MATHEMATICAL MODEL OF COVID-19 TRANSMISSION DYNAMICS AND CONTROL STRATEGIES.

Main Article Content

JUMANNE M MNG'ANG'A

Abstract

In this paper, we present a mathematical model of COVID-19 transmission dynamics and control strategies. The result reveal that the disease free equilibrium point exists and it is locally and globally asymptotically stable when the reproduction number is less than one unit  and otherwise unstable when is greater than one unit. Simulation and discussions of a different variable of the model has been performed and we have compute sensitivity index of each parameter through sensitivity analysis of different embedded parameters. MATLAB of ode45 was employed perform numerical simulation analysis and the results show that there is importance of isolating infectious individual in an epidemic disease within the population.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

Aguilar J.B., Faust G.S.M, Westafer L.M, Gutierrez J.B. Investigating the impact of

asymptomatic carriers on COVID-19 transmission. Preprint: 10.1101/2020.03.18.20037994

Brauer F , Castillo-Chavez C , Feng Z . Mathematical models in epidemiology. New York:

Springer-Verlag; 2019.

Chen T-M, Rui J, Wang Q-P, Cui J-A, Yin L. A mathematical model for simulating the phase

based transmissibility of a novel coronavirus. Infect Dis Poverty 2020;9(1):24. doi:

1186/s40249- 020- 00640- 3.

Chitnis N, Hyman JM, Cushing JM. Determining important parameters in the spread of

malaria through the sensitivity analysis of a mathematical model. Bull Math Biol

;70:1272–96. doi: 10.1007/s11538- 008- 9299- 0.

COVID-19 Coronavirus Pandemic. 2020. https://www.worldometers.info/ coronavirus/reprot

Accessed July 08, 2020.

Fang Y, Nie Y, Penny M. Transmission dynamics of the COVID-19 outbreak and

effectiveness of government interventions: a data-driven analysis. J Med Virol 2020. doi:

1002/jmv.25750.

Gantmacher FR . The theory of matrices, 1. Providence, RI: AMS Chelsea Pub- lishing; 1998 .

Kim Y, Lee S, Chu C, Choe S, Hong S, Shin Y. The characteristics of middle eastern

respiratory syndrome corona virus transmission dynamics in South Korea. Osong Public

Health Res Perspect 2016;7:49–55. doi: 10.1016/j.phrp.2016. 01.001.

Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, Eggo RM, Sun F, Jit

M, Munday JD, et al. Early dynamics of transmission and control of COVID-19: a

mathematical modelling study. Lancet Infectious Dis 2020. doi: 10.1016/S1473-

(20)30144-4.

Ndaïrou F, Area I, Nieto JJ, Silva CJ, Torres DFM. Mathematical modeling of Zika disease

in pregnant women and newborns with microcephaly in Brazil. Math Methods Appl Sci

;41:8929–41. doi: 10.1002/mma.4702.

O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts. (2009) The construction of next-

generation matrices for compartmental epidemic models. J. R. Soc. Interface,

(doi:10.1098/rsif.2009.0386).

Powell DR , Fair J , LeClaire RJ , Moore LM , Thompson D . Sensitivity analysis of an

infectious disease model. In: Boston M, editor. Proceedings of the international system

dynamics conference; 2005.

Rachah A, Torres DFM. Dynamics and optimal control of Ebola transmission. Math

Comput Sci 2016;10:331–42. doi: 10.1007/s11786- 016- 0268- y.

Rodrigues HS, Monteiro MTT, Torres DFM. Sensitivity analysis in a dengue epi-

demiological model. Conference papers in mathematics. Hindawi, editor; 2013. doi:

1155/2013/721406. Vol.2013,Art.ID721406.

Stephen Edward, Kitengeso Raymond E., Kiria Gabriel T., Felician Nestory, Mwema

Godfrey G., Mafarasa Arbogast P.A Mathematical Model for Control and Elimination of

The Transmission Dynamics of Measles, Applied and Computational Mathematics, 2015;

(6):396-408

Trilla A. One world, one health: the novel coronavirus COVID-19 epidemic. Med Clin

(Barc) 2020;154(5):175–7. doi: 10.1016/j.medcle.2020.02.001.

Wong G, Liu W, Liu Y, Zhou B, Bi Y, Gao GF. MERS, SARS, and Ebola: the role of

super-spreaders in infectious disease. Cell Host Microbe 2015;18(4):398–401. doi:

1016/j.chom.2015.09.013.

van den Driessche P. Reproduction numbers of infectious disease models. Infect Dis

Model 2017;2:288–303. doi: 10.1016/j.idm.2017.06.002.

Van Den Driessche, P and Watmough, J (2002). Reproduction numbers and Sub-threshold

endemic equilibria for compartmental models of disease transmission. Mathematical

Biosciences, Vol 180, pp. 29-48.

WHO. 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-

report