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Abstract: The design of modern embedded systems requires automated modeling tools for faster design and for the study of various design 

tradeoffs. Such tools put together constitute an integrated environment where the designer can write the high level design specifications in a 

language and use these tools for automatic generation of system specific tools.  

The major contribution of this paper lies in design and development of retargetable simulator and validation of the simulator. Proposed simulator 

measures cycle count for application executed on processor. Methodology for the Simulator is also discussed. The Operational aspect of  

retargetable simulator follows the simple and elegant steps and is easy to configure and understand. Optimized source code is generated by 

retargetable compiler. This optimized code is given as input to the Retargetable simulator. Along with the optimized code, the processor 

descriptions are required to enter and simulator is executed to get the desired result in the form of Cycle count. 

 

Keywords: ASIP, Application Specific Instruction Processors, Retargetable Simulator, Embedded Systems, Processors, ASIP Simulators, Design 
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I. INTRODUCTION 

Modern electronics are controlled by processors that must 

meet strict constraints in terms of performance, cost, size 

and power consumption. In a competitive market place, 

performance and cost are critical in differentiating one 

product from another.  In addition, low cost and superior 

performance increases the likelihood of broad consumer 

acceptance of new electronic products. Size constraints limit 

the amount of functionality that can be incorporated into 

product design. Finally low power consumption is necessary 

for portable electronic equipment that is battery operated. 

An ASIP is a processor that is designed to efficiently 

execute the software for a specific application. Regardless of 

whether a newly designed ASIP or a preexisting processor 

core is used, the selected processor should be well suited for 

the given application. Although incorporating a complete 

system on a single IC may improve performance, cost, and 

power consumption requirements, such a high level of 

integration constraints the size of the system components.  

 

A. Steps in ASIP Synthesis 

  

Various methodologies have been reported to meet these 

requirements. All these have been studied and five steps are 

suggested for synthesis of ASIPs [1] 

 

(a) Application Analysis: Application is normally written in 

High level language. Proper analysis of this application 

under consideration is done and the output of the 

information is stored in some suitable intermediate format. 

Sometimes SUIF can be used as intermediate format. 

Analysis of the application is essential as it provides the 

essential requirement from the application that can guide for 

hardware synthesis as well as instruction set generation.  

(b) Architectural Design Space Exploration: Output of the 

Application analysis step along with the range of 

architecture for Design Space Exploration is used to select a  

 

suitable architecture. Possibility of suitable architecture is 

explored and the best architecture is selected that satisfy the 

different characteristics like minimum hardware cost, 

performance and power. 

(c) Instruction Set Generation: Till this step we have 

identified application requirements and the suitable 

architecture. Based on this input instruction sets are 

generated in terms of required micro operation. This 

instruction set is used during the further steps for code 

synthesis and hardware synthesis. 

(d) Code Synthesis: Till this step, architecture template, 

instruction set, and application are identified. This step 

generates the code. Generated code can be retargetable code 

generator or compiler generator. 

(e) Hardware Synthesis: In this step the hardware is 

generated using the ASIP architectural template and 

instruction set architecture using standard tools 

 

B. Architecture Design Space Exploration 

 

System on Chip designs has various goals and objectives. 

Design space consists of a set of parameters. The main focus 

of designers lies on minimal cost and maximal performance, 

low power, high reliability etc. Architecture under 

consideration requires a range of good parameter to explore. 

These parameters may take up the different values. 

Some of the parameter suggested can be functional unit of 

different type, Storage units, interconnect resources, number 

of memory units etc. Further the parameters can also be 

extended to size of instruction cache and size of data cache. 

This has been a very crucial step for ASIP design. Design 

Space exploration helps the SOC designers to make the 

trade-offs between these goals and arrive at the "optimal" 

design. Designers explore changes to the architecture or the 

instruction-set of the processor-memory system. Designers 

select a suitable architecture that satisfy the performance 

and power constraint and having minimum hardware cost. 
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Architecture is defined using some suitable architecture 

description language (ADL). 

 

C. Techniques for Performance Estimation 

 

Two major techniques have been used for performance 

estimation. They are scheduler based and simulator based. 

 

In Scheduler based approach, application is scheduled to 

generate the output like cycle count. Architectural 

component is already identified at this stage. Target 

processor architecture can be given in the form of 

description file. 

In Simulator based approach, application under 

consideration runs on a simulator. Depending upon the 

architecture selected in above steps, application is simulated 

to compute the performance. 

Processor Models are extensively used in system design 

process. The system design process starts with an 

application and its implementation. Then the model is tested 

for its performance and other aspects. In such a scenario an 

integrated environment is required for the designer where 

several tools exist like simulator, assembler, compiler etc. 

Rewriting the tools after each design change is a tedious job. 

Hence automatic generation of these tools is more desirable 

according to the design changes. 

 

D. Existing Retargetable Simulators approaches 

Retargetable functional simulator (Fsimg) [2] focus on tools 

that deal with the machine language of processors, like 

assemblers, disassembler, instruction set simulator 

etc.Retargetable Function Simulator (Fsimg) was designed 

using Sim-nML language which is primarily an extension of 

the nML [3] language for processor modeling. Fsimg takes 

the specification of the processor in the intermediate 

representation [4] and an executable for the processor in 

ELF [5] format and generates a functional simulator (Fsim) 

which in turn gives the functional behaviour of the processor 

model for the given program. 

 

II. REALTED WORK 

 

Over the past several decades a considerable amount of 

research has been performed in the area of computer 

architecture simulation. These simulators can be broadly 

divided into several categories: full-system simulators, 

Instruction Set Architecture (ISA), and retargetable 

Simulators. Each category serves an entirely different 

purpose, but all have been used for the advancement of 

computer architecture research. 

 

The purpose of full-system simulators is to model an entire 

computer system including the processor, memory system 

and any I/O. These simulators are capable of running real 

software completely unmodified just like a virtual machine. 

There are many simulation suites that take this approach, 

including PTLSim [6], M5 [7], Bochs [8], ASIM [9], 

GxEmul [10] and Simics [11]. Simics has several extensions 

that constitute their own full-system simulators such as 

VASA [12] and GEMS [13]. 

 

ISA simulators are less descriptive than full system 

simulators. Their objective is to model processor alone.ISA 

simulators performs the various functionalities. 

It simulate and debug machine instructions of a processor 

type that differs from the simulation host, it also emphasis 

on investigating how the various instructions (or a series of 

instruction) affect the simulated processor. Hence modeling 

of the full computer system is unnecessary and would 

impose additional delay and complexity. Example of this 

type of simulator includes SimpleScalar [14], WWT-II [15], 

and RSIM [16]. Over the past decade, a few interesting 

ADLs have been introduced together with their supporting 

software tools. These ADL include MIMOLA, UDL/I, nML, 

ISDL, CSDL, Maril, HMDES, TDL, LISA, RADL, 

EXPRESSION and PRMDL.  

 

III. CHALLENGES IN ASIP DESIGN 

The development of a processor is a complex task, involving 

several development phases, multiple design teams and 

different development languages. The key phase in 

processor design is architecture specifications since it serves 

as the basis for all remaining design phases. Although 

Hardware Description Languages (HDLs) are designed for 

architecture implementation, in a traditional design flow, 

these languages are also often used for the initial 

specification of the processor.  In this design phase tasks, 

such as hardware/software partitioning, instruction-set and 

micro-architecture definition is performed. Based on the 

architecture specification, both the hardware implementation 

and development of software is triggered. Both tasks are 

basically independent and therefore performed by different 

experts and design methodologies.   

Hardware designers use HDLs such as VHDL or Verilog, 

while software designers mostly utilize the C/C++ 

programming language. In addition, the target processor 

needs to be integrated into the SoC and the application 

software needs to be implemented. Communication between 

the design teams is obviously difficult because of the 

heterogeneous methodologies and languages. 

Considering the traditional processor design flow, the strong 

dependencies between the design phases imply a 

unidirectional design flow and prevent even minor 

optimizations. Due to the different development languages, 

changes to the architecture are difficult to communicate and 

inconsistencies are very likely to appear. 

The Complexity of processor design even increases in ASIP 

design, since optimizations targeted to particular 

applications are mandatory. Mapping an architecture to a 

given application means moving through a design space by 

axes such as flexibility, power consumption, clock speed, 

area and more.  

Every design decision in one dimension constraints other 

decisions, for example  

 

Architectural features Vs design time, 

Design time Vs physical characteristics, 

Physical characteristics Vs  flexibility 

Flexibility Vs  verification effort 

Verification effort Vs architectural features 

 

It is obviously not possible to move through this design 

space by applying the traditional processor design 

methodology. A unified design methodology is required, 
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which provides a common basis for all design phases. It 

must be suitable for all design engineers involved. 

 

IV. EXISTING RETARGETABLE SIMULATORS 

Anahita Processor Description Language (APDL), APDL 

[17] is one of the most recent contributions in the area of 

retargetable simulator. The language was introduced in 2007 

by N. Honarmand et al. from the Shahid Beheshti 

University, IRAN. The Primary difference beween APDL 

and other ADLs is the addition of Timed Register Transfer 

Level (T-RTL), which enables the simulation designer to 

define the latencies and hardware requirement of the 

processor operations. This separation of configuration data 

enables APDL to better integrate with external software for 

analysis as the T-RTL data is organized separately from the 

remainder of the processor description. Moreover, APDL 

can describe both instruction and structure descriptions of a 

target processor. 

 

The Pascal-like syntax of APDL is clearly more intuitive 

than many other ADLs such as LISA and EXPRESSION. 

While the language is easier to read and understand, the 

researchers have not yet implemented a compiler to produce 

simulations. Furthermore, despite APDL's relative ease, 

users are still faced with the task of learning the details of 

the syntax. 

 

ISDL [18] was introduced in 1997 by G.Hadjiyiannis, 

S.Hanono, and S. Devadas from Massachusetts Institute of 

Technology. The purpose of ISDL was to provide a 

language for describing instruction sets along with a limited 

amount of details of a processor structure for the automatic 

construction of compilers, assembler, and simulators. ISDL 

enables users to define their target processors in several 

ways. First, users can define operations, their format, and 

the associated assembly language instruction. Second users 

can define the storage resources available to the processor, 

including the register file and memory. Third users can 

define constraints in the processor such as instructions 

requesting the same data path, or restrictions regarding 

assembly syntax. 

 

 

ReXSim [19] was introduced in 2003 by a computer 

architecture research team at Irvine. ReXSim is an extension 

of EXPRESSION language which sought to improve 

simulation speed by integrating a novel method of decoding 

instructions of the simulated program before execution of 

the simulation. As a result, the instruction decoding process 

was removed from the execution loop of the simulator, and 

thus improved the simulation speed significantly. Using this 

method, the team was able to produce retargetable 

simulations that showed performance in excess of major 

simulators like SimpleScalar, which is widely considered to 

be a simulation performance benchmark. 

 

Reduced Colored Petri Net (RCPN) [20] was introduced in 

2005 by M.Reshadi and N. Dutta from University of 

California, Irvine. RCPN takes a vastly different approach to 

retargetable simulation, in which pipelines are modeled 

using a simplified version of Colored Petri Nets (CPN). 

Petri Nets are graph based mathematical method of 

describing a process. The nodes of the graph represent 

particular discrete events, states, or functions, and the graph 

edges represent the transitions of data between nodes. The 

transitions can be enabled or disabled based on conditions 

specified at the nodes. 

 

The purpose of RCPN is to provide retargetable simulations 

for modeling of pipelined processors. RCPN reduces the 

functionality of a regular CPN by limiting the capabilities of 

the nodes in the graph for the purpose of increasing 

simulation speed and usability. Additionally, RCPN takes 

the advantage of some of the natural properties of CPNs to 

prevent structural and control hazards. 

 

Retargetable functional simulator (Fsimg) [21] focus on 

tools that deal with the machine language of processors, like 

assemblers, disassembler, instruction set simulator etc. The 

objective was to have a single processor model for all the 

tools. Hence Retargetable Function Simulator (Fsimg) was 

designed using Sim-nML language which is primarily an 

extension of the nML language for processor modeling. 

Fsimg takes the specification of the processor in the 

intermediate representation and an executable for the 

processor in ELF  

 

Format and generates a functional simulator (Fsim) which in 

turn gives the functional behaviour of the processor model 

for the given program. Figure 4 shows the view of integrated 

environment. PowerPC 603 processor is specified in Sim-

nML. Around 237 instructions have been specified with the 

resource usage model and pipeline. Macro Preprocessor 

(nMP) for processing Sim-nML macros is implemented. 

It has some limitation. Fsimg is imposing a strong restriction 

on specification writing. Current bit-operator library 

supports only integer data types. The trace produced by 

Fsim is not compressed. It makes it difficult to handle and 

process trace files. It is very slow. 

 

The LISATek [22] processor design flow is based on LISA 

2.0 processor models. Given a LISA model, the LISATek 

tool is able to generate instruction-set simulators for the 

processor under design. Typically, the debugger in form of a 

dynamic library directly uses the generated simulator. 

However, a compiled static simulator library is also 

generated, and specifications exist to integrate it into the 

system environment. The system environment would be the 

MPARM. All the core models generated by the LISATek 

suite, regardless of the nature of the ASIP at hand, have the 

same interface. The interaction is based upon four key 

pillars: 

 The simulated core can be cycled by calling specific 

functions. If the processor is modeled in an 

instruction-accurate fashion, then the generated model 

can be stepped on an instruction basis. On the other 

hand, a model derived from a cycle-accurate LISA 

description can be stepped on both instruction and 

cycle basis. 

 Core-initiated communication (e.g. reads, writes) is 

performed through a specific Application 

Programming Interface (API). It is the task of the 

external program to provide an implementation of said 

API. 

 System-initiated communication (e.g. interrupts), if 

any, can be forwarded to the core when cycling it, and 
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therefore on a fine-grain cycle-by-cycle basis, by 

proper flipping of extra pins. Of course the LISA core 

model must be made aware of the meaning of these 

extra pins to take proper action. 

 An external LISATek Debugger tool can be interfaced 

to the core via the IPC (Inter-Process Communication) 

mechanism. The external program must simply invoke 

the Debugger with proper references; subsequently, 

the LISATek model and the Debugger interact 

autonomously. 

 

The implementation of these function calls depends 

completely on the communication method used in the 

system. The implemented API will translate the requests 

into SystemC signals which can be understood by the 

MPARM [23] platform. The Assessment of the performance 

of alternative hardware communication is not addressed.  

Retargetability is poor. 

 

All of these simulators use techniques to speed up the 

execution of application programs. This is achieved by 

minimizing the amount of details about the processor, 

needed for program execution on the simulator. Even though 

some of these previous approaches target ADL-based 

automatic toolkit generation and DSE, not much work has 

been done in bringing together these elements in an early 

DSE environment. Furthermore, previous approaches are 

restricted to certain classes of processor families and assume 

a fixed memory/cache organization. For a wide variety of 

such processor and memory IP library, the designer needs to 

be able to specify and analyze the interaction between the 

processor instruction set and architecture, and the 

application and explore the different points in design space. 

 

This problem is addressed in SIMPRESS simulators. The 

EXPRESSION ADL captures both the instruction set and 

architecture information for a design draw from an IP 

library. The library contains a variety of parameterizable 

processor cores and customizable memory / cache 

organizations. Simpress produces a structural simulator 

capable of providing detailed structural feedback in terms of 

utilization, bottle-necks in the processor architecture. The 

processor-system description is input using a graphical 

schematic capture tool, called V-SAT, that outputs an 

Expression Description which is fed into the toolkit 

generators to produce DSE tools. The SIMPRESS generated 

simulator provides feedback information which is back-

annotated to the same V-SAT graphical description.  

 

Though SIMPRESS Simulators addresses many issues, it 

has certain limitation. The application having function calls 

are not supported. Compilation steps exist in three passes: 

PcProGUI, Expression console, acesMIPS console. 

Basically it is very complex to understand the process of 

compilation and simulator. The Application needs .proc and 

.def file. The .c program generates these files.  There is no 

clear cut method as how .c is converted to .proc and .def, 

especially in case of windows environment. This is strong 

limitation as we can not simulate our own program written 

in .c. this has to be first converting to .procs and .defs and 

for that we need to depend on their servers to provide for the 

same, which is not functional right now. 

In order to overcome all these complexities, we suggest a 

simple and elegant solution. Just there is a need to provide 

the standard application program in the form of scheduled 

and optimized code along with the processor description to 

our Simulator and you will get the cycle count as an output 

of the simulation. 

 

V. OVERALL APPROACH 

 
Figure1: Simulator based code generation 

 

Application or a set of application in the form of High Level 

Language is taken as input and it given as input to 

retargetable compiler. 

Architecture description is also given input to retargetable 

compiler. Retargetable compiler generates the schedule and 

optimized code.  This code is given as input to Simulator. 

None of the existing simulator provides and easy GUI to 

enter the processor components and simulate the code for 

target host.  We are assuming the scheduled and optimize 

code to be generated from retargetable compiler and this 

code along with the Processor description or Architecture 

description is given as input to the Simulator. The Simulator 

generates the data in the form of cycle count. 

 

IV. METHODOLOGY 

 

 
Figure 2 : Overall Methodology adopted 

 

Our architecture model consists of a number of architecture 

simulation components that simulate the three main parts of 

the system: Processing elements, memory and 

interconnection medium. Figure 2 shows the overall 

methodology adopted for our simulator 

 

A. Processor Model 

 

This method assumes that each instruction completes in a 

fixed number of cycle. In architecture terms, we can say that 

our processor has fast private memory where code and local 

data can be stored. Hence each processing element is 



Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 587-594 
 

© 2010, IJARCS All Rights Reserved          591 

equipped with large instruction and local data cache that 

guarantee a very high hit ratio.  

 

Architectural Parameters of the processor component are: 

 Local instruction costs in cycle. 

 Number of available interrupts types. 

 Context switch latency (cycles to save and restore 

processor state). 

 Interrupt Latency (Cycles needed to save state and 

branch to interrupt handler). 

 

B. Memory Model  

 

We are considering two-level memory. The levels are main 

memory and cache(s). We are assuming Shared memory as 

Main Memory, though we are considering logical partitions 

with in that memory. Such partitions may be code segment, 

data segment etc. 

Cache memory is assumed to be local to each processing 

element. However any change in this model can be easily 

incorporated in our model as it can be specified in input 

description and that is taken care by our simulator. 

Architectural parameters of the memory components are: 

 Number of memory modules. 

 Memory module size. 

 Cache line size. 

 Cache set size. 

 Number of sets per cache. 

 Cache access latency. 

 Memory module access latency. 

 

 

C. Interconnection Model 

 

In a real-time system architecture, the notion of a bus 

component play an important role as it forms the backbone 

of communication among all the devices of the system. For 

this purpose, we need a precise specification of buses for 

applications that will run on top of them. 

Our simulator supports the interconnection of bus. All 

processing elements and all memory modules are connected 

through a common bus. Uniform shared memory access is 

assumed, that is, access of any memory module from any 

processor takes the same amount of time (ignoring delays 

due to bus contention).  

The simplest interconnection strategy is to use a single bus 

which is being shared by every other component for 

communication. Though this strategy is easy to implement, 

as the number of processor go up, the bus becomes the 

bottleneck. All the components connected to this bus should 

tune their interfaces to use the bus protocol. Apart from this, 

designers have to implement some arbitration mechanism to 

resolve the conflicts. 

 

VIII.DEVELOPMENT OF RETARGETABLE 

SIMULATOR 

 

Electronic devices built nowadays are often built with a 

single IC composed of multitude of hardware blocks that 

implement the device functionality. In most cases such 

circuit contains one or more processors that enable to 

implement a part of the circuit functionality as software that 

runs on that processor rather than as a specific hardware 

component. Such IC is commonly referred to as a system-

on-a-chip (SoC).  

 

 The main CPU features are: 

 

 101 instructions with possible addressing modes  

 CPU with independent stack pointer registers  

 Eight 32-bit data, eight 32-bit address and 32-bit status 

registers  

 16-bit external memory interface  

 

Main assumptions for the ISS were: 

 

 Developed in pure Visual basic 6.0 language for high 

performance. 

 Crystal Report is used as a reporting tool to display the 

different status. 

 MS Access is used to Store the different schedules and 

optimized code. 

 Single-instruction accuracy, without taking internal 

architecture under consideration. 

 Fully static design with the support of loop / wait 

statements. 

 Usage of native VB types to gain high simulation speed. 

 Communication interfaces separated from functionality. 

 

The main part which contains implementation of main 

processor's logic (ALU, instruction fetch, decoding and 

execution routines) together with fields corresponding to the 

internal resources (all registers). Sub-module features: 

 

 Fetching and decoding instructions  

 Instruction processing routines  

 Handling interrupts and exceptions  

 Register implementation and registers read/write access  

 Instruction counter  

Simulators are critical components of the exploration toolkit 

for the system designer. Simulators can be used to perform a 

variety of tasks such as verifying the functionality and / or 

timing behavior of the system, and generates quantitative 

measurement, for e.g. Cycle count etc. As per our design 

Methodology and hypothetical assumption of the 

Architecture we have taken MIPS Architecture as a base to 

develop our Retargetable simulator. We have given a 

Nomenclature to our Simulator as SIM-A {Simulators for 

Architectures}. 

We will be using Expression Language for Architecture 

Description. We have developed the GUI Interface for the 

same. We have also provided the GUI for easy evaluation 

and analysis. 

 

A. SIM-A- Basics 

 

SIM-A  is  a  32-bit  datapath,  every  instruction  is  32  bits  

wide,  and  data  comes  in  “words” which  are  also  32  

bits  wide.  Memory in SIM-A, however, is addressed in 

bytes. 

SIM-A is load-store architecture that is, the only instructions 

that access memory are LW and SW.  
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B. Memory Organization 

 

We are considering Two-level memory. The levels are main 

memory and cache(s). We are assuming main memory as 

Shared Memory. Cache memory is assumed to be local to 

each processing element. We are also considering logical 

partitions with in that memory. Such Partition may be code 

segment, extra segment etc 

Data begins at virtual address 0x10000000 and grows in the 

direction of increasing virtual addresses (this data is called 

dynamic data because the machine doesn’t know how much 

of it will be used at runtime).  In SIM-A, there is also a 

concept of  stack – that is, data that starts just below virtual 

address 0x80000000 and grows in the direction of 

increasing virtual addresses.   

 

C. SIM-A Register Set 

 

Registers are a small set of fast memory that the datapath 

has available at its disposal for most immediate operations.   

All registers are 32-bit wide.   SIM-A contains thirty two 

user registers (that is, registers that the user can access/use 

in the assembly program) and four special-purpose registers 

that are hidden from the user. 

 

D. SIM-A Instruction Set 

 

This section describes in detail all the SIM-A instructions.   

 Rs and Rt are source registers – the datapath should fetch 

their values whenever they are used.  Source registers are 

usually treated as twos-complement signed 32-bit numbers.  

In some special cases they are treated as unsigned numbers 

(the note that follows explains such circumstances) 

Rd is the destination register – the datapath will write the 

result to that register number. 

Immediate values may either be treated as signed or 

unsigned values, and may either be zero-extended (in which 

case the padding bits are all  zero),  or  sign  extended  (in  

which  case  the  padding  bits  are  all  equal  to  the  most 

significant  bit  of  the  immediate  value).   

SOC designs have various design goals. These goals include 

minimal cost, maximal performance, low power, high 

reliability, etc. Design Space Exploration allows the SOC 

designer to make trade-offs between these goals and arrive 

at an “optimal” design. 

SOC designer would like to explore changes to the 

architecture or the instruction-set of the processor-memory 

system. Common examples of such changes include, but not 

limited to: 

 Changing the pipeline structure. e.g., increasing (or 

decreasing) the number of stages to increase ( or 

decrease) the clock frequency, adding forwarding paths 

to reduce pipeline stalls. 

 Changing the data path structure. e.g., changing slow 

units to fast units in order to increase performance, 

changing connectivity between units and storage 

elements (like register files) in order to decrease power 

consumption. 

 Increasing parallelism. e.g Adding more functional 

units that can execute in parallel in order to increase 

performance. 

 Changing the instruction-set. e.g Adding new 

operations which can be exploited by particular 

applications.  

 Changing the memory component. e.g Changing the 

size of register file, changing the associativity of the 

cache, etc. 

 Changing the memory hierarchy. e.g Adding a cache 

between the processor and off-chip memory, changing 

the on-chip memory hierarchy etc.  

 

 

E. SIM-A Look and Feel 

 
This is the first and main form which helps us to calculate 

the cycle count of any program as shown in Figure3.First 

section allows us to select the different programs that we are 

required to simulate.   

 
 

Figure 3: GUI for SIM-A Simulator 

This is the interface through which user will enter the 

processor description and will mimic the behaviour of the 

processor. If you click on the option “Select Program to 

Run” , it contains all the list of programs. Just select the 

program that we need to simulate and Click the button “Run 

Simulator and Provide Result ….” Others buttons are not 

used right now. Second Section provides the output of the 

program. It contains information like total Arithmetic 

instruction, Shift rotate, Logical, Jump Branch etc. It also 

gives the pop up when the program finishes by providing the 

cycle count.  

 

User will first enter the processor description details as 

shown in figure 4. Submit the form to update the processor 

description file. Then it browses to the GUI form where he 

can select the programs that he/She needs to simulate. 
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Figure 4: GUI for Processor Description 

 

The above is the brief description of the SIM-A Simulator 

that has been developed in our Embedded System Lab. 

 

[8] PERFORMANCE ESTIMATES AND 

VALIDATION OF SIMULATOR 

 

The Framework is based on MIPS 4K like processor 

architecture. The architecture contains five pipeline stages – 

fetch, decode, operand read, execute and writeback. There 

are five parallel issue paths corresponding to two ALU 

Units, one for floating point unit, a branch unit and a 

Load/store unit. The memory hierarchy consists of two L1 

data caches for instructions and data, a unified L2 cache and 

a DRAM main memory. There is a 32-bit wide general 

purpose register file and a 32-bit wide floating point register 

file, each containing 32 registers. 
Table 1: Benchmark Programs along with Description 

 

No Name Description 

1 

SIM-A-

BENCH#1(SIM1) Excerpt from a hydrodynamic code 

2 

SIM-A-

BENCH#2(SIM2) 

Standard Inner product function of Linear 

Algebra 

3 

SIM-A-

BENCH#3(SIM3) 

Excerpt from a Tridiagonal Elimination 

routine 

4 

SIM-A-

BENCH#4(SIM4) First Sum 

5 

SIM-A-

BENCH#5(SIM5) First Difference 

 

 

Table 1 lists all the benchmarks programs that have been 

used to validate the simulators. After running this 

benchmark program on the SIMPRESS as well as SIM-A 

Simulator, following results are obtained. 

 

 
Figure 5: Comparative analysis of SIM-A and SIMPRESS Simulator of 

Cycle Count 

 

Figure 5 show the graphical analysis of the SIM-A and 

SIMPRESS Simulator. 

At 1% level of significance, the critical value of ‘t’ for (5+5-

2) 8 degree of freedom is 3.36 and calculated value is 

0.368329.  Since the calculated value of ‘t’ is 0.368329 

which is less than the critical value, which is 3.36, it falls in 

the acceptance region. 

Hence it may be concluded that both the results are equally 

acceptable at 1% level of Significance.  

 

 

 

 
 

Figure 6: Comparative analysis of SIM-A and SimpleScalar Simulator of 

Cycle Count 
 

The SimpleScalar tool set is a system software infrastructure 

used to build modeling applications for program 

performance analysis, detailed microarchitectural modeling, 

and hardware-software co-verification. Using the 

SimpleScalar tools, users can build modeling applications 

that simulate real programs running on a range of modern 

processors and systems. 

Figure 6 show the graphical analysis of the SIM-A and 

SimpleScalar Simulator. 

 

IX. CONCLUSION AND FUTURE DIRECTION 

 

In this paper we presented a SIM-A Simulator entirely 

developed at our Lab that generates the performance 

estimates for the application under consideration. Processor 

description is captured in the form of GUI, which allows the 

user to specify the architecture in visual form. The cycle 

accurate, structural simulator generated using SIM-A allows 

the user to collect statistics called cycle count. It definitely 
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helps the designer to analyze the design and modify the 

critical portions.  

The goal of this project is to allow modeling of a wide 

variety of processors and memory systems.  In order to 

achieve this goal, the simulator generator includes very 

general mechanisms for capturing processor architectures. 

But its usage has to be extended for other class of 

processors.  

The SIM-A environment has been designed to allow 

modeling of diverse range of processors. This has been 

demonstrated to an extent through the modeling of RISC 

processor with traditional memory hierarchies. In future, it 

should be used to model novel memory hierarchy and other 

classes of processors such as DSP’s.  

Although the speed is acceptable, another direction that 

could be pursued is that of improving the speed of the 

simulators, which is a very important factor in design space 

exploration. 
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