is to designed and developed a system known as Mangrove Simulation: Attenuation of Storm Surges in Protecting Coastal Area and Geospatial Simulation Model of Mangrove Forest in Palsabangon Mangrove Swamp Forest Reserve Pagbilao, Quezon. The system incorporates various functionalities including web-based application and geographical information system for administrator and staff of Palsabangon Mangrove Swamp Forest Reserve. To utilize the Agent-Based model that simulate and predict the growth and spatial distribution of various mangrove species with regards to the environment. To evaluate of the accuracy of the algorithm in mangrove simulation with geographic information system mapping aims to improve they understanding of the ecological dynamics and spatial patterns of mangroves, and provide useful information for the management and conservation of mangrove ecosystems. The system underwent a comprehensive testing process to assess its functionality, suitability, reliability, performance efficiency, operability, security, compatibility, and maintainability. The results revealed that the system achieved an overall mean score of 4.09, indicating a "Very Satisfactory" rating. This signifies that both experts and clients were very satisfied with the system's characteristics. Moreover, it passed on the standard rating level of ISO/IEC 25010. This remark indicates that the system performed effectively and achieved its goals.


Download data is not yet available.

Article Details

Author Biography

Harrold Molinyawe Gueta, Laguna State Polytechnic University - Sta Crus (Main Campus)

SMIS - IT Officer


Abesamis, R. A., et al. (2019). Mapping ecosystem services provided by Philippine mangroves using remote sensing and participatory mapping. Ocean & Coastal Management, 180, 104901.

Alongi D. (2007). Mangrove forests: Resilience, protection from tsunamis, and responses toglobal climate change

Alongi, D. M. (2018). Mangrove Restoration: A Potential Climate Change Mitigation Strategy. Marine Pollution Bulletin, 126, 4-7.

Barr, J.G., Fuentes, J.D., Engel, V., and Fuentes, M.M.P.B. (2013). Agent-Based Modeling of Mangrove Forest Responses to Sea Level Rise and Increased Storm Frequency along the Southwest Coast of Florida. Climatic Change, 120(1-2), 285-298.

Bryan-Brown D., Connolly R., Richards D L., Fernanda A., Friess D., & Brown J. (2020). Global trends in mangrove forest fragmentation

Cañizares P., & Seronay R. (2020). Diversity and species composition of mangroves in Barangay Imelda, Dinagat Island, Philippines

Camacho L., Gevaña D., Sabino L., Ruzol C., Garcia J,. Camacho A. C., Oo T. N., Maung C., Saxenna K. G., Liang L., Yiu E., Takeuchi, K. (2020) Sustainable mangrove rehabilitation: Lessons and insights from community-based management in the Philippines and Myanmar.

Carandang, W. M., Canlas, J. R., & Habito, C. V. (2020). Assessing the challenges and opportunities for implementing mangrove conservation policies in the Philippines. Environmental Science and Policy, 112, 360-366.

Carandang, W. M., Ferrer, L. R., & Tabios, I. K. (2022). Phytophthora palmivora as a threat to mangrove forests in the Philippines. Plant Pathology, 71(2), 369-378.

Chowdhury Md., & Hafsa B. (2022) Multi-decadal land cover change analysis over Sundarbans Mangrove Forest of Bangladesh: A GIS and remote sensing based approach

Deli et al. (2020). "Simulating Mangrove Forest Dynamics with an Agent-Based Model: Scaling Up from Individual Trees to Forest Patches".

Elmahdy S., Ali T., Mohamed M., Howari F., Abouleish M., & Simonet D. (2020). Spatiotemporal Mapping and Monitoring of Mangrove Forests Changes from 1990 to 2019 in the Northern Emirates, UAE Using Random Forest, Kernel Logistic Regression and Naive Bayes Tree Models

Estacio I., Quinton K., Macatulad E., and Salmo S. (2019). A Species-specific Individual-based Simulation Model of Mixed Mangrove Forest Stands

Faruque J., Vekerdy Z., Hasan Y., Islam K., Young B,. Ahmed M., Monir M., Shovon S., Kakon J., & Kundu, P. (2020) Monitoring of land use and land cover changes by using remote sensing and GIS techniques at human-induced mangrove forests areas in Bangladesh

Garcia K., Malabrigo P., & Gevaña D. (2013). Philippines’ Mangrove Ecosystem: Status, Threats and Conservation

Getzner M., & Islam M. (2020) Ecosystem Services of Mangrove Forests: Results of a Meta-Analysis of Economic Values

Golez, M. S. M., Pabuayon, I. L. A., & Talaue-McManus, L. (2021). Assessing the economic benefits of mangrove rehabilitation in the Philippines through simulation modeling. Ocean & Coastal Management, 209, 105569.

Gonzales, B. J., Salvoza, J. T., & Macandog, D. B. (2018). Mapping and monitoring of mangrove forests in Palsabangon, Pagbilao, Quezon using remote sensing and GIS. Journal of Environmental Science and Management, 21(2), 38-48.

Guan, S., Sun, H., Xu, X., & Zhao, Y. (2018). Monitoring mangrove forest dynamics in the Guangdong Province, China using multi-temporal Landsat imagery and Google Earth Engine. Remote Sensing, 10(11), 1679.

Hamzah M., Maulud K., Amir A., & Sharma S. (2020). Assessment of the Mangrove Forest Changes along the Pahang Coast using Remote Sensing and Gis Technology.

Kairo, J. G., Dahdouh-Guebas, F., Bosire, J., & Koedam, N. (2018). Quantifying and mapping global ecosystem services and poverty. Springer.

Koh HL., Teh S., Kh’ng X., & Barizan R. (2018). Mangrove Forests: Protection Against and Resilience to Coastal Disturbances.

Kathiresan, K., & Rajendran, N. (2018). Global loss of mangroves and their contribution to the vulnerability of coastal communities. Journal of Coastal Research, 34(3), 637-644.

Lovelock, C. E., Atwood, T. B., Baldock, J., Duarte, C. M., Hickey, S., Lavery, P. S., ... & Steven, A. (2018). Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Frontiers in Ecology and the Environment, 16(9), 550-557.

Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modeling and simulation. Journal of Simulation, 4(3), 151-162.

Malik, M. A., Hussain, M., Ali, I., Ahmad, Z., Javaid, R., & Mirza, M. Y. (2019). Assessment of mangrove forest cover change in the Indus delta, Pakistan, using multi-temporal Landsat imagery. Remote Sensing Applications: Society and Environment, 13, 14-22.

Mendoza, J. A. E., Padilla, L. A., & Alejandro, E. A. (2021). Assessment of Mangrove Cover Changes in Pagbilao, Quezon Using Remote Sensing Techniques. Journal of Environment and Earth Science, 11(1), 46-57.

Mendoza, E. T., Tigno, X. T., Salmo, S. G., & Laron, M. A. (2019). Mangrove mapping and monitoring in the Philippines using multispectral and radar satellite imagery. Journal of Environmental Management, 232, 537-550.

Nocom, N. D., Geronimo, R. C., & Villacorte, E. I. (2018). Mangrove Forest Changes in Pagbilao, Quezon, Philippines Using Remote Sensing and GIS. Philippine Journal of Science, 147(2), 343-351

Numbere A., (2022) Application of GIS and remote sensing towards forest resource management in mangrove forest of Niger Delta

Ogburn, M. B., Blanco-Garcia, A., Sengupta, R. R., & Castañeda-Moya, E. (2019). A framework for prioritizing mangrove restoration and management using a functional traits approach. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(7), 1052-1066. doi: 10.1002/aqc.3125

Omar H., Musa S., & Misman M. (2019). GIS and Remote Sensing for Mangroves Mapping and Monitoring

Peters N., Walther M., Lovelock C., Jiang J., & Berger U. (2020). The interplay between vegetation and water in mangroves: new perspectives for mangrove stand modelling and ecological research

Ponteras, R. A., Aliño, P. M., & Talaue-McManus, L. (2021). A simulation approach to evaluate the effectiveness of a marine protected area network in conserving mangroves in Palawan, Philippines. Ocean & Coastal Management, 210, 105567.

Rahman, M. S., Haque, S. M. S., Islam, M. R., Islam, M. N., & Khan, M. N. A. (2019). Identifying areas of high conservation value in the Sundarbans mangrove ecosystem using remote sensing and GIS mapping. Journal of Coastal Conservation, 23(5), 1005-1019. doi: 10.1007/s11852-019-00723-2

Ramos, H. P., & Duya, M. R. (2020). Assessing the ecological condition of a degraded mangrove area in the Philippines using remote sensing and simulation modeling. Philippine Journal of Science, 149(1), 79-90.

Richards, D. R., Friess, D. A., & Mcowen, C. J. (2019). Mangrove loss and recovery in Southeast Asia: influences and drivers. Nature Sustainability, 2(12), 1095-1103.Romañach S., DeAngelis D., Koh H., Li Y, Teh S, Barizan R, & Zhai L. (2018).

Rocha W., Morales Q., Monjardin S., & Olimon-Andalon V. (2021). Geospatial Simulation Model of Sustainable Mangrove Development Scenarios for the Years 2030 and 2050 in Marismas Nacionales, Mexico

Sandilyan S., & Kathiresan K. (2012.) Mangrove conservation: a global perspective

Santanu R., Manik M., & Abhishekh C. (2019). Mapping and monitoring of mangrove along the Odisha coast based on remote sensing and GIS techniques.

Suman, D. O., & Satyanarayana, B. (2014). Agent-based modeling to simulate the growth and spatial distribution of mangroves. Ecological Modelling, 275, 29-36.

[Srinivasan et al. (2020). "Agent-Based Modeling of Mangrove Ecosystem Dynamics in Response to Climate Change and Human Intervention"

Teng, J. K., Tan, W. L., Teo, S. L. M., & Todd, P. A. (2021). Drivers of mangrove restoration success in Southeast Asia. Global Ecology and Conservation, 29, e01719.

Torres, M. A., Santos, L. C., & Lapitan, J. E. (2022). Impacts of Mangrove Forest Decline in Pagbilao, Quezon, Philippines. Journal of Environmental Science and Management, 25(1), 39-50.

Trung Hieu Nguyen, et al. (2019). "Agent-Based Modeling and Simulation of Mangrove Ecosystem Dynamics in the Mekong Delta, Vietnam".

Estacio I., Quinton K., Macatulad E., and Salmo S. (2019) A Species-specific Individual-based Simulation Model of Mixed Mangrove Forest Stands

Wang L., Mingming J., Dameng Yin., & Jinyan Tian. (2019). A review of remote sensing for mangrove forests: 1956–2018

Ward R., & Mafi-Gholami D. (2019). Assessment of the probability of occurrence of multiple Environmental hazards in mangrove habitats using remote sensing and geographic information system

Wei et al. (2019). "A Spatial Agent-Based Model for Simulating Mangrove Forest Dynamics under Sea-Level Rise and Human Intervention".

Wu, Y., Chen, Y., & Guo, Y. (2020). Agent-based modeling for evaluating the effectiveness of mangrove protection strategies under future climate scenarios in China. Environmental Science & Policy, 111, 45-53.

Yong, J. W. H., Abidin, N. Z., Lim, S. S. Y., & Abdullah, M. P. (2019). Predicting the impact of sea level rise on the distribution of mangrove species using a GIS-based approach. Journal of Coastal Conservation, 23(1), 173-186.

Zeng, Y., Wang, J., & Liu, X. (2021). Integrated assessment of mangrove protection strategies under climate change using an agent-based model: A case study in Beibu Gulf, China. Science of The Total Environment, 761, 143269.

[53] Zhang K., Liu H., Li Y., Xu H, Shen J, Rhome J, & Smith T. (2012). The role of mangroves in attenuating storm surges

Zhu B., Liao J., & Shen G., (2021). Spatio-Temporal Simulation of Mangrove Forests under Different Scenarios: A Case Study of Mangrove Protected Areas, Hainan Island, China