
Volume 3, No. 4, July- August 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 94

ISSN No. 0976-5697

Analyzing the Modern Tool-Supported UML-Based Static Reverse Engineering

J.M.S.V.Ravi Kumar* M.Tech ,(Ph.D) , I. Rajendra Kumar , Dr.M.Babu Reddy and L.Narendra
Lakireddy Bali Reddy College of Engg.

Mylavaram, Andhra Pradesh, India
*venkat7063@gmail.com, rajendralbrce@gmail.com, m_babureddy@yahoo.com and narendralalam@gmail.com

Abstract: Today, software-engineering research and industry alike recognize the need for practical tools to support reverse engineering behavior.
Most of the well-known CASE tools support reverse engineering in some way. The Uni- fied Modeling Language (UML) has emerged as the de
facto standard for graphically on behalf of the design of object-oriented software systems. However, there does not yet exist a normal scheme for
representing the reverse engineered models of these systems. The various CASE tools usually adopt proprietary extensions to UML and, as a
result, it is tricky, or even not possible, to ensure that model semantics remains explicit when working with different tools at the same time. In
this paper, we examine the capabilities of the two most successful industrial-strength CASE-tools in reverse engineering the static structure of
software systems and evaluate them to the results produced by two academic prototypes. The comparisons are carried out both manually and
involuntarily using a research prototype for manipulating and comparing UML models.

Keywords: UML, static reverse engineering, empirical study, tool assessment

I. INTRODUCTION

Reverse engineering has been a subject of long-term
active research and in that time several well known
techniques have been developed. In parallel, a lot of related
fields of research have also been developed, and as their
relations to software modeling have been recognized and
elaborated, round-trip engineering has emerged as a
relatively new software-development methodology. In line
with the recognition that tool support for software modeling
is necessary during development, it has become more and
more commonplace for modern CASE-tools to also support
reverse engineering to a certain degree.

In most cases, the reverse-engineering facilities provided
by CASE-tools supporting the Unified Modeling Language
(UML) [11] are limited to class diagram extraction. In the
case of Java software systems, package hierarchies are
usually shown as well. However, a class diagram provides
only limited help for understanding the underlying
architectural decisions. Further support, such as abstracting
class diagrams into component diagrams and recognizing
design patterns, would be very desirable for real UML-based
reverse engineering. While a class diagram shows the static
information at the lowest level possible in UML, it
nonetheless represents an abstraction of the actual object-
oriented code of the subject system. As a modeling
language, UML does not tell how the model is to be
implemented. More specifically, there is no one-to-one
mapping between class diagram elements and the source
code. For instance, composition and aggregation
relationships can be implemented similarly even though they
are conceptually different. Associations in general are
difficult to be detected, especially for dynamically typed
languages. Furthermore, other language dependent
difficulties occur: usage of abstract classes and interfaces in
purely object-oriented languages (such as Java and
Smalltalk) differs from their usage in hybrid languages (e.g.,
C++). Even the interpretation of generalization at the design
level differs from inheritance at the source code level: in
model inheritance, it is used for sub typing, while in the

source code it is used, e.g., for sub classing. Because of the
differences in concepts at the design and implementation
levels, interpretations are necessary for the extraction of
class diagrams from the source code. Currently, there exists
no standard way to do that. Moreover, the tools do not allow
the user to influence the interpretations. Instead, the
interpretation is typically built in the tools’ algorithms.

These built-in tool-dependent interpretations can lead to
inconsistencies, misunderstandings, and limitations.
However, the interpretations themselves seem to be less
harmful than hiding the rationale behind them from the end
user. If the CASE-tool supports round-trip engineering, the
same interpretations can and should be used consistently
both in reverse engineering and in code generation. The
danger of misunderstandings becomes less crucial the better
the user understands the interpretations and the limitations
of the tool. While tools supporting code generation often
allow the user to influence coding conventions, it is
surprising that similar customizability is rarely supported
when reverse engineering class diagrams from the source
code, especially since constructing abstractions requires
understanding and is thus known to be a process that should
be carried out (semi-)manually.

In this paper, our objective is to examine and report on
the state-of-the-art in object-oriented software reverse
engineering through a case study comparing the results of
different tools on a single subject system. The examination
also serves the CASE-tool users in understanding the built in
interpretations and limitations of the tools. We chose two
popular commercial CASE-tools and two research
prototypes especially targeted on UML-based reverse and
round-trip engineering. The examined commercial CASE
tools are Together [19] and Rational Rose [15], and the
research prototypes are IDEA [6, 8] and FUJABA [20]. The
reverse engineering support of these tools was compared by
using them for analyzing the subject Java software system
Mathaino [18]. A suite of model properties capturing
important design decisions has been identified and used as a
measure for comparing the results of each tool. In addition,
the class diagrams extracted by Together, Rose, and IDEA

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,94-102

© 2010, IJARCS All Rights Reserved 95

have been stored in UML1.3/XMI1.1 format [14] and
imported to a modeling tool TED [4], where automatic
model comparison is carried out using a research prototype
for manipulating and comparing UML models.

II. EXAMINED TOOLS

a. Together: Together supports reverse engineering of
software systems developed in C++, Java, C#, VB, etc.
When reverse engineering a Java program, Together
constructs a tree view similar to one produced by Rose
but it also produces the UML class diagram at the same
time (assuming that the user has chosen this type of
diagram to start with). Together is able to reverse
engineer the information from the source code (.java
files), byte code (.class files), jar files, or packed zip
files, but the models it extracts are not exactly the same
across these types of input. The Java reverse engineer
can be given instructions on the files, directories
(packages), and libraries (for instance, Java foundation
classes) to be examined. Furthermore, Together can
provide, upon demand, a large array of metrics on the
code examined (e.g. LOC, Halstead, complexity) and
audits on the coding style used.

b. Rose: Rational Rose supports reverse engineering of,
e.g., C++ and Java software systems. When reverse
engineering a Java program, Rose constructs a tree view
that contains classes, interfaces, and associations found
at the highest level. Methods, variables etc. are nested
under the owner classes. Rose also constructs (on
demand) a class diagram representation of the extracted
information and generates a default layout for it.
Additionally, Rose automatically constructs a package
hierarchy as a tree view. Rose is able to reverse engineer
the information from the source code, byte code, jar
files, or packed zip files. Quite similar to Together, the
Java reverse engineering module can be given
instructions on files, directories, packages, and libraries
to be examined.

c. Fujaba: Fujaba is a UML based CASE-tool that has
been developed since 1998 at University of Paderborn. It
supports code generation from class diagrams as well as
activity diagrams, state charts and collaboration
diagrams. This allows the use of the UML as a kind of
visual programming language for the development of
full fledged applications without any manual coding.
Fujaba aims to provide roundtrip engineering support: if
some developer or other tools (e.g. a version control
system) modify the generated code and if these
modifications stick to certain coding standards, then the
Fujaba environment is able to analyze the changed code
and to (re)create the corresponding UML specification.
Again, this covers the static structure, i.e. the class
diagrams, as well as the dynamic structure, i.e. the
method bodies. To some extent, this round-trip
engineering functionality may also be used for reverse
engineering foreign code. This holds especially for class
diagrams.

d. Idea: The reverse engineering tool IDEA has been
developed at University of Bremen, Germany, within the
UMLAID (Abstract Implementation and Design with the
Unified Modeling Language) project. The main objective
of IDEA is the re documentation of Java programs using
the UML, with focus on the static analysis of object-

oriented structures using UML class diagrams. These are
generally considered the most-employed and best-
understood diagrams included in the UML. In the
context of IDEA, a meta model for the Java language has
been developed. The models of the actual programs
examined are stored as instances of a data structure
corresponding to the assumed meta model. A translation
framework is employed to create UML models from the
Java models, providing a standardized translation
scheme.
In several successive steps, transformations are applied

to the model with the goal of creating an abstract design
level representation of the examined program. These are the
same features that have been applied for the study presented
in this paper and include for example recognition of
container classes, multiplicities and inverse associations [6].

Recent research addresses the extension of IDEA’s
functionality by several metric-based analyses [8]. These
allow to visualize metrics graphically in the context of their
underlying architecture, what makes it possible to
understand the composition of metric values. The primary
subject of this approach, however, is an algorithm for metric
based partitioning of large diagrams that allows selective
visualization of semantically coherent diagram regions.

III. A CASE STUDY

Mathaino is a tool for simultaneously migrating legacy
user interfaces to multiple web-based platforms [5, 18].
Mathaino is part of the CelLEST environment for
interaction based reengineering of legacy systems [3]. The
complete system consists of about 450 classes. Of these, the
core package has been selected for reverse engineering.

A. Examined Model Properties:
a. Number of Classes (NOC): This is a general measure

for the overall size of a software module, such as a Java
package for example. NOC values can be counted in
various ways, depending on how interfaces are
represented and how “special” classes, such as container
and inner classes, are counted. Therefore, high NOC
values may indicate a more detailed representation.

b. Number of Associations (NOA): This metric measures
the amount of interconnectedness between different
classes by means of associations. However, more care
has to be taken when interpreting NOA values than
concerning NOC. Low NOA values may hint on an
imprecise reverse engineering algorithm, but can also be
the result of abstraction, for example recognition of
inverse associations. As in the latter case, low values are
considered better, NOA should be measured both before
and after doing abstractions.

c. Types of Associations: The UML supports different
kinds of associations like directed, bidirectional,
aggregation and composition. Additionally, the meaning
of an association may be modified by applying
adornments (e.g., tags or qualifiers) to its ends. In this
section, we examine, which UML adornments and
association kinds have been encountered, and under
which conditions they have been employed in reverse
engineering. This allows conclusions about the meaning
that has been imposed on a feature by a particular tool.

d. Handling of Interfaces: An interface is a specifier for
the externally-visible operations of a class, component,

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,94-102

© 2010, IJARCS All Rights Reserved 96

or other classifier (including subsystems) without
specification of internal structure [12]. In UML
diagrams, interfaces are drawn as classifier rectangles or
as circles. The interfaces are attached by a dashed
generalization arrow to classifiers that support it.
This indicates that the class provides (implements) all of

the operations of the interface. The circle notation is used
when the operations of the interface are hidden.

A class that uses or requires the operations supplied by
the interface may be attached to the circle by a dashed arrow
pointing to the circle. From the reverse engineering point of
view, generation of such dependencies is important for
understanding the usage of interfaces and for concluding
component structures and dependencies (e.g., to abstract a
set of class diagrams to a component diagram).

Furthermore, different ways of handling interfaces may
impact the NOC metric and possibly the readability of the
respective class diagram.
e. Handling of Java Collection classes Java collection:

classes are an implementation-specific means to handle
collections (e.g. sets, list or maps) of objects. In design,
such features do not appear, but are rather modeled by
using association adornments like multiplicity or
qualifiers. We examine, whether the reverse-engineering
algorithms recognize Java collections and their contained
types, or handle them like ordinary classes. Container
resolution is important not only in design recovery, but
also in metric based analysis [8].

f. Multiplicities: In the UML, to-many associations
between objects are described by means of multiplicities.
Precise information about multiplicities is difficult to
derive and requires ideally dynamic-analysis techniques,
which are not supported currently by the tools we
examined. We examine, if and to what extent
multiplicities are recognized by means of the available
static analysis methods.

g. Role Names: The function of role names at association
ends is comparable to that of attribute names in the sense
of giving to an association between classes a meaningful
descriptor, which depends on the end it is attached to.
Therefore in reverse engineering, role names can hold
relevant additional information about the system
infrastructure.

h. Inner classes: Java inner classes, too, are an
implementation specific feature that hides a class
definition within the specification of another class. Thus,
recognizing inner classes is important to reflect the entire
system structure.

i. Class Compartment Details: We examine the level of
details when resolving method signatures, e.g., whether
parameter identifiers are resolved (in addition to the
parameter type). This is especially important when
analyzing the complete source code from method
implementations.

IV. RESULTS FROM THE TOOLS

A. Industrial Case Tools:
The metrics we collected on the behavior of Rose and

Together are summarized in Table 1.
a. Classes: Rose was able to find altogether 39 classes, 42

unnamed anonymous inner classes, and three named non
anonymous inner classes. Out of 39 conventional

classes, 11 have inner classes (named or unnamed). Rose
models inner classes the same way as any other classes
(with rectangles); thus, the total number of classes in the
class diagram was 84. The name of the (non-anonymous)
inner class in the source code is used as the name of the
modeled inner classes. In the case of unnamed inner
classes, Rose generates numbers (in numerical order,
starting from “1”) to label the unnamed inner classes.
For instance, one of the classes, called Mathaino
MainFrame, has 27 unnamed inner classes, named “1”,
“2”,: : :, “27”. Rose found 42 unnamed inner classes
owned by 11 different classes and only three named
inner classes.
Together, when applied to the “*.java” files of Mathaino,

recognized the 39 classes of the core package and the three
named inner classes. Interestingly enough, when applied to
the “*.class” files of Mathaino, Together recognized all 45
inner classes, both anonymous and named. In both cases, the
inner classes were shown on the diagram as part of the
classes in which they belong to (not as separate rectangles).
The name compartment of the class reverse engineered by
Rose contains the name of the actual class and the name of
its package. Both the attribute and operations compartments
contain the names, types, and visibility (public, protected, or
private) of the variables and methods, respectively.

For each method, the parameter types are also given.
Together’s diagrammatic representation of classes is

similar. Both Rose and Together (when applied to the
“*.class” files of the project) can identify the classes of
external packages on demand or if there exists a relationship
(or a reference) to/from the analyzed package. We did not
count the classes of the external packages.
b. Handling of Interfaces: Rose uses a circle to illustrate

interfaces in the class diagram. The (abstract) methods of
the interfaces are written below the circle, separated with
two horizontal lines, which is not the style recommended
in UML. Together illustrates them using class rectangles
with an Interface stereotype shown above the interface
name. This notation is also available as an option in
Rose. Both Rose and Together found four interfaces in
the Mathaino core package. Both connect the interfaces
to the classes that realize them, that is, the classes that
implement the abstract methods defined in the interfaces.
When the circle notation in used, Rose does that with a
solid line. When a class with a Interface stereotype is
used, both tools use a dashed line with a triangle at the
end pointing to the interface (similar to the inheritance
notation).
However, neither Rose nor Together were able to

generate any dependencies between interfaces and the
classes that use them (typically shown with a dashed arrow
from a class pointing to the interface). This is an obvious
limitation to understanding the roles of the interfaces.
Further, interface dependencies are needed for abstracting a
class diagram into a component diagram, understanding the
interaction among different components, etc.
c. Associations: The total number of associations found by

Rose was 83. In Rose models, the relationship between
an owner class and its inner class (named or unnamed)
using an association with a fixed role name, this$0.
Therefore, 45 of the modeled associations are generated
base on an inner class – owner class relationship. The
other 38 associations model the relationship between a

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,94-102

© 2010, IJARCS All Rights Reserved 97

class and the types of variables it defines. In these
associations, only the end of the association which is
connected to the class representing the type of the
variable is given a role name. The role is named by the
variable itself. Rose does not produce multiplicities for
the associations. In all cases, associations are directed.
Together did not extract any associations when applied
to the “*.class” files of Mathaino. When applied to the
“*.java” files, it extracted 16 associations. These
associations are directional but do not specify any roles,
neither do they specify multiplicities.
Neither tool generated any aggregation or composition

relationships.
d. Handling of Java Collection Classes: Rose and

Together handle container classes similarly. The
container types of attributes used in the Mathaino core
package (namely, Vectors) were not represented
differently from any other attribute types; they are
written (as strings) in the variable compartment of the
class. That is, if a class has a variable, say v, the type of
which is Vector, the variable compartment contains a
string v : java.util.Vector.

B. Fujaba:
At the time of the writing, reverse engineering the

Mathaino package with FUJABA does not (yet) produce
sophisticated results. Especially, FUJABA is not yet able to
reasonably deal with the to-many associations in Mathaino.
According to the round-trip engineering approach, FUJABA
assumes that all attributes are encapsulated with certain
access methods where the method names contain the
attribute name. The Mathaino system does not employ such
access methods. Instead, the private container attributes are
used directly within various logical methods. Due to the lack
of explicit access methods, the analysis of container/Vector
entry types is not even triggered. Instead, uni-directional to-
one associations to the class Vector are created. Similarly,
FUJABA is not yet able to merge any pair of uni-directional
associations to one bi-directional association. In FUJABA,
this merge relies on the existence of explicit access methods
that call each other, mutually. Without explicit access
methods, this feature is not even triggered.

Generally, FUJABA provides a very flexible reverse
engineering mechanism, that e.g. allows the user to de- fine
application specific patterns for the detection of certain
higher level design pattern elements. Unfortunately, this
does not yet apply for basic reverse-engineering features
like association detection. Due to this case study, this will be
fixed in the near future.
a. Classes: FUJABA is able to identify the top-level classes

and all explicit, named inner classes. However, FUJABA
ignores anonymous inner classes since it does not use
this construct in forward engineering and thus it does not
expect it in reverse engineering. However, this
information is provided by our parser and the FUJABA
team is currently discussing, whether such anonymous
inner classes should be contained in the class diagram. In
addition to the Mathaino classes, FUJABA shows all
non-primitive classes that are used as attribute types as
the target of to-one associations. Classes used as
parameter or return types or for local variables are
shown optionally.

b. Handling of Interfaces: Interface classes are shown as
usual classes with the stereotype _Interface_. Classes

implementing the interface inherit from it. Interface
usage is not depicted, although usage information is
provided by the FUJABA parser. An optional
incorporation of uses relationships is current work.

c. Role Names: Role names are derived from the identifiers
of non-primitive attributes and are shown at the target
association end of directed associations. When merging
directed associations, both role names are taken,
resulting in an undirected association with role names at
both ends.

d. Handling of Java Collection Classes: FUJABA uses an
adaptable list of pre-defined container classes. Attributes
of this type are automatically examined for their entry
type by looking for usages of their add methods. On
success such container attributes are turned into to-many
associations. However, due to performance reasons,
currently this mechanism is triggered through a name-
based identification of encapsulating access methods.
This heuristic did not work for the Mathaino system.

e. Merging Inverse Associations: The merging of pairs of
inverse associations is (again) based on the identification
of access methods that call each other mutually. While
this works great in round-trip engineering, this did not
work for theMathaino system. The FUJABA team
currently considers additional heuristics.

f. Aggregation and Composition: In FUJABA,
aggregation and composition is reflected in certain
“isolateYourselfAndBecomeGarbageCollected” methods
that are forwarded to contained elements in case of a
composition relationship. The Mathaino system does not
contain such methods.

g. Multiplicities: Due to conceptual considerations,
FUJABA does not support lower multiplicity bounds,
neither for to-one nor for to-many associations, neither
on forward nor on reverse engineering. Thus, non-
primitive attributes are shown using a 0..1 multiplicity
and container attributes with identified entry types are
shown using a 0..n multiplicity.

h. Inner Classes: Named inner classes are shown as usual
classes in the class diagram. If applicable, the optionally
shown package name contains the surrounding class and
or method name. So far, anonymous inner classes are
ignored.

i. Class Compartment Details: All standard UML class
compartment details like (class name, attributes and
methods) are supported at implementation detail level.
For attributes, visibility, identifier, type and an optional
multiplicity for arrays are shown. Method signatures
include identifiers and types of parameters. Since this
easily overcrowds the class diagram, the attribute and the
method compartment may be collapsed by default if they
exceed a certain size. The next version of FUJABA will
provide scrollers for large attribute or method
departments.

C. Idea:
When reverse engineering the Mathaino core package

with IDEA, several transformation steps have been applied
to the basic implementation level UML model to recognize
the examined model properties. Descriptions of these steps
are included in the following sections about the analysis
results. Since some characteristics of the UML model
change during the transformation steps, the pre-defined
metrics suite was calculated anew after each step.

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,94-102

© 2010, IJARCS All Rights Reserved 98

a. Metric Calculations: For calculation of the NOC metric,
both the number of classes from the mathaino core
package as well as the total number of classes related to
it (e.g. by UML associations) have been counted. Inner
classes have been taken into account in addition to plain
classes, if they were defined uniquely with a separate
name. Classes from external packages were considered,
if a relationship (or reference from method bodies) to the
Mathaino core package existed. In total, 42 classes have
been discovered. This umber is composed of 39 plain
classes and three named (unique) inner classes (in total,
45 inner classes have been found, but anonymous inner
classes were not considered here). Additionally, 35
external classes have been found, resulting in a total of
77 classes (not counting the anonymous inner classes).
The initial number of associations was 56. As expected,

this number was reduced after each transformation step.
During container resolution, two associations were
discarded, because the respective contained classes were of
type String, which is handled like a primitive type and is not
shown as an individual class (cf. section 4.3; NOA after
container resolution was 54). Finally, seven association pairs
have been merged to bidirectional associations, resulting in
a final NOA of 47.
b. Handling of Interfaces: For interfaces, the default UML

meta model representation as subclasses of Classifier is
used. This means that they appear in the resulting class
diagrams as separate interface rectangles. The number of
interfaces is independent from the number of classes and
no subset of the latter. Four interfaces have been found
in the core package and another six external interfaces
have been in use, summing up to a total of 10.

c. Role Names: Role names are derived from the identifiers
of non-primitive attributes and are shown at the target
association end of directed associations. In the special
case of an association depicting the relationship of an
inner class to its defining class, the keyword ’this’ is
used at role name at the association end of the defining
class. When merging directed associations, both role
names are taken, resulting in an undirected association
with role names at both ends.

d. Handling of Java Collection Classes: At
implementation level, containers are shown as individual
classes. To reveal the true relationships between a source
object and the objects stored in a container, a resolution
process is employed that analyzes the source code for
accesses to the interface of container objects [6]. While
examining the Mathaino core package, 16 container type
attributes have been found, all of which were Vectors. 15
of these could be resolved. Two could not be represented
graphically because the type of the contained objects was
String, which is not represented in the diagram as an
individual class but handled as a primitive attribute.
These were rendered using the textual UML attribute
notation with a multiplicity attached. Finally, one
container attribute could not be resolved at all, because
the source code of its containing class did not contain
any invocations of the container attribute’s store
operation. Since IDEA examines the source code for
invocations of the collection classes’ interface to
determine the contained type, this one was not
resolvable. Because of the single remaining association,
the container class Vector was kept in the diagram. For

the graphical representation of the resolved containers,
the UML qualifier notation has been employed [6],
which shows a qualified attribute (the vector index) t the
association source end and a 0..1 multiplicity at the
target end, denoting that the number of contained
elements is fi- nite. Experience with this UML notation
has shown that it is not always suitable in large
diagrams. The problem is that the notation consists of
two parts (one at each association end), but that it is not
always possible to view both ends at the same time.
Having only the multiplicity end without the qualifier
tends to be confusing, since only the source end, but not
the target end gives a hint on the qualifier of the
association. We have circumvented this UMLspecific
problem by extending the qualifier notation by a tagged
value fqualifiedg at the target association end.

e. Merging Inverse Associations: We discovered seven
pairs of potentially inverse associations [7]. All of them
were unique, that is, no ambiguities with other
associations were encountered during the merging
process. Therefore, we decided to merge all of them.
Three different kinds of inverses have been found:
Between independent classes. In this case, redefined

pairs of role names or known relations from the design can
be taken as hints for merging. When these are not available,
it is only possible to analyze the role names and rule out
ambiguities.

_ Between class and contained class (i.e. a class hose
objects are stored in a container attribute of the source
class). These are considered related because of the tomany
association between source and targets.

_ Between class and inner class. These were considered
inherently associated because of the tight relation between
inner class and defining class (cf. section 4.3). To recognize
the second group of inverses, the sequence of model
abstraction steps is crucial, as they can only be discovered
after resolution of container classes.
f. Aggregation and Composition: According to the UML

specification documents [13] [17], aggregation is an
informal feature that is not characterizable in a precise
way, as would be required to recognize it from the
source code. Different than composition, aggregation has
a rather imprecise definition, which describes a whole-
part relationship between source and target classes. The
best way to recover this relation from existing programs
is sufficient knowledge of the software architecture.
Since we did not have a person locally available
knowing the system in detail, we decided to use
aggregation only in one rather clear case, namely where
a role name (at the association between classes Mathaino
Desktop Handler and Mathaino MainFrame) contained
the keyword “owner” and thus suggested an aggregation
relationship. In the UML, composition defines
constraints about the instances of classes, not about
classes themselves. Therefore, correct recognition of
composition requires dynamic analysis techniques,
which are not yet supported by IDEA. However, this is
subject to future work.

g. Multiplicities: The following multiplicity values and
ranges are discovered by the IDEA tool: _ ’0..1’ The
target element is initialized somewhere in the source
code (at an unknown position). It cannot be determined
statically, whether an initialization will actually happen

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,94-102

© 2010, IJARCS All Rights Reserved 99

at runtime. _ ’1’ The target element is definitely initiated
at object creation time, i.e. either in the constructor or
the class initialization block.
’*’ The star multiplicity represents a container class, e.g.,

a Set or a Collection. When using the qualifier notation for
Lists, Vectors or arrays, the multiplicity ’0..1’ is used
together with a qualifier. The meaning of this is that every
index is assigned zero or exactly one element (the list is
finite).

Of these multiplicities, all but ’*’ have been ncountered
in the Mathaino core package. The star multiplicity was not
used, because the only container type employed was Vector,
which is represented using the aforementioned qualifier
notation.
h. Inner Classes: IDEA recognizes non-anonymous inner

classes by parsing the byte code. These are epresented
like conventional classes, using the Java naming
convention for inner class names (as UML does not
include this concept). Since an association to an inner
class is implicitly bidirectional (based on the way inner
classes are realized in Java), this construct can be
considered the pure form of an inverse association. For
each inner class, an association to its defining class is
shown with the role name ’this’, to indicate accessibility
of the defining class from within the inner class.

i. Class Compartment Details: All standard UML class
compartment details like (class name, attributes and
methods) are supported at implementation detail level.
For attributes, visibility, identifier, type and an optional
multiplicity for arrays are shown. Resolution of method
signatures includes identifiers of parameters, which
facilitates understanding of internal structural relations
and metrics analyzes [8]. Thus, the complete design and
implementation level signature information is available
in the class diagram.

V. COMPARATIVE RESULTS EVALUATION
AND ANALYSIS

Precisely understanding the differences between the
UML models reverse engineering by the CASE tools
employed in this case study is a challenge. The examined
tools, and to our knowledge CASE tools in general, fall
short on supporting the comparison of different UML
models against each other. Some ASE tools offer profiling
utilities for measuring a predefined set of metrics, but they
differ significantly from each other, making it difficult to
compare the results in a uniform manner. Furthermore, none
of the tools is able to deduce the semantically equivalent
elements between individual UML models and compare
their internal states. In addition to inspecting the produced
UML models and comparing the results by hand, we also
exported them into TED [4], a proprietary UML CASE tool
developed by the Nokia Research Center, by using an XMI
bridge. The esults were compared using a set of UML model
operations on a research prototype, the BMO (Basic Model
Operations) toolkit [9]. A UML model operation produces a
new UML diagram on the basis of existing ones. Set
operations comprise one fundamental category of model
operations. They apply set theoretical operations (i.e. union,
difference or intersection) for two diagrams of the same
type, and are typically functions with signature D x D _! D,
D denoting a UML diagram type. These set operations,
together with a few customized scripts, were used for

automatically comparing the UML models under a common
workbench.

A. Automatic Model Comparison Using Ted:
In this particular case study, the BMO toolkit was used to

compare the three models produced by Rational Rose,
Together, and IDEA. The models were first analyzed using a
predefined metrics calculation schema, and subsequently set
operations were performed on the models in order to find
the possible interesting commonalities and differences
between them. Even with a relatively small system as
Mathaino, it becomes evident that manual comparison of the
models is tedious at best, especially for larger scale studies.

Only the IDEA model (as it was saved in XMI)
conformed to the manually calculated metrics. Both Rose
and Together models contained model elements external to
the core package inspected. Together omits the package
structure, placing every model element under a common
package thus making it impossible to restrict the data only to
that of the Mathaino core. For example, there were 121
classes, 43 associations, and 12 interfaces in the Together
model. Rose generates model elements other than those
covered in this case study, namely stereotypes, comments,
components (reflecting the Java package structure) etc. The
differences in metrics from different tools also point out the
weaknesses of XMI and especially the different XMI export
implementations of the tools. Therefore more interesting
than single model metrics are the differences and properties
that can be instantly spotted. The BMO tool tries to draw the
attention of the user on the potentially interesting properties
and evident differences. Table 2 shows the number of
counterpart classes, interfaces, operations, attributes,
associations, and generalizations found between different
models by BMO.

After a counterpart relationship has been generated,
BMO allows the results of the operations to be visualized in
TED. Since the different CASE-tools excel in different areas
of reverse engineering, union operation can be used for
combining these models into a more complete representation
of the original system. Difference operation can be used for
exploring the model features generated by only one of the
CASE-tools, and intersection shows the minimal sub model
that both the CASE-tools agree on. The most useful
operation in the context of this case study is the symmetric
difference, which can be used to visually differentiate
between the interpretations of different CASE tools.
Symmetric difference shows the parts generated only by one
tools but not by the other. The differences typically result
from different capabilities and interpretations of the tools.

Figure 1 shows a portion of a TED class diagram
describing the symmetric difference of IDEA and Rose
models, centered on the Mathaino MainFrame class. TED is
not able to use visual cues such as colors for differentiating
the sources of different model elements, but with the help of
the textual description produced by BMO, the origin of the
elements can be deduced. It is immediately evident from the
picture how Rose is able to generate the (unnamed) inner
classes, but IDEA generates multiplicities, association end
role names and a composition relationship. The parallel
associations between Mathaino Mainframe and Mathaino
Desktop Handler classes, the upper generated by Rose and
the lower y IDEA, show the different capabilities of the
tools, and also reveal the potential problems when
combining the results. The techniques described here help to

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,94-102

© 2010, IJARCS All Rights Reserved 100

pinpoint the potentially interesting differences between the
models, and in the context of this case study, the capabilities
of the tools

B. Results Analysis:
We compared the results of the examined tools in two

different categories: basic and advanced concepts. Basic
concepts refer to the UML core elements like classes and
associations, and demands that the results are a valid
representation of the underlying software module (i.e. no
central elements have been omitted or represented
imprecisely). The second category evaluates the tools’
capability to generate a more abstract representation rather
than a plain implementation level view. This includes
strategies for design recovery and recognition of facts that
are not immediately visible from the source code.
a. Basic concepts: All of the examined tools succeeded in

recognizing the basic UML features like classes,
interfaces and associations. Only in one case Together
failed to recognize a part of the plain associations. At
this level, the results could be compared easily using
metrics like NOC and NOA. The numbers were
generally identical for all tools and the occurring
differences could be explained by the different
approaches or ways to count. For example, anonymous
inner classes and package-external classes are handled
differently by each tool. Similar differences existed for
associations. Concluding, the creation of a correct
implementation-view representation could be handled by
all four tools.

b. Advanced concepts: In the second, advanced
comparison, it could be seen that the reverse engineering
capabilities of the industrial tools do not go far beyond
the basic UML features. More abstract representations
and recognition of advanced features are clearly the
domain of the research tools: these managed to recognize
all of the features from the property suite either
completely or at least to a certain degree, while the
industrial tools did not address several of them at all (for
example, multiplicities, inverse associations and
container resolution have not been addressed by the
industrial tools).
This leaves the impression that understanding and

application of the UML in reverse engineering is still at a
rather low level in industry. Our observation is underpinned
by the fact that when comparing different tool versions from
the previous two years, no major advancements could be
found for the reverse engineering modules of the industrial
tools.

The advanced concepts are semantically more
challenging to be inferred than the basic concepts. This
means that they provide better support for the user in
understanding the software: by application of the complex
UML features, a broader syntax is available to the analyst.
This allows more detailed information to be added to the
class diagrams than is possible in the basic reverse
engineering. On the other hand, it means that interpretations
are needed. Therefore, the generation of the advanced
concepts should be subjected to user acceptance. In a
desirable case, the user involvement is supported either by
allowing the user to configure the interpretations or by a
providing facilities for incremental generation of different
concepts (as done, e.g., in IDEA).

In this study we compared the reverse engineering
facilities of four tools. To estimate the quality of the
diagrams more objectively, they should also be compared
with a “correct class diagram”, which could be a design
model or a model manually constructed by the experts of the
subject system. This study nonetheless shows that there are
significant differences among the tools and suggests that
UML has not been used in its full potential in reverse
engineering so far. This is somewhat surprising, since UML
is de facto industrial standard for the presentation of various
design artifacts in object-oriented software development.
Using UML also in reverse engineering is therefore
desirable; the familiar notation is easy to understand and
using the same notation as used in software development
opens possiblities for round-trip engineering.

VI. RELATEDWORK

Various empirical studies on comparisons of reverse
engineering, program comprehension, and information
extracting tools have been presented [2, 10, 1, 16]. Bellay
and Gall presented a study in which they compared four
reverse engineering tools by applying them to a commercial
embedded software system, written in C [2]. They aimed at
pointing out the differences in capabilities and identifying
their strengths and weaknesses, especially considering their
usability, extensibility, and applicability for analyzing
embedded software systems.

VII. SUMMARY AND CONCLUSION

Reverse engineering of UMLmodels for the subject
objectoriented software system can be carried out roughly
according two principles: (1) pulling out as much
information as possible from the subject system and
modeling it somehow using UML models or (2) aiming at
design level models that are populated with the source code
information whenever it is convenient. To some extent, the
former resembles the traditional bottom-up reverse
engineering, while the latter has a top-down flavor. Our
motivation in this case study was to find out to what extent
the UML is used or applicable in tool-supported reverse
engineering. We compared four tools from both industry and
research in terms of their reverse engineering capabilities.
We carried out both manual and automated comparisons.

The manual comparison is needed to understand the
interpretations and mappings used to generate a class
diagram. With automatic comparison, in turn, metrics data
as well as differences and similarities between models can
be quickly and easily found out. Using a standardized
notation such as UML for the representation of software
models makes it possible to successfully exploit model
manipulation operations, such as set operations, for model
analysis and comparison also with reverse engineered
models. It is very difficult, if not impossible, to build such a
workbench for empirical evaluations of traditional reverse
engineering tools because of the notational differences.
Even though in this study we focused on class diagrams,
similar model operations can be built, e.g., for high-level
component diagrams. The bottleneck in this approach is the
exchange format: even though XMI 1.1 has its severe
limitations, it is currently the only common exchange format
supported by the UML-based CASE-tool vendors.

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,94-102

© 2010, IJARCS All Rights Reserved 101

Our examination shows that although all tools rovide a
reliable reverse engineering functionality, only the research
prototypes provided algorithms for advanced analyses. The
focus in the reverse engineering facilities of the industrial
tools, in turn, seem to be on the UML core features. Despite
of the constantly ongoing development, the advanced
reverse engineering strategies have not been considered in
these tools. Concerning the industrial tools, one crucial
problem is the maturity of UML support in general. They do
not support the UML notation in its entirety. For example,
Together has only limited support for association classes
and qualifiers, and both Rose and Together do not support
nary associations. Although Together is easily extensible via
its OpenAPI and Rose via its Rose Extensibility interface
(REI), the underlying data model contains lots of
simplifications that make it hard (and sometimes
impossible) to reflect the full richness of the UML
metamodel.

VIII. REFERENCES

[1]. M. Armstrong and C. Trudeau. Evaluating Architectural
Extractors. In 5th Working Conference on Reverse
Engineering, pages 30–39. Hawaii, USA, 1998.

[2]. B. Bellay and H. Gall. A comparison of four reverse
engineering tools. In 4th Working Conference on Reverse
Engineering, pages 2–11. The Netherlands, 1997.

[3]. Mohammad El-Ramly, Paul Iglinski, Eleni Stroulia, Paul
Sorenson, and B. Matichuk. Modeling the System-User
Dialog Using Interaction Traces. In Peter Aiken and
Elizabeth Burd, editors, Proc. 8th Working Conference on
Reverse Engineering (WCRE), pages 208–217. IEEE, Los
Alamitos, 2001.

[4]. Wikman Johan. Evolution of a distributed repositorybased
architecture. Technical report, Department of Software
Engineering and Computer Science, Research Report
1998:14, Blekinge Institute of Technology, Sweden, 1998.
Electronic Proceedings of the First Nordic Software
Architecture Workshop NOSA’98.

[5]. Rohit V. Kapoor and Eleni Stroulia. Mathaino: Simultaneous
Legacy Interface Migration to Multiple Platforms. In 9th
International Conference on Human-Computer Interaction,
pages (vol. 1)51–55. Lawrence Erlbaum Associates, 5-10
August 2001, New Orleans, LA, USA, 2001.

[6]. Ralf Kollmann and Martin Gogolla. Application of UML
Associations and Their Adornments in Design Recovery. In
Peter Aiken and Elizabeth Burd, editors, Proc. 8th Working
Conference on Reverse Engineering (WCRE), pages 81–90.
IEEE, Los Alamitos, 2001.

[7]. Ralf Kollmann and Martin Gogolla. Capturing Dynamic
Program Behaviour with UML Collaboration Diagrams. In

Pedro Sousa and J¨urgen Ebert, editors, Proc. 5th European
Conference on Software Maintenance and Reengineering,
pages 58–67. IEEE, Los Alamitos, 2001.

[8]. Ralf Kollmann and Martin Gogolla. Metric-Based Selective
Representation of UML Diagrams. In Tibor Gyim´othy and
Fernando Brito e Abreu, editors, 6th European Conference
on Software Maintenance and Reengineering. IEEE, Los
Alamitos, 2002. Best Paper Award.

[9]. J. Koskinen, J. Peltonen, P. Selonen, T. Syst¨a, and K.
Koskimies. Towards Tool Assisted UML Development
Environments. In 7th Symposium on Programming
Language and Software Tools, 2001.

[10]. G. Murphy, D. Notkin, W. Griswold, and E. Lan. An
empirical study of static call graph extractors. ACM Trans.
Softw. Eng. Methodol., 7(2):158–191, 1998.

[11]. OMG, editor. OMG Unified Modeling Language
Specification, Version 1.3, June 1999. Object Management
Group, Inc., Framingham, Mass., Internet:
http://www.omg.org, 1999.

[12]. OMG. UML Notation Guide. In OMG Unified Modeling
Language Specification, Version 1.3, June 1999 [11],
chapter 3.

[13]. OMG. UML Semantics. In OMG Unified Modeling
Language Specification, Version 1.3, June 1999 [11],
chapter 2.

[14]. OMG. UML Model Interchange. In OMG, editor, OMG
Unified Modeling Language Specification, Version 1.4,
February 2001, chapter 3. Object Management Group, Inc.,
Framingham, Mass., Internet: http://www.omg.org, 2001.

[15]. Rational Software Corporation. Rose Enterprise Edition,
2002. http://www.rational.com.

[16]. Susan Sim,Margaret-Anne Storey, and AndreasWinter. A
Structured Demonstration of Five Program Comprehension
Tools: Lessons Learnt. In 7th Working Conference on
Reverse Engineering, pages 210– 212. Brisbane,
Queensland, Australia, 2000.

[17]. Margaret-Anne Storey. A cognitive framework for
describing and evaluating software exploration tools.
Technical report, Simon Fraser University, 1998. PhD
Thesis.

[18]. Eleni Stroulia and Rohit V. Kapoor. Reverse Engineering
Interaction Plans for Legacy Interface Migration. In 4th
International Conference on Computer Aided Design of User
Interfaces, pages 295– 310. Kluwer Academic, May 14-17,
2002, Valenciennes France, 2002.

[19]. TogetherSoft Corporation. Together 5, 2001. http:
//www.togethersoft.com.

[20]. University of Paderborn. Fujaba, 2002. http://
www.fujaba.de.

