
Volume 2, No. 3, May-June 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 587

ISSN No. 0976-5697

An Efficient Retargetable Simulator for ASIP Design Space Exploration

Gajendra Kumar Ranka

Research Scholar,

Department of Computer Science,

MLSU University, Udaipur

Gajendra_ranka@hotmail.com

Dr. Manoj Kumar Jain*
Associate Professor

Department of Computer Science

MLSU University, Udaipur

manoj@cse.iitd.ernet.in

Abstract: The design of modern embedded systems requires automated modeling tools for faster design and for the study of various design

tradeoffs. Such tools put together constitute an integrated environment where the designer can write the high level design specifications in a

language and use these tools for automatic generation of system specific tools.

The major contribution of this paper lies in design and development of retargetable simulator and validation of the simulator. Proposed simulator

measures cycle count for application executed on processor. Methodology for the Simulator is also discussed. The Operational aspect of

retargetable simulator follows the simple and elegant steps and is easy to configure and understand. Optimized source code is generated by

retargetable compiler. This optimized code is given as input to the Retargetable simulator. Along with the optimized code, the processor

descriptions are required to enter and simulator is executed to get the desired result in the form of Cycle count.

Keywords: ASIP, Application Specific Instruction Processors, Retargetable Simulator, Embedded Systems, Processors, ASIP Simulators, Design

Space Exploration.

I. INTRODUCTION

Modern electronics are controlled by processors that must

meet strict constraints in terms of performance, cost, size

and power consumption. In a competitive market place,

performance and cost are critical in differentiating one

product from another. In addition, low cost and superior

performance increases the likelihood of broad consumer

acceptance of new electronic products. Size constraints limit

the amount of functionality that can be incorporated into

product design. Finally low power consumption is necessary

for portable electronic equipment that is battery operated.

An ASIP is a processor that is designed to efficiently

execute the software for a specific application. Regardless of

whether a newly designed ASIP or a preexisting processor

core is used, the selected processor should be well suited for

the given application. Although incorporating a complete

system on a single IC may improve performance, cost, and

power consumption requirements, such a high level of

integration constraints the size of the system components.

A. Steps in ASIP Synthesis

Various methodologies have been reported to meet these

requirements. All these have been studied and five steps are

suggested for synthesis of ASIPs [1]

(a) Application Analysis: Application is normally written in

High level language. Proper analysis of this application

under consideration is done and the output of the

information is stored in some suitable intermediate format.

Sometimes SUIF can be used as intermediate format.

Analysis of the application is essential as it provides the

essential requirement from the application that can guide for

hardware synthesis as well as instruction set generation.

(b) Architectural Design Space Exploration: Output of the

Application analysis step along with the range of

architecture for Design Space Exploration is used to select a

suitable architecture. Possibility of suitable architecture is

explored and the best architecture is selected that satisfy the

different characteristics like minimum hardware cost,

performance and power.

(c) Instruction Set Generation: Till this step we have

identified application requirements and the suitable

architecture. Based on this input instruction sets are

generated in terms of required micro operation. This

instruction set is used during the further steps for code

synthesis and hardware synthesis.

(d) Code Synthesis: Till this step, architecture template,

instruction set, and application are identified. This step

generates the code. Generated code can be retargetable code

generator or compiler generator.

(e) Hardware Synthesis: In this step the hardware is

generated using the ASIP architectural template and

instruction set architecture using standard tools

B. Architecture Design Space Exploration

System on Chip designs has various goals and objectives.

Design space consists of a set of parameters. The main focus

of designers lies on minimal cost and maximal performance,

low power, high reliability etc. Architecture under

consideration requires a range of good parameter to explore.

These parameters may take up the different values.

Some of the parameter suggested can be functional unit of

different type, Storage units, interconnect resources, number

of memory units etc. Further the parameters can also be

extended to size of instruction cache and size of data cache.

This has been a very crucial step for ASIP design. Design

Space exploration helps the SOC designers to make the

trade-offs between these goals and arrive at the "optimal"

design. Designers explore changes to the architecture or the

instruction-set of the processor-memory system. Designers

select a suitable architecture that satisfy the performance

and power constraint and having minimum hardware cost.

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 587-594

© 2010, IJARCS All Rights Reserved 588

Architecture is defined using some suitable architecture

description language (ADL).

C. Techniques for Performance Estimation

Two major techniques have been used for performance

estimation. They are scheduler based and simulator based.

In Scheduler based approach, application is scheduled to

generate the output like cycle count. Architectural

component is already identified at this stage. Target

processor architecture can be given in the form of

description file.

In Simulator based approach, application under

consideration runs on a simulator. Depending upon the

architecture selected in above steps, application is simulated

to compute the performance.

Processor Models are extensively used in system design

process. The system design process starts with an

application and its implementation. Then the model is tested

for its performance and other aspects. In such a scenario an

integrated environment is required for the designer where

several tools exist like simulator, assembler, compiler etc.

Rewriting the tools after each design change is a tedious job.

Hence automatic generation of these tools is more desirable

according to the design changes.

D. Existing Retargetable Simulators approaches

Retargetable functional simulator (Fsimg) [2] focus on tools

that deal with the machine language of processors, like

assemblers, disassembler, instruction set simulator

etc.Retargetable Function Simulator (Fsimg) was designed

using Sim-nML language which is primarily an extension of

the nML [3] language for processor modeling. Fsimg takes

the specification of the processor in the intermediate

representation [4] and an executable for the processor in

ELF [5] format and generates a functional simulator (Fsim)

which in turn gives the functional behaviour of the processor

model for the given program.

II. REALTED WORK

Over the past several decades a considerable amount of

research has been performed in the area of computer

architecture simulation. These simulators can be broadly

divided into several categories: full-system simulators,

Instruction Set Architecture (ISA), and retargetable

Simulators. Each category serves an entirely different

purpose, but all have been used for the advancement of

computer architecture research.

The purpose of full-system simulators is to model an entire

computer system including the processor, memory system

and any I/O. These simulators are capable of running real

software completely unmodified just like a virtual machine.

There are many simulation suites that take this approach,

including PTLSim [6], M5 [7], Bochs [8], ASIM [9],

GxEmul [10] and Simics [11]. Simics has several extensions

that constitute their own full-system simulators such as

VASA [12] and GEMS [13].

ISA simulators are less descriptive than full system

simulators. Their objective is to model processor alone.ISA

simulators performs the various functionalities.

It simulate and debug machine instructions of a processor

type that differs from the simulation host, it also emphasis

on investigating how the various instructions (or a series of

instruction) affect the simulated processor. Hence modeling

of the full computer system is unnecessary and would

impose additional delay and complexity. Example of this

type of simulator includes SimpleScalar [14], WWT-II [15],

and RSIM [16]. Over the past decade, a few interesting

ADLs have been introduced together with their supporting

software tools. These ADL include MIMOLA, UDL/I, nML,

ISDL, CSDL, Maril, HMDES, TDL, LISA, RADL,

EXPRESSION and PRMDL.

III. CHALLENGES IN ASIP DESIGN

The development of a processor is a complex task, involving

several development phases, multiple design teams and

different development languages. The key phase in

processor design is architecture specifications since it serves

as the basis for all remaining design phases. Although

Hardware Description Languages (HDLs) are designed for

architecture implementation, in a traditional design flow,

these languages are also often used for the initial

specification of the processor. In this design phase tasks,

such as hardware/software partitioning, instruction-set and

micro-architecture definition is performed. Based on the

architecture specification, both the hardware implementation

and development of software is triggered. Both tasks are

basically independent and therefore performed by different

experts and design methodologies.

Hardware designers use HDLs such as VHDL or Verilog,

while software designers mostly utilize the C/C++

programming language. In addition, the target processor

needs to be integrated into the SoC and the application

software needs to be implemented. Communication between

the design teams is obviously difficult because of the

heterogeneous methodologies and languages.

Considering the traditional processor design flow, the strong

dependencies between the design phases imply a

unidirectional design flow and prevent even minor

optimizations. Due to the different development languages,

changes to the architecture are difficult to communicate and

inconsistencies are very likely to appear.

The Complexity of processor design even increases in ASIP

design, since optimizations targeted to particular

applications are mandatory. Mapping an architecture to a

given application means moving through a design space by

axes such as flexibility, power consumption, clock speed,

area and more.

Every design decision in one dimension constraints other

decisions, for example

Architectural features Vs design time,

Design time Vs physical characteristics,

Physical characteristics Vs flexibility

Flexibility Vs verification effort

Verification effort Vs architectural features

It is obviously not possible to move through this design

space by applying the traditional processor design

methodology. A unified design methodology is required,

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 587-594

© 2010, IJARCS All Rights Reserved 589

which provides a common basis for all design phases. It

must be suitable for all design engineers involved.

IV. EXISTING RETARGETABLE SIMULATORS

Anahita Processor Description Language (APDL), APDL

[17] is one of the most recent contributions in the area of

retargetable simulator. The language was introduced in 2007

by N. Honarmand et al. from the Shahid Beheshti

University, IRAN. The Primary difference beween APDL

and other ADLs is the addition of Timed Register Transfer

Level (T-RTL), which enables the simulation designer to

define the latencies and hardware requirement of the

processor operations. This separation of configuration data

enables APDL to better integrate with external software for

analysis as the T-RTL data is organized separately from the

remainder of the processor description. Moreover, APDL

can describe both instruction and structure descriptions of a

target processor.

The Pascal-like syntax of APDL is clearly more intuitive

than many other ADLs such as LISA and EXPRESSION.

While the language is easier to read and understand, the

researchers have not yet implemented a compiler to produce

simulations. Furthermore, despite APDL's relative ease,

users are still faced with the task of learning the details of

the syntax.

ISDL [18] was introduced in 1997 by G.Hadjiyiannis,

S.Hanono, and S. Devadas from Massachusetts Institute of

Technology. The purpose of ISDL was to provide a

language for describing instruction sets along with a limited

amount of details of a processor structure for the automatic

construction of compilers, assembler, and simulators. ISDL

enables users to define their target processors in several

ways. First, users can define operations, their format, and

the associated assembly language instruction. Second users

can define the storage resources available to the processor,

including the register file and memory. Third users can

define constraints in the processor such as instructions

requesting the same data path, or restrictions regarding

assembly syntax.

ReXSim [19] was introduced in 2003 by a computer

architecture research team at Irvine. ReXSim is an extension

of EXPRESSION language which sought to improve

simulation speed by integrating a novel method of decoding

instructions of the simulated program before execution of

the simulation. As a result, the instruction decoding process

was removed from the execution loop of the simulator, and

thus improved the simulation speed significantly. Using this

method, the team was able to produce retargetable

simulations that showed performance in excess of major

simulators like SimpleScalar, which is widely considered to

be a simulation performance benchmark.

Reduced Colored Petri Net (RCPN) [20] was introduced in

2005 by M.Reshadi and N. Dutta from University of

California, Irvine. RCPN takes a vastly different approach to

retargetable simulation, in which pipelines are modeled

using a simplified version of Colored Petri Nets (CPN).

Petri Nets are graph based mathematical method of

describing a process. The nodes of the graph represent

particular discrete events, states, or functions, and the graph

edges represent the transitions of data between nodes. The

transitions can be enabled or disabled based on conditions

specified at the nodes.

The purpose of RCPN is to provide retargetable simulations

for modeling of pipelined processors. RCPN reduces the

functionality of a regular CPN by limiting the capabilities of

the nodes in the graph for the purpose of increasing

simulation speed and usability. Additionally, RCPN takes

the advantage of some of the natural properties of CPNs to

prevent structural and control hazards.

Retargetable functional simulator (Fsimg) [21] focus on

tools that deal with the machine language of processors, like

assemblers, disassembler, instruction set simulator etc. The

objective was to have a single processor model for all the

tools. Hence Retargetable Function Simulator (Fsimg) was

designed using Sim-nML language which is primarily an

extension of the nML language for processor modeling.

Fsimg takes the specification of the processor in the

intermediate representation and an executable for the

processor in ELF

Format and generates a functional simulator (Fsim) which in

turn gives the functional behaviour of the processor model

for the given program. Figure 4 shows the view of integrated

environment. PowerPC 603 processor is specified in Sim-

nML. Around 237 instructions have been specified with the

resource usage model and pipeline. Macro Preprocessor

(nMP) for processing Sim-nML macros is implemented.

It has some limitation. Fsimg is imposing a strong restriction

on specification writing. Current bit-operator library

supports only integer data types. The trace produced by

Fsim is not compressed. It makes it difficult to handle and

process trace files. It is very slow.

The LISATek [22] processor design flow is based on LISA

2.0 processor models. Given a LISA model, the LISATek

tool is able to generate instruction-set simulators for the

processor under design. Typically, the debugger in form of a

dynamic library directly uses the generated simulator.

However, a compiled static simulator library is also

generated, and specifications exist to integrate it into the

system environment. The system environment would be the

MPARM. All the core models generated by the LISATek

suite, regardless of the nature of the ASIP at hand, have the

same interface. The interaction is based upon four key

pillars:

 The simulated core can be cycled by calling specific

functions. If the processor is modeled in an

instruction-accurate fashion, then the generated model

can be stepped on an instruction basis. On the other

hand, a model derived from a cycle-accurate LISA

description can be stepped on both instruction and

cycle basis.

 Core-initiated communication (e.g. reads, writes) is

performed through a specific Application

Programming Interface (API). It is the task of the

external program to provide an implementation of said

API.

 System-initiated communication (e.g. interrupts), if

any, can be forwarded to the core when cycling it, and

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 587-594

© 2010, IJARCS All Rights Reserved 590

therefore on a fine-grain cycle-by-cycle basis, by

proper flipping of extra pins. Of course the LISA core

model must be made aware of the meaning of these

extra pins to take proper action.

 An external LISATek Debugger tool can be interfaced

to the core via the IPC (Inter-Process Communication)

mechanism. The external program must simply invoke

the Debugger with proper references; subsequently,

the LISATek model and the Debugger interact

autonomously.

The implementation of these function calls depends

completely on the communication method used in the

system. The implemented API will translate the requests

into SystemC signals which can be understood by the

MPARM [23] platform. The Assessment of the performance

of alternative hardware communication is not addressed.

Retargetability is poor.

All of these simulators use techniques to speed up the

execution of application programs. This is achieved by

minimizing the amount of details about the processor,

needed for program execution on the simulator. Even though

some of these previous approaches target ADL-based

automatic toolkit generation and DSE, not much work has

been done in bringing together these elements in an early

DSE environment. Furthermore, previous approaches are

restricted to certain classes of processor families and assume

a fixed memory/cache organization. For a wide variety of

such processor and memory IP library, the designer needs to

be able to specify and analyze the interaction between the

processor instruction set and architecture, and the

application and explore the different points in design space.

This problem is addressed in SIMPRESS simulators. The

EXPRESSION ADL captures both the instruction set and

architecture information for a design draw from an IP

library. The library contains a variety of parameterizable

processor cores and customizable memory / cache

organizations. Simpress produces a structural simulator

capable of providing detailed structural feedback in terms of

utilization, bottle-necks in the processor architecture. The

processor-system description is input using a graphical

schematic capture tool, called V-SAT, that outputs an

Expression Description which is fed into the toolkit

generators to produce DSE tools. The SIMPRESS generated

simulator provides feedback information which is back-

annotated to the same V-SAT graphical description.

Though SIMPRESS Simulators addresses many issues, it

has certain limitation. The application having function calls

are not supported. Compilation steps exist in three passes:

PcProGUI, Expression console, acesMIPS console.

Basically it is very complex to understand the process of

compilation and simulator. The Application needs .proc and

.def file. The .c program generates these files. There is no

clear cut method as how .c is converted to .proc and .def,

especially in case of windows environment. This is strong

limitation as we can not simulate our own program written

in .c. this has to be first converting to .procs and .defs and

for that we need to depend on their servers to provide for the

same, which is not functional right now.

In order to overcome all these complexities, we suggest a

simple and elegant solution. Just there is a need to provide

the standard application program in the form of scheduled

and optimized code along with the processor description to

our Simulator and you will get the cycle count as an output

of the simulation.

V. OVERALL APPROACH

Figure1: Simulator based code generation

Application or a set of application in the form of High Level

Language is taken as input and it given as input to

retargetable compiler.

Architecture description is also given input to retargetable

compiler. Retargetable compiler generates the schedule and

optimized code. This code is given as input to Simulator.

None of the existing simulator provides and easy GUI to

enter the processor components and simulate the code for

target host. We are assuming the scheduled and optimize

code to be generated from retargetable compiler and this

code along with the Processor description or Architecture

description is given as input to the Simulator. The Simulator

generates the data in the form of cycle count.

IV. METHODOLOGY

Figure 2 : Overall Methodology adopted

Our architecture model consists of a number of architecture

simulation components that simulate the three main parts of

the system: Processing elements, memory and

interconnection medium. Figure 2 shows the overall

methodology adopted for our simulator

A. Processor Model

This method assumes that each instruction completes in a

fixed number of cycle. In architecture terms, we can say that

our processor has fast private memory where code and local

data can be stored. Hence each processing element is

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 587-594

© 2010, IJARCS All Rights Reserved 591

equipped with large instruction and local data cache that

guarantee a very high hit ratio.

Architectural Parameters of the processor component are:

 Local instruction costs in cycle.

 Number of available interrupts types.

 Context switch latency (cycles to save and restore

processor state).

 Interrupt Latency (Cycles needed to save state and

branch to interrupt handler).

B. Memory Model

We are considering two-level memory. The levels are main

memory and cache(s). We are assuming Shared memory as

Main Memory, though we are considering logical partitions

with in that memory. Such partitions may be code segment,

data segment etc.

Cache memory is assumed to be local to each processing

element. However any change in this model can be easily

incorporated in our model as it can be specified in input

description and that is taken care by our simulator.

Architectural parameters of the memory components are:

 Number of memory modules.

 Memory module size.

 Cache line size.

 Cache set size.

 Number of sets per cache.

 Cache access latency.

 Memory module access latency.

C. Interconnection Model

In a real-time system architecture, the notion of a bus

component play an important role as it forms the backbone

of communication among all the devices of the system. For

this purpose, we need a precise specification of buses for

applications that will run on top of them.

Our simulator supports the interconnection of bus. All

processing elements and all memory modules are connected

through a common bus. Uniform shared memory access is

assumed, that is, access of any memory module from any

processor takes the same amount of time (ignoring delays

due to bus contention).

The simplest interconnection strategy is to use a single bus

which is being shared by every other component for

communication. Though this strategy is easy to implement,

as the number of processor go up, the bus becomes the

bottleneck. All the components connected to this bus should

tune their interfaces to use the bus protocol. Apart from this,

designers have to implement some arbitration mechanism to

resolve the conflicts.

VIII.DEVELOPMENT OF RETARGETABLE

SIMULATOR

Electronic devices built nowadays are often built with a

single IC composed of multitude of hardware blocks that

implement the device functionality. In most cases such

circuit contains one or more processors that enable to

implement a part of the circuit functionality as software that

runs on that processor rather than as a specific hardware

component. Such IC is commonly referred to as a system-

on-a-chip (SoC).

 The main CPU features are:

 101 instructions with possible addressing modes

 CPU with independent stack pointer registers

 Eight 32-bit data, eight 32-bit address and 32-bit status

registers

 16-bit external memory interface

Main assumptions for the ISS were:

 Developed in pure Visual basic 6.0 language for high

performance.

 Crystal Report is used as a reporting tool to display the

different status.

 MS Access is used to Store the different schedules and

optimized code.

 Single-instruction accuracy, without taking internal

architecture under consideration.

 Fully static design with the support of loop / wait

statements.

 Usage of native VB types to gain high simulation speed.

 Communication interfaces separated from functionality.

The main part which contains implementation of main

processor's logic (ALU, instruction fetch, decoding and

execution routines) together with fields corresponding to the

internal resources (all registers). Sub-module features:

 Fetching and decoding instructions

 Instruction processing routines

 Handling interrupts and exceptions

 Register implementation and registers read/write access

 Instruction counter

Simulators are critical components of the exploration toolkit

for the system designer. Simulators can be used to perform a

variety of tasks such as verifying the functionality and / or

timing behavior of the system, and generates quantitative

measurement, for e.g. Cycle count etc. As per our design

Methodology and hypothetical assumption of the

Architecture we have taken MIPS Architecture as a base to

develop our Retargetable simulator. We have given a

Nomenclature to our Simulator as SIM-A {Simulators for

Architectures}.

We will be using Expression Language for Architecture

Description. We have developed the GUI Interface for the

same. We have also provided the GUI for easy evaluation

and analysis.

A. SIM-A- Basics

SIM-A is a 32-bit datapath, every instruction is 32 bits

wide, and data comes in “words” which are also 32

bits wide. Memory in SIM-A, however, is addressed in

bytes.

SIM-A is load-store architecture that is, the only instructions

that access memory are LW and SW.

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 587-594

© 2010, IJARCS All Rights Reserved 592

B. Memory Organization

We are considering Two-level memory. The levels are main

memory and cache(s). We are assuming main memory as

Shared Memory. Cache memory is assumed to be local to

each processing element. We are also considering logical

partitions with in that memory. Such Partition may be code

segment, extra segment etc

Data begins at virtual address 0x10000000 and grows in the

direction of increasing virtual addresses (this data is called

dynamic data because the machine doesn’t know how much

of it will be used at runtime). In SIM-A, there is also a

concept of stack – that is, data that starts just below virtual

address 0x80000000 and grows in the direction of

increasing virtual addresses.

C. SIM-A Register Set

Registers are a small set of fast memory that the datapath

has available at its disposal for most immediate operations.

All registers are 32-bit wide. SIM-A contains thirty two

user registers (that is, registers that the user can access/use

in the assembly program) and four special-purpose registers

that are hidden from the user.

D. SIM-A Instruction Set

This section describes in detail all the SIM-A instructions.

 Rs and Rt are source registers – the datapath should fetch

their values whenever they are used. Source registers are

usually treated as twos-complement signed 32-bit numbers.

In some special cases they are treated as unsigned numbers

(the note that follows explains such circumstances)

Rd is the destination register – the datapath will write the

result to that register number.

Immediate values may either be treated as signed or

unsigned values, and may either be zero-extended (in which

case the padding bits are all zero), or sign extended (in

which case the padding bits are all equal to the most

significant bit of the immediate value).

SOC designs have various design goals. These goals include

minimal cost, maximal performance, low power, high

reliability, etc. Design Space Exploration allows the SOC

designer to make trade-offs between these goals and arrive

at an “optimal” design.

SOC designer would like to explore changes to the

architecture or the instruction-set of the processor-memory

system. Common examples of such changes include, but not

limited to:

 Changing the pipeline structure. e.g., increasing (or

decreasing) the number of stages to increase (or

decrease) the clock frequency, adding forwarding paths

to reduce pipeline stalls.

 Changing the data path structure. e.g., changing slow

units to fast units in order to increase performance,

changing connectivity between units and storage

elements (like register files) in order to decrease power

consumption.

 Increasing parallelism. e.g Adding more functional

units that can execute in parallel in order to increase

performance.

 Changing the instruction-set. e.g Adding new

operations which can be exploited by particular

applications.

 Changing the memory component. e.g Changing the

size of register file, changing the associativity of the

cache, etc.

 Changing the memory hierarchy. e.g Adding a cache

between the processor and off-chip memory, changing

the on-chip memory hierarchy etc.

E. SIM-A Look and Feel

This is the first and main form which helps us to calculate

the cycle count of any program as shown in Figure3.First

section allows us to select the different programs that we are

required to simulate.

Figure 3: GUI for SIM-A Simulator

This is the interface through which user will enter the

processor description and will mimic the behaviour of the

processor. If you click on the option “Select Program to

Run” , it contains all the list of programs. Just select the

program that we need to simulate and Click the button “Run

Simulator and Provide Result ….” Others buttons are not

used right now. Second Section provides the output of the

program. It contains information like total Arithmetic

instruction, Shift rotate, Logical, Jump Branch etc. It also

gives the pop up when the program finishes by providing the

cycle count.

User will first enter the processor description details as

shown in figure 4. Submit the form to update the processor

description file. Then it browses to the GUI form where he

can select the programs that he/She needs to simulate.

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 587-594

© 2010, IJARCS All Rights Reserved 593

Figure 4: GUI for Processor Description

The above is the brief description of the SIM-A Simulator

that has been developed in our Embedded System Lab.

[8] PERFORMANCE ESTIMATES AND

VALIDATION OF SIMULATOR

The Framework is based on MIPS 4K like processor

architecture. The architecture contains five pipeline stages –

fetch, decode, operand read, execute and writeback. There

are five parallel issue paths corresponding to two ALU

Units, one for floating point unit, a branch unit and a

Load/store unit. The memory hierarchy consists of two L1

data caches for instructions and data, a unified L2 cache and

a DRAM main memory. There is a 32-bit wide general

purpose register file and a 32-bit wide floating point register

file, each containing 32 registers.
Table 1: Benchmark Programs along with Description

No Name Description

1

SIM-A-

BENCH#1(SIM1) Excerpt from a hydrodynamic code

2

SIM-A-

BENCH#2(SIM2)

Standard Inner product function of Linear

Algebra

3

SIM-A-

BENCH#3(SIM3)

Excerpt from a Tridiagonal Elimination

routine

4

SIM-A-

BENCH#4(SIM4) First Sum

5

SIM-A-

BENCH#5(SIM5) First Difference

Table 1 lists all the benchmarks programs that have been

used to validate the simulators. After running this

benchmark program on the SIMPRESS as well as SIM-A

Simulator, following results are obtained.

Figure 5: Comparative analysis of SIM-A and SIMPRESS Simulator of

Cycle Count

Figure 5 show the graphical analysis of the SIM-A and

SIMPRESS Simulator.

At 1% level of significance, the critical value of ‘t’ for (5+5-

2) 8 degree of freedom is 3.36 and calculated value is

0.368329. Since the calculated value of ‘t’ is 0.368329

which is less than the critical value, which is 3.36, it falls in

the acceptance region.

Hence it may be concluded that both the results are equally

acceptable at 1% level of Significance.

Figure 6: Comparative analysis of SIM-A and SimpleScalar Simulator of

Cycle Count

The SimpleScalar tool set is a system software infrastructure

used to build modeling applications for program

performance analysis, detailed microarchitectural modeling,

and hardware-software co-verification. Using the

SimpleScalar tools, users can build modeling applications

that simulate real programs running on a range of modern

processors and systems.

Figure 6 show the graphical analysis of the SIM-A and

SimpleScalar Simulator.

IX. CONCLUSION AND FUTURE DIRECTION

In this paper we presented a SIM-A Simulator entirely

developed at our Lab that generates the performance

estimates for the application under consideration. Processor

description is captured in the form of GUI, which allows the

user to specify the architecture in visual form. The cycle

accurate, structural simulator generated using SIM-A allows

the user to collect statistics called cycle count. It definitely

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 587-594

© 2010, IJARCS All Rights Reserved 594

helps the designer to analyze the design and modify the

critical portions.

The goal of this project is to allow modeling of a wide

variety of processors and memory systems. In order to

achieve this goal, the simulator generator includes very

general mechanisms for capturing processor architectures.

But its usage has to be extended for other class of

processors.

The SIM-A environment has been designed to allow

modeling of diverse range of processors. This has been

demonstrated to an extent through the modeling of RISC

processor with traditional memory hierarchies. In future, it

should be used to model novel memory hierarchy and other

classes of processors such as DSP’s.

Although the speed is acceptable, another direction that

could be pursued is that of improving the speed of the

simulators, which is a very important factor in design space

exploration.

X. REFERENCES

[1] Manoj Kumar Jain, M. Balakrishnan, Anshul Kumar.

“ASIP Design Methodologies: Survey and Issues “In

proceedings of the IEEE/ACM International

Conference on VLSI Design. (VLSI 2001)”, pages 76-

81, January 2001.

[2] Y Subhash Chandra. Retargetable functional simulator

–M.Tech Thesis June 1999.

[3] FREERICK, M. The nML Machine Description

Formalism, July 1993.

[4] JAIN, N.C. Disassemble using High level Processor

Models. Master’s thesis, Department of Computer

Science and Engg, IIT Kanpur, Jan 1999.

[5] UNIX System V Rel 4, Programmers Guide : ANSI C

and Programming Support Tools. PHI, New Delhi

1992. Executable and Linkable format (ELF), Tools

Interface Standards (TIS), Portable Formats

Specification, Version 1.1.

[6] M. Yourst, “Ptlsim.” http://www.ptlsim.org/. Jan.

2010.

[7] “M5.” http://www.m5sim.org. Jan2010.

[8] “bochs: The open source IA-32 emulation project.”

http://bochs.sourceforge.net/. Jan. 2010.

[9] J. Emer, P.Ahuja, and E.Borch, “Asim: A performance

model framework” pp.68-76, 2002.

[10] “Gxemul” http://gxemul.sourceforge.net/ Jan 2010.

[11] P.M et al. , “Simics : A Full system simulation

platform, “ Computer, Vol.35, pp. 50-58, 2002.

[12] D. Wallin, H.Zeffer, M.Karlsson, and E.Hagersten,

“Vasa: A Simulator infrastructure with adjustable

fidelity,” Parallel and Distributed Computing, 2005.

[13] M.M. et al., “Multifacets general execution-driven

multiprocessor simulator (gems) toolset,” SIGARCH

Computer Architecture News, pp. 92-99, 2005.

[14] “SimpleScalar LLC.” http://www.simplescalar.com/,

August 2010

[15] S.M. et al., “Wisconsin wind tunnel ii: A fast and

portable parallel architecture simulator,” Workshop on

performance Analysis and Its Impact on Design, June

1997.

[16] V. Pai, P. Ranganathan, and S.Adve, “Rsim : An

execution-driven simulator for ilp-based shared

memory multiprocessor and uniprocessors,” Third

Workshop on Computer Architecture Education, Feb

1997.

[17] N. Honarmand, H.Sohofi, M. Abbaspour, and Z.Navabi,

“ Processor description in APDL for design space

exploration of embedded processors,” Proc. EWDTS,

2007.

[18] G.H. et al . ,”ISDL : An Instruction set description

language for retargetability,” In proc Design

Automation Conference , pp.299-302,,1997.

[19] Mehrdad Reshadi, Prabhat Mishra, Nikhil Bansal,

Nikhil Dutt. ”Rexsim : A Retargetable framework for

instruction-set architecture simulation” CECS Technical

Report #03-05 ,Feb,2003

[20] M. Reshadi and N.Dutt, “Generic pipedlined processor

modelling and high performance cycle-accurate

simulator generation,” Vol.2, pp. 786-791, 2005.

[21] Y Subhash Chandra. Retargetable functional simulator

–M.Tech Thesis June 1999.

[22] Fedrico Angiolini,;Jianjiang Ceng; Rainer Leuper

;Cesare Ferri;Luca Benini; “An Integrated Open

Framework for Heterogeneous MPSoc Design Space

Exploration”,page3 , Date06,2006 EDAA.

[23] M.Loghi; F.Angioni; D.Bertozzi; L.Benini. “Analyzing

on-chip communication in a MPSoC environment” In

proceeding of the 2004, Design, Automation and test in

Europe Conference (DATE’04), IEEE, 2004.

