Main Article Content

Manoj T
Dr.Thyagaraju G S


From the past few decades entire world is witnessing the phenomenon of population ageing as a result of life longevity and declining birth rate of modern society. India is also not immune to this demographic change and will have major socio-economic consequences over the period of time. Information and Communication Technologies (ICT) will make the targeted interventions to provide assistance to the older adults to improve their quality of life, stay healthier and live independently for a time. Active and Assisted Living (AAL) is one such innovative targeted technology to provide quality healthcare and rehabilitation services to the impaired seniors. In this paper we present comprehensive survey to monitor the recent trends in the realm of AAL. First we discuss about the generic overview of AAL and Ambient Intelligence (AmI). Next, we highlight the relevance of enabling technologies for AAL. Then we review the various trending scenarios of AAL and major research projects being carried out across the world. Finally, we conclude by proposing some possible directions for the future work in the area of AAL.


Download data is not yet available.

Article Details



B. Mirkin and M. B. Weinberger, “The Demography of Population Ageing,†Dep. Econ. Soc. Aff. United Nations Secr., no. January, pp. 8–10, 2010.

U. N. Department of Social and Economic Affairs, “World Population Prospects The 2017 Revision,†in World Population Prospects, 2017, pp. 11–12.

R. Suzman and J. Beard, “WHO,Global Health and Aging,Technical Report,†Natl. Insititute Aging,National Institutes Heal., vol. 1, no. 4, pp. 273–277, 2011.

National Sample Survey Office, “Elderly In India,†in Ministry of Statisitcs and Programme Implementation,Govt of India, 2016, pp. 1–95.

L. a Jacobsen, M. Kent, M. Lee, and M. Mather, “America’s aging population,†Popul. Bull., vol. 66, no. 1, pp. 1–18, 2011.

R. Li, B. Lu, and K. D. McDonald-Maier, “Cognitive assisted living ambient system: a survey,†Digit. Commun. Networks, vol. 1, no. 4, pp. 229–252, 2015.

A. Acampora, Giovanni Cook, Diane Rashidi, Parisa Vasilakos, “A survey on Ambient Intelligence in Health Care,†Natl. Inst. Heal., vol. 101, no. 12, pp. 2470–2494, 2014.

B. R. Bryant, D Bryant, AssistiveTechnology For People With Disabilties. Allyn and Macon, Boston,MA, 2003.

A. K. Dey and G. D. Abowd, “Towards a Better Understanding of Context and Context-Awareness,†Comput. Syst., vol. 40, no. 3, pp. 304–307, 1999.

C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context Aware Computing for The Internet of Things,†IEEE Commun. Surv. Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

G. Chen and D. Kotz, “A Survey of Context-Aware Mobile Computing Research,†Dartmouth Comput. Sci. Tech. Rep., vol. 3755, pp. 1–16, 2000.

T. Strang and C. Linnhoff-Popien, “A Context Modeling Survey,†Work. Adv. Context Model. Reason. Manag. UbiComp 2004 - Sixth Int. Conf. Ubiquitous Comput., vol. Workshop o, no. 4, pp. 1–8, 2004.

M. Perttunen, J. Riekki, and O. Lassila, “Context Representation and Reasoning in Pervasive Computing,†Int. J. Multimed. Ubiquitous Eng., vol. 4, no. 4, pp. 1–28, 2009.

C. Bettini et al., “A survey of context modelling and reasoning techniques,†Pervasive Mob. Comput., vol. 6, no. 2, pp. 161–180, 2010.

A. Dohr, R. Modre-Osprian, M. Drobics, D. Hayn, and G. Schreier, “The internet of things for ambient assisted living,†Inf. Technol. new Gener. seventh Int. Conf., pp. 804–809, 2010.

S. Spinsante, E. Gambi, L. Montanini, and L. Raffaeli, “Data management in ambient assisted living platforms approaching IoT: A case study,†in 2015 IEEE Globecom Workshops, GC Wkshps 2015 - Proceedings, 2015.

J. C. Augusto, “Ambient intelligence: The confluence of ubiquitous/pervasive computing and artificial intelligence,†in Intelligent Computing Everywhere, 2007, pp. 213–234.

L. Deng, “Deep Learning: Methods and Applications,†Found. Trends® Signal Process., vol. 7, no. 3–4, pp. 197–387, 2014.

J. Aggarwal and M. Ryoo, “Human activity analysis: A review,†ACM Comput. Surv., vol. 43, no. 3, p. 16:1-16:43, 2011.

A. Sargano, P. Angelov, and Z. Habib, “A Comprehensive Review on Handcrafted and Learning-Based Action Representation Approaches for Human Activity Recognition,†Appl. Sci., vol. 7, no. 1, p. 110, 2017.

M. C. Mozer, “The neural network house: An environment that adapts to its inhabitants,†Am. Assoc. Artif. Intell. Spring Symp. Intell. Environ., no. December, pp. 110–114, 1998.

J. Yang, J. Wang, and Y. Chen, “Using acceleration measurements for activity recognition : An effective learning algorithm for constructing neural classifiers,†Pattern Recognit. Lett., vol. 29, no. 16, pp. 2213–2220, 2008.

A. G. Bonomi, A. H. C. Goris, B. Yin, and K. R. Westerterp, “Detection of Type, Duration, and Intensity of Physical Activity Using an Accelerometer,†Med. Sci. Sport. Exerc, 2009.

J. Ryder, B. Longstaff, S. Reddy, and D. Estrin, “Ambulation: A Tool for Monitoring Mobility Patterns over Time Using Mobile Phones,†Comput. Sci. Eng. 2009. CSE ’09. Int. Conf., vol. 4, pp. 927–931, 2009.

S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava, “Using mobile phones to determine transportation modes,†ACM Trans. Sens. Networks, vol. 6, no. 2, pp. 1–27, 2010.

H. Gjoreski, M. Luštrek, and M. Gams, “Accelerometer placement for posture recognition and fall detection,†in Proceedings - 2011 7th International Conference on Intelligent Environments, IE 2011, 2011, pp. 47–54.

F. Chamroukhi, S. Mohammed, D. Trabelsi, L. Oukhellou, and Y. Amirat, “Joint segmentation of multivariate time series with hidden process regression for human activity recognition,†Neurocomputing, vol. 120, no. July 2014, pp. 633–644, 2013.

A. Bayat, M. Pomplun, and D. A. Tran, “A study on human activity recognition using accelerometer data from smartphones,†in Procedia Computer Science, 2014, vol. 34, no. C, pp. 450–457.

A. Moncada-Torres, K. Leuenberger, R. Gonzenbach, A. Luft, and R. Gassert, “Activity classification based on inertial and barometric pressure sensors at different anatomical locations.,†Physiol. Meas., vol. 35, pp. 1245–63, 2014.

P. Gupta and T. Dallas, “Feature Selection and Activity Recognition System Using a Single Triaxial Accelerometer,†vol. 0, no. 0, 2014.

M. Zeng et al., “Convolutional Neural Networks for Human Activity Recognition using Mobile Sensors,†Proc. 6th Int. Conf. Mob. Comput. Appl. Serv., vol. 6, pp. 197–205, 2014.

M. A. Alsheikh, A. Selim, D. Niyato, L. Doyle, S. Lin, and H.-P. Tan, “Deep Activity Recognition Models with Triaxial Accelerometers,†TheWorkshops Thirtieth AAAI Conf. Artif. Intell., pp. 1–8, 2015.

W. Jiang and Z. Yin, “Human Activity Recognition Using Wearable Sensors by Deep Convolutional Neural Networks,†in Proceedings of the 23rd ACM international conference on Multimedia - MM ’15, 2015, pp. 1307–1310.

J. Wang, X. Zhang, Q. Gao, H. Yue, and H. Wang, “Device-Free Wireless Localization and Activity Recognition: A Deep Learning Approach,†IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 6258–6267, 2017.

L. Wang, T. Gu, X. Tao, and J. Lu, “Sensor-based human activity recognition in a multi-user scenario,†in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009.

D. J. Cook, “Learning Setting- Generalized Activity Models for Smart Spaces,†IEEE Intell. Syst., vol. 27, no. 1, pp. 32–38, 2012.

N. K. Suryadevara and S. C. Mukhopadhyay, “Determining wellness through an ambient assisted living environment,†IEEE Intell. Syst., vol. 29, no. 3, pp. 30–37, 2014.

N. C. Krishnan and D. J. Cook, “Activity recognition on streaming sensor data,†Pervasive Mob. Comput., vol. 10, no. PART B, pp. 138–154, 2014.

L. Liu, Y. Peng, S. Wang, M. Liu, and Z. Huang, “Complex activity recognition using time series pattern dictionary learned from ubiquitous sensors,†Inf. Sci. (Ny)., vol. 340–341, pp. 41–57, 2016.

M. J. Deen, “Information and communications technologies for elderly ubiquitous healthcare in a smart home,†Pers. Ubiquitous Comput., vol. 19, no. 3, pp. 573–599, 2015.

W.-L. Zheng, J.-Y. Zhu, Y. Peng, and B.-L. Lu, “EEG-Based Emotion Classification Using Deep Belief Networks,†Multimed. Expo, pp. 1–6, 2014.

M. M. A. Rahhal, Y. Bazi, H. Alhichri, N. Alajlan, F. Melgani, and R. R. Yager, “Deep learning approach for active classification of electrocardiogram signals,†Inf. Sci. (Ny)., vol. 345, pp. 340–354, 2016.

U. M. Khan, Z. Kabir, S. A. Hassan, and S. H. Ahmed, “A Deep Learning Framework using Passive WiFi Sensing for Respiration Monitoring,†2017.

U. R. Acharya, H. Fujita, O. S. Lih, M. Adam, J. H. Tan, and C. K. Chua, “Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network,†Knowledge-Based Syst., vol. 132, pp. 62–71, 2017.

W. Gu, “Non-intrusive Blood Glucose Monitor by Multi-task Deep Learning,†in 16th ACM/IEEE International Conference on Information Processing in Sensor Networks, Pittsburgh, PA, USA, 2017, pp. 249–250.

C. Song, T. Koren, P. Wang, and A. L. Barabási, “Modelling the scaling properties of human mobility,†Nat. Phys., vol. 6, no. 10, pp. 818–823, 2010.

D. Leightley, M. H. Yap, and J. McPhee, “Automated Analysis and Quantification of Human Mobility using a Depth Sensor.,†IEEE J. Biomed. Heal. informatics, vol. X, no. X, pp. 1–10, 2016.

B. Tang, C. Jiang, H. He, and Y. Guo, “Probabilistic Human Mobility Model in Indoor Environment,†in International Joint Conference on Neural Networks, 2016, pp. 1601–1608.

N. Ghourchian, M. Allegue-Martinez, and D. Precup, “Real-Time Indoor Localization in Smart Homes Using Semi-Supervised Learning,†in 29th AAAI Conference on Innovative Applications, 2017, pp. 1–8.

X. Ouyang, C. Zhang, P. Zhou, and H. Jiang, “DeepSpace: An Online Deep Learning Framework for Mobile Big Data to Understand Human Mobility Patterns,†pp. 1–11, 2016.

G. Barlacchi, C. Perentis, A. Mehrotra, M. Musolesi, and B. Lepri, “Are you getting sick? Predicting influenza-like symptoms using human mobility behaviors,†EPJ Data Sci. A SpringerOpen J., vol. 6, no. 1, 2017.

A. Gárate, N. Herrasti, and A. López, “GENIO: an ambient intelligence application in home automation and entertainment environment,†sOc-EUSAI ’05 Proc. 2005 Jt. Conf. Smart objects Ambient Intell. Innov. Context. Serv. usages Technol., no. october, p. 241, 2005.

C. Leonardi, C. Mennecozzi, E. Not, F. Pianesi, and M. Zancanaro, “Supporting Older Adults Social Network : the Design of e-Inclusion Communication Services,†2008.

J. Doyle, Z. Skrba, R. McDonnell, and B. Arent, “Designing a touch screen communication device to support social interaction amongst older adults,†BCS ’10 Proc. 24th BCS Interact. Spec. Gr. Conf., pp. 177–185, 2010.

I. Gómez-Sebastià , D. García-Gasulla, and S. Alvarez-Napagao, “Special theme : Ambient Assisted Living,†ERCIM NEWS no. 87, pp. 23–24, 2011.

“ABOUT HOST - PROJECT DESCRIPTION.†[Online]. Available: [Accessed: 17-Jan-2018].

J. M. Corchado, J. Bajo, and A. Abraham, “GerAmi: Improving healthcare delivery in geriatric residences,†IEEE Intell. Syst., vol. 23, no. 2, pp. 19–25, 2008.

M. S. Cameirão, S. Bermúdez i Badia, E. Duarte Oller, and P. F. M. J. Verschure, “The Rehabilitation Gaming System: A review,†Stud. Health Technol. Inform., vol. 145, no. August 2017, pp. 65–83, 2009.

A. Kameas and I. Calemis, Pervasive Systems in Healthcare:HandBook of Ambient Intelligence and Smart Environments. IOS Press, 2010.

“iCarer | ACTIVE AND ASSISTED LIVING PROGRAMME.†[Online]. Available: [Accessed: 17-Jan-2018].

W. A. Khan, M. Hussain, M. Afzal, M. B. Amin, and S. Lee, “Healthcare standards based sensory data exchange for Home Healthcare Monitoring System.,†Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 2012, pp. 1274–7, 2012.

“WSU CASAS | Center for Advanced Studies in Adaptive Systems.†[Online]. Available: [Accessed: 17-Jan-2018].

“Ambient Intelligence Research Lab.†[Online]. Available: [Accessed: 17-Jan-2018].

“Open Living Labs | The First step towards a new Innovation System.†[Online]. Available: [Accessed: 17-Jan-2018].

J. A. Kientz, S. N. Patel, B. Jones, E. Price, E. D. Mynatt, and G. D. Abowd, “The Georgia Tech aware home,†Proceeding twenty-sixth Annu. CHI Conf. Ext. Abstr. Hum. factors Comput. Syst. - CHI ’08, p. 3675, 2008.

M. Fergenson, “TigerPlace: An Innovative ‘Aging in Place’ Community.,†Am. J. Nurs., vol. 113, no. 1, p. 68, 2013.

“Future Care Lab | Open Living Labs.†[Online]. Available: [Accessed: 17-Jan-2018].

“QoLT Center - QoLT Center - Carnegie Mellon University.†[Online]. Available: [Accessed: 17-Jan-2018].

“About the Project | POSEIDON.†[Online]. Available: [Accessed: 17-Jan-2018].

“What We Do | ORCATECH | OHSU.†[Online]. Available: [Accessed: 17-Jan-2018].

“IATSL - Intelligent Assistive Technology and Systems Lab.†[Online]. Available: [Accessed: 17-Jan-2018].