Classification of Epileptic EEG Using Wavelet Transform & Artificial Neural Network
Main Article Content
Abstract
Epilepsy is a neurological disorder with prevalence of about 1-2% of the world’s population. The hallmark of epilepsy is recurrent seizures termed "epileptic seizures". Human Brain is the most complex organ among all the systems in the human body, also the most remarkable one. It exhibits rich spatiotemporal dynamics. Electroencephalography (EEG) signal is the recording of spontaneous electrical activity of the brain over a small period of time . The term EEG refers that the brain activity emits the signal from head and being drawn. It is produced by bombardment of neurons within the brain. EEG signal provides valuable information of the brain function and neurobiological disorders as it provides a visual display of the recorded waveform and allows computer aided signal processing techniques to characterize them. This gives a prime motivation to apply the advanced digital signal processing techniques for analysis of EEG signals. The main objective of our research is to analyze the acquired EEG signals using signal processing tools such as wavelet transform and classify them into different classes. The features from the EEG are extracted using statistical analysis of parameters obtained by wavelet transform. After feature extraction secondary goal is to improve the accuracy of classification. Total 300 EEG data subjects were analyzed. These data were grouped in three classes’ i.e, Normal patient class, Epileptic patient class and epileptic patient during non-seizure zone respectively. In order to achieve this we have applied a backpropgation based neural network classifier. After feature extraction secondary goal is to improve the accuracy of classification. 100 subjects from each set were analysed for feature extraction and classification and data were divided in training, testing and validation of proposed algorithm.
Index Terms— EEG, Epilepsy, Wavelet transform; Feature Extraction, Neural network, Backpropogation Neural Network.
Downloads
Article Details
COPYRIGHT
Submission of a manuscript implies: that the work described has not been published before, that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
- The journal allows the author(s) to retain publishing rights without restrictions.
- The journal allows the author(s) to hold the copyright without restrictions.