Resource Management and Allocation in Fog Computing

Main Article Content

Radha Karampudi
Pranav Reddy Gudipati, K SaiSidhartha Reddy
Madabhushi Aditya, Priyanshu

Abstract

Abstract: Smart objects are increasingly playing a crucial role in the daily operations of both industries and individuals. These devices collect data through various apps and sensors, leading to a significant accumulation of information across various sectors. The use of smart objects has grown exponentially with the advent of the Internet of Things (IoT). This has led to a significant increase in the amount of data being generated, including both structured and unstructured data. However, there are currently no effective ways to manage this data. Despite the significant advancements made in the field of IoT, incorporating cloud computing is still facing challenges such as latency, performance, network and security concerns of computing can address the challenges faced by cloud computing in the context of the Internet of Things (IoT) by bringing the cloud closer to the edge. The primary objective of fog computing is to process and store data collected by IoT devices locally on a fog node, rather than transmitting it to a remote cloud server. This approach results in faster response times and better quality of services compared to cloud computing. Fog computing is an effective solution to enable the IoT to provide reliable and secure services to a large number of IoT customers. Fog computing allows for the management of service and resource provisioning from outside of cloud computing, closer to devices, at the edge networks, or at locations specified by Service Level Agreements (SLAs). It is not intended to replace cloud computing, but rather to enhance it by enabling computation at the edge while still providing access to cloud data centers. It covers various computing frameworks, fog computing features, a comprehensive reference architectural style of fog with its multiple levels, a comprehensive study of fog with IoT, various fog system methodologies, and a thorough evaluation of the challenges in fog computing, which also serves as a middle layer between IoT sensors or devices and cloud data centers.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

Sabireen H., Neelanarayanan, “Review on Fog Computing: Architecture, Fog with IoT, Algorithms and Research Challengesâ€, ICT Express 7 (2021) 162–176.

M.D. Assuncao, R.N. Calheiros, S. Bianchi, M.A.S. Netto, R. Buyya, Big data computing and clouds: Trends and future directions, J.Parallel Distrib. Comput. 79–80 (2015) 3–15.

F. Alhaddadin, W. Liu, J.A. Gutierrez, A user prole-aware policy-based management framework for greening the cloud, in: Proc. IEEE 4th Int. Conf. Big Data Cloud Comput. (BdCloud), 2014, pp. 682–687.

A.V. Dastjerdi, H. Gupta, R.N. Calheiros, S.K. Ghosh, R. Buyya, Fog computing: Principles, architectures, and applications, in: Internet of Things: Principle.

Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, M. Rovatsos, Fog orchestration for internet of things services, IEEE Internet Comput.21 (2017) 16–24.

Y. Yang, FA2ST: Fog as a service technology, in: Proceedings of the 2017 IEEE 41st IEEE Annual Computer Software and Applications Conference, Turin, Italy, 4–8 July 2017, p. 708.

R. Mahmud, R. Kotagiri, R. Buyya, Fog computing: A taxonomy,survey and future directions, in: Internet of Everything, Springer,Singapore, 2018, pp. 103–130.

L. Gao, T.H. Luan, S. Yu, W. Zhou, B. Liu, FogRoute: DTN-based data dissemination model in fog computing, IEEE Internet Things J.4 (1) (2017) 225–235.

S. Yi, C. Li, Q. Li, A survey of fog computing: Concepts, applications and issues, in: Proc. Workshop Mobile Big Data, 2015, pp. 37-42.

E. Baccarelli, P.G.V. Naranjo, M. Scarpiniti, M. Shojafar, J.H. Abawajy, Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study, IEEE Access 5 (2017) 9882–9910.

C. Perera, Y. Qin, J.C. Estrella, S. Reiff-Marganiec, A.V. Vasilakos, Fog computing for sustainable smart cities: A survey, ACM Comput. Surv. 50 (3) (2017) 32.

P. Hu, S. Dhelim, H. Ning, T. Qiu, Survey on fog computing:Architecture, key technologies, applications and open issues, J. Netw.Comput. Appl. 98 (2017) 27–42.

P. Varshney, Y. Simmhan, Demystifying fog computing: Characterizing architectures, applications and abstractions, in: Proc. IEEE 1st Int. Conf. Fog Edge Comput. (ICFEC), 2017, pp. 115–124.

C. Mouradian, D. Naboulsi, S. Yangui, R.H. Glitho, M.J. Morrow, P.A. Polakos, A comprehensive survey on fog computing: State-of-the art and research challenges, IEEE Commun. Surv. Tutor. 20 (1) (2018) 416–464.

R. Mahmud, R. Kotagiri, R. Buyya, Fog computing: A taxonomy,survey and future directions, in: Internet of Everything, Springer,Singapore, 2018, pp. 103–130.

Y. Shi, G. Ding, H. Wang, H.E. Roman, S. Lu, The fog computing service for healthcare, in: Proceedings of the 2015 2nd International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare (Ubi-HealthTech), Beijing, China, 28–30 May 2015, pp. 1–5.

M. Muntjir, M. Rahul, H.A. Alhumyani, An analysis of internet of things (IoT): Novel architectures, modern applications, security aspects and future scope with latest case studies, Int. J. Eng. Res. Technol. 6 (2017) 422–447.

M. Mukherjee, L. Shu, D. Wang, Survey of fog computing: Fundamental, network applications, and research challenges, IEEE Commun. Surv. Tutor. PP (2018).

E. Baccarelli, P.G.V. Naranjo, M. Scarpiniti, M. Shojafar, J.H. Abawajy, Fog of everything: Energy-efcient networked computing architectures, research challenges, and a case study, IEEE Access 5 (2017) 9882–9910.

C. Mouradian, D. Naboulsi, S. Yangui, R.H. Glitho, M.J. Morrow, P.A. Polakos, A comprehensive survey on fog computing: State-of-the art and research challenges, IEEE Commun. Surv. Tutor. 20 (1) (2018) 416–464.

Ameenabegum H Attar, Ashok Sutagundar, “A Survey On Resource Management For Fog-Enhanced Services and Applications “,Indian J.Sci.Res. 17(2): 138-141, 2018.

Emil Eriksson, György Dán, Viktoria Fodor" Radio and Computational Resource Management for Fog Computing Enabled Wireless Camera Networks" IEEE 978-1-5090-2482-7/16/©2016

Lina Ni, Jinquan Zhang, Changjun Jiang, Member, IEEE, Chungang Yan, and Kan Yu "Resource Allocation Strategy in Fog Computing Based on Priced Timed Petri Nets" ieee internet of things journal, vol. 4, no. 5, october 2017.

Jinlai Xu Balaji Palanisamy Heiko Ludwig and Qingyang Wang " Zenith: Utility-aware Resource Allocation for Edge Computing" 2017 IEEE 1st International Conference on Edge Computing.

Nan Wang, Blesson Varghese, Michail Matthaiou and Dimitrios S. Nikolopoulos "ENORM: A Framework For Edge Node Resource Management" IEEE transactions on services computing, vol. x, no.y, January 2017.

Huaqing Zhang, Yanru Zhang, Yunan Gu, Dusit Niyato, and Zhu Han "A Hierarchical Game Framework for Resource Management in Fog Computing" IEEE Communications Magazine August 2017.

Mohammad Aazam, Eui-Nam Huh " Dynamic Resource Provisioning Through Fog Micro Datacenter" the 12th ieee international workshop on managing ubiquitous communications and services, 2015.

Al-Ansi, A.; Al-Ansi, A.M.; Muthanna, A.; Elgendy, I.A.; Koucheryavy, A. Survey on Intelligence Edge Computing in 6G: Characteristics, Challenges, Potential Use Cases, and Market Drivers. Future Internet 2021, 13, 118. [CrossRef]

Zhang, W.Z.; Elgendy, I.A.; Hammad, M.; Iliyasu, A.M.; Du, X.; Guizani, M.; Abd El-Latif, A.A. Secure and Optimized Load Balancing for Multitier IoT and Edge-Cloud Computing Systems. IEEE Internet Things J. 2020, 8, 8119–8132. [CrossRef].

Elgendy, I.A.; Zhang,W.Z.; Zeng, Y.; He, H.; Tian, Y.C.; Yang, Y. Efficient and secure multi-user multi-task computation offloading for mobile-edge computing in mobile IoT networks. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2410–2422. [CrossRef].

B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, Q. Yang, A hierarchical distributed fog computing architecture for big data analysis in smart cities, in: Proceedings of the 2015 ACM ASE BigData & SocialInformatics, ACM, 2015, p. 28.

M. Chiang, S. Ha, I. Chih-Lin, F. Risso, T. Zhang, Clarifying fog computing and networking: 10 questions and answers, IEEE Commun. Mag. 55 (4) (2017) 18–20.

F. Bonomi, R. Milito, P. Natarajan, J. Zhu, Fog computing: A platform for internet of things and analytics, in: Big Data and Internet of Things: A Roadmap for Smart Environments; Studies in Computational Intelligence, Vol. 546, Springer, Cham, Switzerland,2014, pp. 169–186.

P. Bellavista, A. Zanni, Feasibility of fog computing deployment based on docker containerization over RaspberryPi, in: Proceedings of the 2017 ACM 18th International Conference on Distributed Computing and Networking, ACM, 2017, p. 16.

M. Yannuzzi, F. van Lingen, A. Jain, O.L. Parellada, M.M. Flores, D. Carrera, J.L. Perez, D. Montero, P. Chacin, A. Corsaro, et al., A new era for cities with fog computing, IEEE Internet Comput. 21 (2) (2017) 54–67.

Tran, T.X.; Hajisami, A.; Pandey, P.; Pompili, D. Collaborative mobile edge computing in 5G networks: New paradigms, scenarios,and challenges. IEEE Commun. Mag. 2017, 55, 54–61.

Li, Y.; Anh, N.T.; Nooh, A.S.; Ra, K.; Jo, M. Dynamic mobile cloudlet clustering for fog computing. In Proceedings of the 2018 international conference on electronics, information, and communication (iceic), Honolulu, HI, USA, 24–27 January 2018; pp.1–4.

Ismael Martinez , Abdelhakim Senhaji Hafid ,and Abdallah Jarray, “Design, Resource Management, and Evaluation of Fog Computing Systems: A Surveyâ€, IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021.

S. S. Gill, R. C. Arya, G. S. Wander, and R. Buyya, “Fog-based smart healthcare as a big data and cloud service for heart patients using IoT,†in Proc. Int. Conf. Intell. Data Commun. Technol. Internet Things, 2018, pp. 1376–1383.

G. L. Santos et al., “Analyzing the availability and performance of an e-health system integrated with edge, fog and cloud infrastructures,â€J. Cloud Comput., vol. 7, no. 1, p. 16, 2018.

L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, “Cost efficient resource management in fog computing supported medical cyberphysical system,†IEEE Trans. Emerg. Topics Comput., vol. 5, no. 1,pp. 108–119, Jan.–Mar. 2015.

S. W. Loke, “The Internet of flying-things: Opportunities and challenges with airborne fog computing and mobile cloud in the clouds,†2015. [Online]. Available: arXiv:1507.04492.

C. Yu, B. Lin, P. Guo, W. Zhang, S. Li, and R. He, “Deployment and dimensioning of fog computing-based Internet of vehicle infrastructure for autonomous driving,†IEEE Internet Things J., vol. 6, no. 1,pp. 149–160, Feb. 2019.

W. Zhang, Z. Zhang, and H.-C. Chao, “Cooperative fog computing for dealing with big data in the Internet of vehicles: Architecture and hierarchical resource management,†IEEE Commun. Mag., vol. 55, no. 12,pp. 60–67, Dec. 2017.

I. Stojmenovic, “Fog computing: A cloud to the ground support for smart things and machine-to-machine networks,†in Proc. Aust. Telecommun. Netw. Appl. Conf. (ATNAC), 2014, pp. 117–122.

C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam, J. H. Son, and C. S. Hong, “A proximal algorithm for joint resource allocation and minimizing carbon footprint in geo-distributed fog computing,†in Proc. Int. Conf. Inf. Netw. (ICOIN), 2015, pp. 324–329.

E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwälder, “Incremental deployment and migration of geo distributed situation awareness applications in the fog,†in Proc. 10th ACM Int. Conf. Distrib. Event Based Syst., 2016, pp. 258–269.

A. Yousefpour et al., “QoS-aware dynamic fog service provisioning,†2018. [Online]. Available: arXiv:1802.00800.

Volkov Artem , Kovalenko Vadim , Ibrahim A. Elgendy , Ammar Muthanna , and Andrey Koucheryavy, “DD-FoG: Intelligent Distributed Dynamic FoG Computing Frameworkâ€, Future Internet 2022, 14, 13. https://doi.org/ 10.3390/fi14010013.

Ismael Martinez , Abdelhakim Senhaji Hafid ,Abdallah Jarray, Design, Resource Management, and Evaluation of Fog Computing Systems: A Survey, IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021.

“The growth in connected IoT devices is expected to generate 79.4ZB of data in 2025, according to a new IDC forecast,†Int. Data Corp. (IDC), Framingham, MA, USA, Rep. prUS45213219, 2019. Accessed: Apr. 2020. [Online]. Available: https://www.idc.com /getdoc.jsp?containerId=prUS45213219.

“Fog computing and the Internet of things: Extend the cloud to where the things are,†CISCO, San Jose, CA, USA, Rep. C11- 734435-00, 2015. Accessed: Apr. 2019. [Online]. Available: https: //www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-ove rview.pdf

G. L. Santos et al., “Analyzing the availability and performance of an e-health system integrated with edge, fog and cloud infrastructures,†J. Cloud Comput., vol. 7, no. 1, p. 16, 2018.

C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam, J. H. Son, and C. S. Hong, “A proximal algorithm for joint resource allocation and minimizing carbon footprint in geo-distributed fog computing,†in Proc. Int. Conf. Inf. Netw. (ICOIN), 2015, pp. 324–329.

C. Yu, B. Lin, P. Guo, W. Zhang, S. Li, and R. He, “Deployment and dimensioning of fog computing-based Internet of vehicle infrastructure for autonomous driving,†IEEE Internet Things J., vol. 6, no. 1, pp. 149–160, Feb. 2019.

S. W. Loke, “The Internet of flying-things: Opportunities and challenges with airborne fog computing and mobile cloud in the clouds,†2015. [Online]. Available: arXiv:1507.04492.

L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards a comprehensive definition of fog computing,†ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 5, pp. 27–32, 2014.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the Internet of things,†in Proc. 1st ed. MCC Workshop Mobile Cloud Comput., 2012, pp. 13–16.

O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource provisioning for IoT services in the fog,†in Proc. IEEE 9th Int. Conf. Service Orient. Comput. Appl. (SOCA), 2016, pp. 32–39.

S. Tomovic, K. Yoshigoe, I. Maljevic, and I. Radusinovic, “Software Defined fog network architecture for IoT,†Wireless Pers. Commun., vol. 92, no. 1, pp. 181–196, 2017.

X. Sun and N. Ansari, “EdgeIoT: Mobile edge computing for the Internet of things,†IEEE Commun. Mag., vol. 54, no. 12, pp. 22–29, Dec. 2016.

S. S. Gill, R. C. Arya, G. S. Wander, and R. Buyya, “Fog-based smart healthcare as a big data and cloud service for heart patients using IoT,†in Proc. Int. Conf. Intell. Data Commun. Technol. Internet Things, 2018, pp. 1376–1383.

I. Stojmenovic, “Fog computing: A cloud to the ground support for smart things and machine-to-machine networks,†in Proc. Aust. Telecommun. Netw. Appl. Conf. (ATNAC), 2014, pp. 117–122.

A. Yousefpour et al., “QoS-aware dynamic fog service provisioning,†2018. [Online]. Available: arXiv:1802.00800.

X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular fog computing: A viewpoint of vehicles as the infrastructures,†IEEE Trans.Veh. Technol., vol. 65, no. 6, pp. 3860–3873, Jun. 2016.

M. Sookhak et al., “Fog vehicular computing: Augmentation of fog computing using vehicular cloud computing,†IEEE Veh. Technol. Mag., vol. 12, no. 3, pp. 55–64, Sep. 2017.

Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J. Rodriguez, “Computation resource allocation and task assignment optimization in vehicular fog computing: A contract-matching approach,†IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3113–3125, Apr. 2019.

M. Ahmad, M. B. Amin, S. Hussain, B. H. Kang, T. Cheong, and S. Lee, “Health fog: A novel framework for health and wellness applications,†J. Supercomput., vol. 72, no. 10, pp. 3677–3695, 2016.

K. Intharawijitr, K. Iida, and H. Koga, “Analysis of fog model considering computing and communication latency in 5G cellular networks,†in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops (PerCom Workshops), 2016, pp. 1–4.

S. Agarwal, S. Yadav, and A. K. Yadav, “An efficient architecture and algorithm for resource provisioning in fog computing,†Int. J. Inf. Eng. Electron. Bus., vol. 8, no. 1, pp. 48–61, 2016.

M. Taneja and A. Davy, “Resource aware placement of IoT application modules in fog-cloud computing paradigm,†in Proc. IFIP/IEEE Symp. Integr. Netw. Service Manag. (IM), 2017, pp. 1222–1228.

A. Karamoozian, A. Hafid, and E. M. Aboulhamid, “On the fog cloud cooperation: How fog computing can address latency concerns of IoT applications,†in Proc. 4th Int. Conf. Fog Mobile Edge Comput. (FMEC), 2019, pp. 166–172.

E. Yigitoglu, M. Mohamed, L. Liu, and H. Ludwig, “Foggy: A framework for continuous automated iot application deployment in fog computing,†in Proc. IEEE Int. Conf. AI Mobile Services (AIMS), 2017,pp. 38–45.

H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: Atoolkit for modeling and simulation of resource management techniques in the Internet of things, edge and fog computing environments,†Softw. Pract. Exp., vol. 47, no. 9, pp. 1275–1296, 2017.

L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar, “Mobility-aware application scheduling in fog computing,†IEEE Cloud Comput., vol. 4, no. 2, pp. 26–35, Mar./Apr. 2017.

V. B. C. Souza, W. Ramírez, X. Masip-Bruin, E. Marín-Tordera, G. Ren, and G. Tashakor, “Handling service allocation in combined fog-cloud scenarios,†in Proc. IEEE Int. Conf. Commun. (ICC), 2016,pp. 1–5.

M. Aazam and E.-N. Huh, “Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT,†in Proc. IEEE 29th Int. Conf. Adv. Inf. Netw. Appl., 2015, pp. 687–694.

M. Aazam and E.-N. Huh, “Dynamic resource provisioning through fog micro datacenter,†in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops (PerCom Workshops), 2015, pp. 105–110.

V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli, “On qos-aware scheduling of data stream applications over fog computing infrastructures,†in Proc. IEEE Symp. Comput. Commun. (ISCC), 2015,pp. 271–276.

L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar, “Mobility-aware application scheduling in fog computing,†IEEE Cloud Comput., vol. 4, no. 2, pp. 26–35,Mar./Apr. 2017.

X. Peng, K. Ota, and M. Dong, “Multiattribute-based double auction toward resource allocation in vehicular fog computing,†IEEE Internet Things J., vol. 7, no. 4, pp. 3094–3103, Apr. 2020.

I. Martinez, A. Jarray, and A. S. Hafid, “Scalable design and dimensioning of fog-computing infrastructure to support latency-sensitive IoT applications,†IEEE Internet Things J., vol. 7, no. 6, pp. 5504–5520,Jun. 2020.

Y. Xia, X. Etchevers, L. Letondeur, T. Coupaye, and F. Desprez, “Combining hardware nodes and software components ordering-based heuristics for optimizing the placement of distributed iot applications in the fog,†in Proc. 33rd Annu. ACM Symp. Appl. Comput., 2018 pp. 751–760.

F. A. Salaht, F. Desprez, A. Lebre, C. Prud’Homme, and M. Abderrahim, “Service placement in fog computing using constraint programming,†in Proc. IEEE Int. Conf. Services Comput., 2019,pp. 19–27.

B. Donassolo, I. Fajjari, A. Legrand, and P. Mertikopoulos, “Fog based framework for IoT service provisioning,†in Proc. 16th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC), 2019, pp. 1–6.

Ab Rashid Dar ,D Ravindran, “Fog Computing Resource Optimization: A Review on Current Scenarios and Resource Managementâ€, Baghdad Science Journal, DOI: http://dx.doi.org/10.21123/bsj.2019.16.2.0419.

Mohammad A, Eui-Nam H. Fog Computing Micro Datacenter Based Dynamic Resource Estimation and Pricing Model for IoT, in the proceedings of IEEE 29th International Conference on Advanced Information Networking and Applications, 2015; DOI: 10.1109/AINA.2015.254

Ivan S, Wen Sh. The Fog Computing Paradigm: Scenarios and Security Issues. 2014 Federated Conference on Computer Science and Information Systems, FedCSIS 2014:1-8. DOI: 10.15439/2014F503.

Khan S. Parkinson S, Qin Y. Fog computing security: a review of current applications and security solutions. Journal of Cloud Computing. 2017; DOI: 6. 19. 10.1186/s13677-017-0090-3.

Mahmood HM, Ravindran D. LETISA: Latency optimal Edge computing Technique for IoT based Smart Applications,IJSRCSEIT.2017; 2(4):688-694.

Adriana Mijuskovic , Alessandro Chiumento , Rob Bemthuis , Adina Aldea and Paul Havinga , “Resource Management Techniques for Cloud/Fog and Edge Computing: An Evaluation Framework and Classificationâ€, Sensors 2021, 21, 1832. https://doi.org/10.3390/s21051832.

Bittencourt, L.; Immich, R.; Sakellariou, R.; Fonseca, N.; Madeira, E.; Curado, M.; Villas, L.; DaSilva, L.; Lee, C.; Rana, O. The Internet of Things, Fog and Cloud continuum: Integration and challenges. Internet Things 2018, 3-4, 134–155.

Most read articles by the same author(s)