Segmentation Techniques: A Comparison and Evaluation on MR Images for Brain Tumour Detection
Main Article Content
Abstract
Brain tumour is inherently serious and life-threatening because of its character in the constrained space of the intracranial cavity (space formed inside the skull). If the tumour is detected at an advanced stage it turns to be a grave medical problem. Various techniques were developed for the detection of brain tumour. The image segmentation technique plays a pivotal role in early tumour detection. The segmentation is the process that partitions an image into regions. The widely used common image segmentation techniques are edge detection and clustering techniques. Edges cause significant local changes in the image intensity and have been an important feature for analysing images. It is the first step in receiving information from images. The techniques discussed here are Gradient-based methods such as Roberts, Sobel, Prewitt, Canny operators and Laplacian based edge detection method such as Laplacian of Gaussian operator(LOG). Clustering is the method of grouping a set of patterns into a number of clusters. The two important clustering algorithms namely centroid based K-Means and representative object based Fuzzy C-Means (FCM) clustering algorithms are compared. This paper presents the qualitative comparison of edge detection and clustering techniques for brain tumour MRI images based on image quality parameters like PSNR (Peak Signal to Noise Ratio), MSE (Mean Square Error), RMSE (Root Mean Square Error) and computing time.
Keywords: Gradient-based, Laplacian, K-Means, Fuzzy C-Means, PSNR, MSE, RMSE, Computing time.
Downloads
Article Details
COPYRIGHT
Submission of a manuscript implies: that the work described has not been published before, that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
- The journal allows the author(s) to retain publishing rights without restrictions.
- The journal allows the author(s) to hold the copyright without restrictions.