
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 462

ISSN No. 0976-5697

Time & Quality Improvement of Regression Testing using Pruning Method

Kanika Sharma and Amit Jain
Research Scholar and Associate Professor

Department of Computer Science and Technology
Ludhiana college of Engineering and technology

Keywords: Regression testing, industry applications, change impact analysis.

Ludhiana, Punjab, India

Abstract- Software tests, specifically software represented through regression testing, it accompanies the entire lifestyles cycle of industrial
software machine. In this report a regression testing technique for enterprise-orientated programs to solve troubles such as time. Regression
Testing is a form of software program testing that verifies that software previously evolved and tested nevertheless performs efficiently even
after it turned into modified or interfaced with different software program. Changes may consist of software program enhancements, patches,
configuration modifications, and many others. At some stage in regression trying out, new software program insects or regressions may be
uncovered. Sometimes a software trade effect analysis is done to decide what regions could be suffering from the proposed modifications. Those
areas may encompass purposeful and non-functional regions of the gadget. In this proposed work, pruning of regression testinghas been
performed by designing a mathematical model.For that, five different parametersand two test-case scenarios have been chosen and the effect of
individual change or combinational changes in parameters have been analyzed. The automated pruning on the basis of changes in these
parameters has been performed.The parameters have been chosen in which changes are made and then scenarios of change have been selected to
generate various tests cases. The results showed that the objectives have been fully achieved after pruning the results and has improved both
quantitatively and qualitatively in terms of their cost, risk and time factors. The time taken for testing has been minimized up to 50% whereas
cost and risk factors has also been improved very effectively when compared with the results obtained from existing technique.

I. INTRODUCTION

Software Testing: Software testing is the concept which
verifies that the software given to end user is upto standards.
The standard of software testing is maintained by auditing the
software products and reviewing its development activities.
Software testing process will be greatly promoted by
popularizing the test model specification and quality of the
software will also be improved. However, In traditional
software test models the focused attention is laid on to
software development testing process, they did not emphasis
to regression testing, and it would not solve the problem of
accumulating knowledge in the industrial software testing
application [8]. With the wide use of IT in different
businesses, software systems have turned out to be
extraordinarily necessary. The unwavering quality of the
system is taking part in a key supporting part within the
application business advancement. Advancement and upkeep
are constantly gone with the whole lifecycle of application
systems. Subsequently, there is a developing interest for
regression testing.

1.2 Regression Testing:

Regression trying out is described as a kind of software
program trying out to affirm that a recent program or code
alternate has no longer adversely affected existing functions.
Regression testing is not anything but complete or partial
choice of already done take a look at cases that are re-executed
to make certain current functionalities work fine. This testing
is carried out to make certain that new code changes need to

no longer have aspect outcomes on the prevailing
functionalities. It guarantees that old code nevertheless works
as soon as the brand new code modifications are executed.

Need of Regression Testing
Regression Testing is required when there may be a
• Change in requirements and the code is changed

according to the requirement
• The new feature is brought to the software program
• Defect fixing
• Performance problem fixes

Regression Testing Techniques

Software upkeep is an activity which incorporates
improvements, error corrections, optimization and deletion of
existing functions. These changes may motive the gadget to
work incorrectly. Therefore, Regression Testing will become
essential. Regression Testing can be achieved the use of the
following strategies [9]:

Fig 1.1 Regression tests techniques

Kanika Sharma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 462-470

© 2015-19, IJARCS All Rights Reserved 463

1.3 Cost risk assessment

Assessing risk way, figuring out the effects (including fees) of
capability dangers. Risk tests include asking questions
inclusive of: Is this a risk or no longer? How severe is the
hazard? What are the results? What is the likelihood of this
risk occurring? Decisions are made based on the chance being
assessed. The choice(s) can be to mitigate, manipulate or
forget about. The vital matters to identify (and quantify) are:

• What signs can be used to be expecting the chance of a
failure?

• The vital issue is to pick out what's important to the
pleasantness of this function. This may additionally
include design quality (e.g. What number of change
requests needed to be raised), program size, complexity,
programmer’s competencies etc.

• What are the outcomes if this specific function fails?
• Very frequently is it impossible to quantify this

accurately, but the use of low-medium-high (1-2-three)
may be appropriate enough to rank the individual
functions.

• By combining the consequence and the possibility (from
threat identity above) it needs to now be feasible to rank
the individual capabilities of a machine. The ranking
could be finished based totally on “experience” or by
empirical calculations.

1.4 Change Impact Analysis

Impact analysis is a key thing of accountable necessities
management. It provides the accurate know-how of the results
of a proposed change, which facilitates the crew make
informed commercial enterprise selections approximately
which proposals to approve. The analysis examines the
proposed change to become aware of additives that could have
to be created, modified, or discarded and to estimate the effort
associated with imposing the alternate. Skipping impact
evaluation doesn’t change the scale of the mission. It simply
turns the dimensions into a surprise. Software surprises are
rarely appropriate news. Before a developer says, “Sure, no
problem” in response to an alternate request, he or she have to
spend a touch time on impact evaluation.

Impact Analysis Procedure

The chairperson of the exchange manages board will usually
ask an informed developer to perform the impact analysis for a
particular alternate inspiration. Impact evaluation has 3
aspects:

1. Understand the feasible implications of creating the trade.
Change often produces a huge ripple impact. Stuffing too
much functionality into a product can lessen its
performance to unacceptable stages, as when a system that

runs each day calls for extra than 24 hours to complete an
unmarried execution.

2. Identify all the files, fashions, and files that would need to
be modified if the group incorporates the requested
alternate.

3. Identify the obligations required to put into effect the
alternate, and estimate the attempt wanted to finish those
obligations [10].

1.5 Business Rule
A business rule is a server-side script that runs when a report
is displayed, inserted, up to date, or deleted, or while a desk is
queried. Use business policies to accomplish tasks like
mechanically changing values in shape fields whilst positive
conditions are met, or to create events for email notifications
and script actions [11].
A business rule defines or constrains one issue of your
business that is supposed to claim business shape or impact the
conduct of your commercial enterprise. Business guidelines
regularly cognizance on get entry to manage problems, as an
instance, professors are allowed to import and modify the
marks of the students taking the seminars they instruct, but not
the marks of college students in other seminars. Business rules
may additionally pertain to enterprise calculations, as an
example, a way to convert a percentage mark (as an example,
91 percent) that a pupil gets in a seminar right into a letter
grade (for instance, A-) [12].

II. LITERATURE REVIEW

Yanlin Li et.al in [1] proposed a way to deal with investigate
the attainable execution heading of programming project
segments disappeared with refresh display basically in light of
use lessening. Some coordinating example models are
suggested and they could incrementally make greater the
experiments that neglect to fit. The structure-orientated relapse
check ways might be without issues procured from these
coordinating example paradigms. In addition, the
computerized time of relapse test way can be completed inside
the procedure of programming system item development. An
occurrence is additionally exhibited to demonstrate the era of
relapse check course inside the level of source codes.

Milos Gligoric et.al in [2] portrayed a relapse test-
determination method for programming created utilizing
current disseminated rendition control frameworks. By
demonstrating distinctive branch or union summons
specifically in their system, it registers safe test sets that can
be generously littler than applying past methods to a
linearization of the product history. They assess their system
on programming histories of a few expansive open-source
ventures. The outcomes are empowering: their procedure got a
normal of 10.89× diminishment in the quantity of tests over a
current strategy while as yet choosing all tests whose conduct
may contrast.

Kanika Sharma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 462-470

© 2015-19, IJARCS All Rights Reserved 464

Sascha Lity et.al in [3] proposed programmed substitute
impact examination in view of incremental model diminishing
for incremental SPL looking at. Incremental cutting grants for
a cut calculation by methods for adjusting a past cut with
particular deduction in their varieties by utilizing considering
form alterations. They rehearse incremental slicing to decide
the impact of completed form changes and to reason around
their ability retest. In view of their novel retest protection
model, each cut trade indicates a retest check goal to be
secured by means of present investigate cases chose for
retesting. They prototypically connected their approach and
assessed its appropriateness and adequacy by utilizing 4 SPLs.

Hyunsook Do et.al in [4] proposed another relapse looking at
system that distinguishes the influenced zones through code
changes utilizing sway assessment and creates new check
cases for the affected districts by means of changes utilizing
application cuts. To encourage the approach, the analysts
completed a (PHP) Analysis and Regression Testing Engine
(PARTE) and finished an oversaw explore the utilization of 5
open source web programs with several varieties. The impacts
affirmed that this approach is compelling in diminishing the
expense of relapse looking at for a consistently fixed web
utility, and uncovered methodologies wherein that viability
can run with application qualities and forming frequencies.

Francisco Zapata et.al in [5] proposed the utilization of Basis
Path Testing, that is a white-field programming testing
strategy that utilizations Graph Theory to look at the intricacy
of a needy machine by methods for making a control accept
the way things are chart from everything about framework's
capacities to plan a debut test suite. This test suite is a settled
of ways that navigate by means of the capacities, which may
be accepted straightly unbiased and that can be utilized to
make a test procedure so one can work out the majority of the
product's capacities at any rate when to affirm and approve
their usefulness. By making utilization of Basis Path Testing
examination to the constituent structures in a SoS, the analyzer
can grow a most dependable check suite with a view to ensure
that everybody possible fair ways, all reasonable intelligent
choices, and every one of their interfaces are executed as a
base once. This paper manages a SoS test structure and show
how to produce a test suite the utilization of Basis Path Testing
examination.

Bernhard K. Aichernig et.al in [6] exhibited the procedures
and impacts of a novel form based investigate case innovation
strategy that routinely gets test occasions from UML country
machines. The essential commitment of this article is the
totally programmed blame based thoroughly check case
innovation approach together with two observational
contextual investigations got from business utilize cases.
Likewise, a top to bottom appraisal of various blame
essentially construct experiment innovation procedures in light
of everything about contextual investigations is given and an
evaluation with verifiable arbitrary experimenting with is

directed. The experiment period technique underpins an
extensive variety of UML builds and is grounded at the formal
semantics of Back's movement structures and the outstanding
enter–output conformance connection. Transformation
administrators are utilized on the degree of the particular to
embed blames and produce investigate examples with a reason
to screen the shortcomings embedded. The adequacy of this
approach is appeared and it is talked about the best approach
to pick up a more prominent expressive investigate suite by
methods for joining shabby yet undirected arbitrary investigate
case time with the additional expensive however coordinated
transformation based absolutely technique. At last, an inside
and out and vital dialog of the preparation learnt is given
notwithstanding a fate point of view toward the general
helpfulness and practicability of transformation based
thoroughly experiment period.

Mustafa Al-Hajjaji et.al in [7] proposed strategy does now
not ensure to discover a bigger number of errors than
examining systems, in any case it goes for developing
exchange protection of a SPL underneath investigate quick as
practical throughout the years. This is especially valuable
considering that for the most part the time spending plan for
testing is limited. They executed likeness essentially based
prioritization in Feature IDE and assessed it by method for
assessing its result to the default last aftereffects of 3 testing
calculations notwithstanding irregular requests. The test
outcomes recommend that the request with similitude based
prioritization is superior to anything arbitrary requests and
much of the time superior to anything the default request of
current examining calculations.

III. PROBLEM FORMULATION

Regression testing is the way toward testing changes to
computer programs to ensure that the more seasoned
programming still works with the new alterations. Regression
testing is an ordinary piece of the program improvement
process and, in bigger organizations, is finished by code
testing specialists. Test department coders create code test
situations and activities that will test new units of code after
they have been composed. These experiments or test cases or
scenarios built what turns into the test bucket. Before a new
build of a software product is released, the old experiments are
keeping running against the new form to ensure that all the old
capacities still work. The reason they won't not work is on
account of changing or adding new code to a program can
undoubtedly bring blunders into code that is not expected to be
changed.

The need and handwork of modifying the base system
(Regression Testing) is felt because the tests which are non -
pruned take a lot of time and effort each time the system has to
be applied. The need of a system is felt which can be test
system according to need i.e. the only part of code should be
tested in which changes are made and where the impact of
changes is possible; there is no need to test the whole software

Kanika Sharma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 462-470

© 2015-19, IJARCS All Rights Reserved 465

again and again. This type of testing is called pruned testing in
which useful pinpoint test which can focuses on the set of test

required are performed. The system has to be pruned for more
and more useful tests.

IV. METHODOLOGY

Kanika Sharma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 462-470

© 2015-19, IJARCS All Rights Reserved 466

V. RESULTS

Regression implies retesting the unaltered parts of the
application. Test cases are re-executed so as to check whether
past utilization of software application is working fine and
new changes have not presented any new bugs. This test can
be performed on a new version when there is noteworthy
change in original practicality or even a single bug settle. This
is the strategy of confirmation. Checking that the bugs are
settled and the recently included features have not made any
issue in past working edition of software. The need of a
system is felt which can be test system according to need i.e.
the only part of code should be tested in which changes are
made and where the impact of changes is possible; there is no
need to test the whole software again and again. This type of
testing is called pruned testing in which useful pinpoint test
which can focuses on the set of test required are performed.
The system has to be pruned for more and more useful tests.

We proposed to design and perform pruning of regression
testing. We have designed a mathematical model for
regression test pruning. We have chosen 5 parameters and two
tests-case scenarios as the effect of changes in parameters may
be individual change or combinational change. We performed
automated pruning on the basis of changes in these
parameters, the parameters are chosen in which changes are
made and then scenarios of change are selected (i.e. Individual
or Combinational or Both or No Scenario) to generate tests to
be performed.

Table 7.1 – Showing Parameters and Test Scenarios
Parameters Test Scenario

Individual
Test Scenario

Combinational
Parameter P1 Parameter P1 Parameter P1, Parameter

P2
Parameter P2 Parameter P2 Parameter P1, Parameter

P3
Parameter P3 Parameter P3 Parameter P1, Parameter

P4
Parameter P4 Parameter P4 Parameter P1, Parameter

P5
Parameter P5 Parameter P5 Parameter P2, Parameter

P3
- - Parameter P2, Parameter

P4
- - Parameter P2, Parameter

P5
- - Parameter P3, Parameter

P4
- - Parameter P3, Parameter

P5
- - Parameter P4, Parameter

P5

Steps for Simulation: -
A. Generate Results Manually
 Step 1 – Press Initialize Button.
 Step 2 – Select the parameters in which changes are made.
 Step 3 – Select the type of test scenario (i.e. Individual or

Combinational or Both or No Scenario) to generate tests
to be performed.

 Step 4 – Press Generate Results' button.
 Step 5 – See Results Window for generating test cases.

• Getting the Affected parameters
• Showing Parameters Affected.
• Getting the Type of Test Scenarios
• Showing the type of Test Scenarios selected

Individual or Combinational or Both or No Scenario.
• Showing testcases Generated for testing purpose.

B. Perform Automatic Pruning
In automated pruning parameter selection and scenario
selection are done randomly as we are performing
automated pruning, but in actual real conditions we have
to give manual input of parameters in which changes are
made and what type of test scenarios we like to perform.

 Step 1 – Press Initialize Button.
 Step 2 – Press Automated Pruning Button.
 Step 3 – See Results Window for generating test cases.

• Getting the Affected parameters
• Showing Parameters Affected.
• Getting the Type of Test Scenarios
• Showing the type of Test Scenarios selected

Individual or Combinational or Both or No Scenario.
• Showing testcases Generated for testing purpose.

In automated pruning three rounds of testing are made to
be sure for results generated.

1. Generate Results Manually

Fig 7.1 – Mathematical model for regression test pruning

Figure 7.1 shows a mathematical model for regression test
pruning. A simulation screen showing the initialize button to
reset the system, Select parameters panel in which different

Kanika Sharma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 462-470

© 2015-19, IJARCS All Rights Reserved 467

buttons are given to select parameters and test scenario
selection panel to select a test scenario like Individual or
Combinational or Both or No Scenario and two buttons to
perform automated pruning or to generate results manually and
lastly its showing results panel in which results generated are
displayed.

Fig 7.2 – Initialization Message

Figure 7.2 shows the message initialization completed. In
simulation this message pops up when we press the initialize
button. Before starting any testing or pruning we have to
initialize the system. When we press initialization button it
resets the value of all the variables, parameters, and scenarios.
It also clears any previous results generated showing in the
results panel. Please press on “OK” or cross sign on the
message box to proceed to next step selection of change
affected parameters.

Fig 7.3 – selection of parameters and test scenarios

Figure 7.3 shows the process after initialization, now we have
to choose change affected parameters. Here we are considering
that we are having 5 parameters named P1, P2, P3, P4 and P5.
We can choose one or more parameter according to changes in
parameters. After parameter selection we have to choose the
type of test scenarios we want to test as changes may affect the
parameters individually or combination ally.

Fig 7.4 – Command Window shows selected parameters

Figure 7.4 shows that command window is shown here we
have selected 3 parameters P1, P3 and P5.

Fig 7.5 – Generated results

Figure 7.5 shows generate results' button is pressed. Result
panel is displaying results according to parameters selected
and test scenarios selected. Result panel showing: -

• Getting the Affected parameters 1 3 5
• Getting the Type of Test Scenarios
• Both individual and combinational Scenarios Selected
• Testcases Generated 1 0 3 0 5 0 13 0 15 0 0 0 0 35

0
2. Perform Automatic Pruning

Fig 7.6 – Initialization Message

Figure 7.6 shows the message initialization completed. In
simulation this message pops up when we press the initialize
button. Before starting any testing or pruning we have to
initialize the system. When we press initialization button it

Kanika Sharma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 462-470

© 2015-19, IJARCS All Rights Reserved 468

resets the value of all the variables, parameters, and scenarios.
It also clears any previous results generated showing in the
results panel. Please press on “OK” or cross sign on the
message box to proceed to next step perform automated
pruning.

Fig 7.7 – Perform Automated Pruning

Figure 7.7 shows after initialization of the system we are going
to perform automated pruning. In automated pruning
parameter selection and scenario selection are done randomly
as we are performing automated pruning, but in actual real
conditions we have to give manual input of parameters in
which changes are made and what type of test scenarios we
like to perform. We press the button automated pruning and
the results are displayed in the results panel.

In automated pruning three rounds of testing are made to be
sure for results generated.

Fig 7.8 – Automated Pruning results generated round 1

Figure 7.8 shows Automated Pruning results generated round
1. Result panel showing: -

• Getting the Affected parameters 2 3
• Getting the Type of Test Scenarios
• Both individual and combinational Scenarios Selected
• Testcases Generated 0 2 3 0 0 0 0 0 0 23 0 0 0 0 0

Fig 7.9 – Automated Pruning results generated round 2

Figure 7.9 shows Automated Pruning results generated round
2. Result panel showing: -

• Getting the Affected parameters 1 3 4
• Getting the Type of Test Scenarios
• Both individual and combinational Scenarios Selected
• Testcases Generated 1 0 3 4 0 0 13 14 0 0 0 0 34 0

0

Fig 7.10 – Automated Pruning results generated round 3

Figure 7.10 shows Automated Pruning results generated round
3. Result panel showing: -

• Getting the Affected parameters 2 3 4 5
• Getting the Type of Test Scenarios
• Only individual Scenarios Selected
• Testcases Generated 0 2 3 4 5 0 0 0 0 0 0 0 0 0 0

In automated pruning three rounds of testing are made to be
sure for results generated. These automated pruning results are
then compared with results before pruning regression test
results. In normal scenario we find that we are having total 15
test cases which are to be performed combining individual and
combinational testcases as mentioned in Table 7.1. By
performing three rounds of test we find many test cases are
repeating therefore we have to omit repeated testcases.
Therefore, we are processing results generated. The steps of
processing generated test cases are as follows:-

Kanika Sharma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 462-470

© 2015-19, IJARCS All Rights Reserved 469

Step 1 – Setting all cases marked 0 (null case for previous
work) as -1 (null case for proposed work) so that while making
comparison, these cases not match with cases in normal
regression test cases as in normal testing there may be cases
which are marked as zero.

For i=1: 45
 if (testdirectory(i)==0)
 testdirectory(i)=-1;
 End
End

Step 2 – Sorting the generated test cases in ascending or
descending order to find the repeated testcases and mark the
repeated test cases as -1 (null case for proposed work).

testdirectory=sort(testdirectory);
For i=2: 45
if (testdirectory(i)==testdirectory(i-1))
testdirectory(i)=-1;
End
End

Step 3 – Compare the test cases generated (proposed work)
with test cases (previous work).

For i=1: 15
For j=1: 45

if (stestcase(i)==testdirectory(j))
correct=correct+1;
End

End
End

All the cases find correct with previous work for testing are
the final test cases which are to be performed.

Fig 7.11 – Graph shows various parameters for regression
testing with a proposed method before and after pruning

Figure 7.11 Graph shows various parameters, i.e. time, cost
and risk for regression testing with a proposed method before
and after pruning. The graph is plotted as follows a variable is
taken time cycle in which random value is generated. Suppose
the value generated is 1 so the number of testcases multiplied

by value of time cycle will be time taken in seconds of
previous work which is stored in variable plo1 and no. of
testcases minus correct test cases detected will be time taken in
seconds for proposed work which is stored in variable plo2.
The cost for both scenarios calculated as follows:-

Cost before pruning = Cost of 1 unit testcases * (plo1/plo2)

Cost after pruning = Cost of the 1 unit testcases * (plo2/plo2)

Cost before pruning cost will be 10*(plo1/plo2) in which 10 is
the cost of 1 unit test cases to be performed and the cost after
pruning cost will be 10*(plo2/plo2) in which 10 is the cost of
1 unit test cases to be performed.

The risk factor is calculated on the basis of three factors as
follows:-
 Factor1 = No. of Software / No. of Employees
 Factor2 = Efficiency of Employees / Accuracy of Software

MaxRisk = 50
Before Pruning Risk shows:

 Factor1 = 180/6 = 30

 Factor2 = 90/3 = 30

 Accuracy of software = 3 out of 10

Before Risk = (((Factor1+Factor2)/MaxRisk)*10) = 12 risks

After Pruning Risk shows:

 Factor1 = 180/6 = 30

 Factor2 = 90/9 = 10

 Accuracy of software = 9 out of 10

After Risk = (((Factor1+Factor2)/MaxRisk)*10) = 8 risks

Fig 7.12 – Command Window shows values of various

parameters for regression testing

Table 7.2 – Time taken for regression testing
Parameter Before Pruning After Pruning

Time 11.9280 3.9760
Cost 30 10
Risk 12 8

Kanika Sharma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 462-470

© 2015-19, IJARCS All Rights Reserved 470

Figure 7.12 shows the Command Window shows time, cost
and risk taken for regression testing. Time Taken for
Regression Testing (in Seconds) Before Pruning is 11.9280
and After Pruning is 3.9760. Cost for Regression Testing (in
units) Before Pruning is 30 and After Pruning is 10. Risk for
Regression Testing (in Percentage) Before Pruning is 12 and
After Pruning is 8.

Fig
7.13 – Message box Please Press Initialize Button

Figure 7.13 shows the message box Please Press Initialize
Button. This message box pop ups when we press any
parameter selection button or result generation button before
initializing the system.

VI. CONCLUSION AND FUTURE WORK

Regression testing is going with the entire procedure life cycle
of the software application system. During the entire
procedure, it will produce a tons of test reports, which contains
a lot of information and experience. We have designed and
performed pruning of regression testing. We have designed a
mathematical model for regression test pruning. We have
chosen 5 parameters and two tests-case scenarios as the effect
of changes in parameters may be individual change or
combinational change. We performed automated pruning on
the basis of changes in these parameters, the parameters are
chosen in which changes are made and then scenarios of
change are selected (i.e. Individual or Combinational or Both
or No Scenario) to generate test cases to be performed. The
results show that our objectives are achieved after pruning the
results are improved comparatively and time taken for testing
is minimized up to 50% whereas cost and risk factors are also
improved effectiveness.

The future scope of the work is to design a smart system with
the automatic sequence recognition system. The system will
automatically recognize the pattern of changes and will
perform smart testing accordingly with respect to the changed
parameters.

REFERENCES

[1] Li, Y., Du, J., Hu, Q. and Liu, X., 2016, October. A
Method for Structure-Oriented Regression Test Path
Generation. In System and Software Reliability (ISSSR),
International Symposium on (pp. 30-36). IEEE.

[2] Gligoric, M., Majumdar, R., Sharma, R., Eloussi, L. and
Marinov, D., 2014, July. Regression test selection for
distributed software histories. In International
Conference on Computer Aided Verification (pp. 293-
309). Springer International Publishing.

[3] Lity, S., Morbach, T., Thüm, T. and Schaefer, I., 2016,
June. Applying Incremental Model Slicing to Product-
Line Regression Testing. In International Conference on
Software Reuse (pp. 3-19). Springer International
Publishing.

[4] Do, H. and Hossain, M., 2014. An efficient regression
testing approach for PHP web applications: a controlled
experiment. Software Testing, Verification and
Reliability, 24(5), pp.367-385.

[5] Zapata, F., Akundi, A., Pineda, R. and Smith, E., 2013.
Basis Path Analysis for Testing Complex System of
Systems. Procedia Computer Science, 20, pp.256-261.

[6] Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W.,
Schlick, R. and Tiran, S., 2015. Killing strategies for
model‐based mutation testing. Software Testing,
Verification and Reliability, 25(8), pp.716-748.

[7] Al-Hajjaji, M., Thüm, T., Meinicke, J., Lochau, M. and
Saake, G., 2014, September. Similarity-based
prioritization in software product-line testing. In
Proceedings of the 18th International Software Product
Line Conference-Volume 1 (pp. 197-206). ACM.

[8] Regression Testing. 2016. Regression Testing.
[ONLINE] Available at:
https://www.cs.umd.edu/~aporter/html/currTesting.html.
[Accessed 17 December 2016].

[9] What is Regression testing in software?. 2017. What is
Regression testing in software?. [ONLINE] Available at:
http://istqbexamcertification.com/what-is-regression-
testing-in-software/. [Accessed 22 February 2017].

[10] Jama Software. 2017. Best Practices for Change Impact
Analysis | Jama Software. [ONLINE] Available at:
http://www.jamasoftware.com/blog/change-impact-
analysis-2/. [Accessed 22 February 2017].

[11] ServiceNow. 2017. Business Rules - ServiceNow Wiki.
[ONLINE] Available at:
http://wiki.servicenow.com/index.php?title=Business_Ru
les#gsc.tab=0. [Accessed 22 February 2017].

[12] Business Rules: An Agile Introduction. 2017. Business
Rules: An Agile Introduction. [ONLINE] Available at:
http://agilemodeling.com/artifacts/businessRule.htm.
[Accessed 22 February 2017].

	Introduction
	Literature Review
	PROBLEM FORMULATION
	Methodology
	Results
	Conclusion and Future Work

