A Rule Based Neuro-Fuzzy Expert System Model for Diagnosis of Diabetes
Main Article Content
Abstract
In the field of artificial intelligence, neuro-fuzzy system is a combination of artificial neural networks and fuzzy logic. Diabetes is a serious, life-threatening, chronic disease which occurs when your body does not produce enough insulin or cannot use the insulin it produces. Identifying the disease accurately depends on the method that is used in diagnosing disease. An enhanced approach for diagnosis of diabetes is to create an expert system with Artificial Neural Networks that has artificial intelligence characteristics. There are number of approaches available. One such approach is by the use of a combination of rule based, neural networks and fuzzy logic to create a Neuro-Fuzzy Expert System (NFES). By means of NFES, diagnosis of diabetes becomes simple for medical practitioners/physicians. This paper will discuss the design & proposed model involved in creating such a NFES system to diagnose diabetes.
Â
Keywords: Neuro-fuzzy system, Fuzzy logic, feed forward architecture, Expert System, Diabetes
Downloads
Article Details
COPYRIGHT
Submission of a manuscript implies: that the work described has not been published before, that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
- The journal allows the author(s) to retain publishing rights without restrictions.
- The journal allows the author(s) to hold the copyright without restrictions.