PREDICTION OF FUEL ANALYSIS USING URBAN BIG DATA
Main Article Content
Abstract
Ability to model and predict the fuel consumption is vital in enhancing fuel economy of vehicles in transport management. There are several internal factors such as distance, load and vehicle characteristics, as well as external factors such as road conditions, traffic, and weather on which fuel consumption of a vehicle is dependent. However, not all these factors may be available or measured for the fuel consumption. Providing real time traffic information in metropolitan cities is desired since it not only helps to manage the traffic management but also save the time of travelers and reduces the vehicle fuel consumption. To obtain the traffic information from number of sensors on every road segments or intersections is difficult due to large number of installations. Getting the accurate information of current and near term future traffic flows of different road links in a traffic network has a wide range of applications which includes the forecasting of the traffic flow, navigation of vehicles and traffic congestion management. We considered a case where only subset of three factors is easily available which are vehicle characteristics, traffic dataset and road distance. Hence, the challenge is to model and/or predict the fuel consumption only with available data, and also taking as much as influence from other internal and external factors. Machine Learning (ML) is suitable in such analysis, as the model can be developed by learning the patterns in the available data. In this paper, we use algorithm that is used in google maps such as Gaussian Naïve Bayes and Page Rank which provide the different routes and methods like image processing of maps to extract the different RGB values of different routes which helps to predict the fuel consumption of the vehicle. Finally, after predicting the fuel consumption for different paths, the best path gets generated in terms of less fuel consumptions.
Downloads
Download data is not yet available.
Article Details
Section
Articles
COPYRIGHT
Submission of a manuscript implies: that the work described has not been published before, that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
- The journal allows the author(s) to retain publishing rights without restrictions.
- The journal allows the author(s) to hold the copyright without restrictions.