
Volume 3, No. 4, July- August 2012 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved                                                                                                                                             94 

ISSN No. 0976-5697 

Analyzing the Modern Tool-Supported UML-Based Static Reverse Engineering 

J.M.S.V.Ravi Kumar* M.Tech ,(Ph.D) , I. Rajendra Kumar , Dr.M.Babu Reddy and L.Narendra 
Lakireddy Bali Reddy College of Engg.  

Mylavaram, Andhra Pradesh, India 
*venkat7063@gmail.com, rajendralbrce@gmail.com, m_babureddy@yahoo.com and narendralalam@gmail.com   

Abstract: Today, software-engineering research and industry alike recognize the need for practical tools to support reverse engineering behavior. 
Most of the well-known CASE tools support reverse engineering in some way. The Uni- fied Modeling Language (UML) has emerged as the de 
facto standard for graphically on behalf of the design of object-oriented software systems. However, there does not yet exist a normal scheme for 
representing the reverse engineered models of these systems. The various CASE tools usually adopt proprietary extensions to UML and, as a 
result, it is tricky, or even not possible, to ensure that model semantics remains explicit when working with different tools at the same time. In 
this paper, we examine the capabilities of the two most successful industrial-strength CASE-tools in reverse engineering the static structure of 
software systems and evaluate them to the results produced by two academic prototypes. The comparisons are carried out both manually and 
involuntarily using a research prototype for manipulating and comparing UML models. 
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I. INTRODUCTION 

Reverse engineering has been a subject of long-term 
active research and in that time several well known 
techniques have been developed. In parallel, a lot of related 
fields of research have also been developed, and as their 
relations to software modeling have been recognized and 
elaborated, round-trip engineering has emerged as a 
relatively new software-development methodology. In line 
with the recognition that tool support for software modeling 
is necessary during development, it has become more and 
more commonplace for modern CASE-tools to also support 
reverse engineering to a certain degree. 

In most cases, the reverse-engineering facilities provided 
by CASE-tools supporting the Unified Modeling Language 
(UML) [11] are limited to class diagram extraction. In the 
case of Java software systems, package hierarchies are 
usually shown as well. However, a class diagram provides 
only limited help for understanding the underlying 
architectural decisions. Further support, such as abstracting 
class diagrams into component diagrams and recognizing 
design patterns, would be very desirable for real UML-based 
reverse engineering. While a class diagram shows the static 
information at the lowest level possible in UML, it 
nonetheless represents an abstraction of the actual object-
oriented code of the subject system. As a modeling 
language, UML does not tell how the model is to be 
implemented. More specifically, there is no one-to-one 
mapping between class diagram elements and the source 
code. For instance, composition and aggregation 
relationships can be implemented similarly even though they 
are conceptually different. Associations in general are 
difficult to be detected, especially for dynamically typed 
languages. Furthermore, other language dependent 
difficulties occur: usage of abstract classes and interfaces in 
purely object-oriented languages (such as Java and 
Smalltalk) differs from their usage in hybrid languages (e.g., 
C++). Even the interpretation of generalization at the design 
level differs from inheritance at the source code level: in 
model inheritance, it is used for sub typing, while in the 

source code it is used, e.g., for sub classing. Because of the 
differences in concepts at the design and implementation 
levels, interpretations are necessary for the extraction of 
class diagrams from the source code. Currently, there exists 
no standard way to do that. Moreover, the tools do not allow 
the user to influence the interpretations. Instead, the 
interpretation is typically built in the tools’ algorithms.  

These built-in tool-dependent interpretations can lead to 
inconsistencies, misunderstandings, and limitations. 
However, the interpretations themselves seem to be less 
harmful than hiding the rationale behind them from the end 
user. If the CASE-tool supports round-trip engineering, the 
same interpretations can and should be used consistently 
both in reverse engineering and in code generation. The 
danger of misunderstandings becomes less crucial the better 
the user understands the interpretations and the limitations 
of the tool. While tools supporting code generation often 
allow the user to influence coding conventions, it is 
surprising that similar customizability is rarely supported 
when reverse engineering class diagrams from the source 
code, especially since constructing abstractions requires 
understanding and is thus known to be a process that should 
be carried out (semi-)manually. 

In this paper, our objective is to examine and report on 
the state-of-the-art in object-oriented software reverse 
engineering through a case study comparing the results of 
different tools on a single subject system. The examination 
also serves the CASE-tool users in understanding the built in 
interpretations and limitations of the tools. We chose two 
popular commercial CASE-tools and two research 
prototypes especially targeted on UML-based reverse and 
round-trip engineering. The examined commercial CASE 
tools are Together [19] and Rational Rose [15], and the 
research prototypes are IDEA [6, 8] and FUJABA [20]. The 
reverse engineering support of these tools was compared by 
using them for analyzing the subject Java software system 
Mathaino [18]. A suite of model properties capturing 
important design decisions has been identified and used as a 
measure for comparing the results of each tool. In addition, 
the class diagrams extracted by Together, Rose, and IDEA 
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have been stored in UML1.3/XMI1.1 format [14] and 
imported to a modeling tool TED [4], where automatic 
model comparison is carried out using a research prototype 
for manipulating and comparing UML models. 

II. EXAMINED TOOLS 

a. Together: Together supports reverse engineering of 
software systems developed in C++, Java, C#, VB, etc. 
When reverse engineering a Java program, Together 
constructs a tree view similar to one produced by Rose 
but it also produces the UML class diagram at the same 
time (assuming that the user has chosen this type of 
diagram to start with). Together is able to reverse 
engineer the information from the source code (.java 
files), byte code (.class files), jar files, or packed zip 
files, but the models it extracts are not exactly the same 
across these types of input. The Java reverse engineer 
can be given instructions on the files, directories 
(packages), and libraries (for instance, Java foundation 
classes) to be examined. Furthermore, Together can 
provide, upon demand, a large array of metrics on the 
code examined (e.g. LOC, Halstead, complexity) and 
audits on the coding style used. 

b. Rose: Rational Rose supports reverse engineering of, 
e.g., C++ and Java software systems. When reverse 
engineering a Java program, Rose constructs a tree view 
that contains classes, interfaces, and associations found 
at the highest level. Methods, variables etc. are nested 
under the owner classes. Rose also constructs (on 
demand) a class diagram representation of the extracted 
information and generates a default layout for it. 
Additionally, Rose automatically constructs a package 
hierarchy as a tree view. Rose is able to reverse engineer 
the information from the source code, byte code, jar 
files, or packed zip files. Quite similar to Together, the 
Java reverse engineering module can be given 
instructions on files, directories, packages, and libraries 
to be examined. 

c. Fujaba: Fujaba is a UML based CASE-tool that has 
been developed since 1998 at University of Paderborn. It 
supports code generation from class diagrams as well as 
activity diagrams, state charts and collaboration 
diagrams. This allows the use of the UML as a kind of 
visual programming language for the development of 
full fledged applications without any manual coding. 
Fujaba aims to provide roundtrip engineering support: if 
some developer or other tools (e.g. a version control 
system) modify the generated code and if these 
modifications stick to certain coding standards, then the 
Fujaba environment is able to analyze the changed code 
and to (re)create the corresponding UML specification. 
Again, this covers the static structure, i.e. the class 
diagrams, as well as the dynamic structure, i.e. the 
method bodies. To some extent, this round-trip 
engineering functionality may also be used for reverse 
engineering foreign code. This holds especially for class 
diagrams. 

d. Idea: The reverse engineering tool IDEA has been 
developed at University of Bremen, Germany, within the 
UMLAID (Abstract Implementation and Design with the 
Unified Modeling Language) project. The main objective 
of IDEA is the re documentation of Java programs using 
the UML, with focus on the static analysis of object-

oriented structures using UML class diagrams. These are 
generally considered the most-employed and best-
understood diagrams included in the UML. In the 
context of IDEA, a meta model for the Java language has 
been developed. The models of the actual programs 
examined are stored as instances of a data structure 
corresponding to the assumed meta model. A translation 
framework is employed to create UML models from the 
Java models, providing a standardized translation 
scheme. 
In several successive steps, transformations are applied 

to the model with the goal of creating an abstract design 
level representation of the examined program. These are the 
same features that have been applied for the study presented 
in this paper and include for example recognition of 
container classes, multiplicities and inverse associations [6]. 

Recent research addresses the extension of IDEA’s 
functionality by several metric-based analyses [8]. These 
allow to visualize metrics graphically in the context of their 
underlying architecture, what makes it possible to 
understand the composition of metric values. The primary 
subject of this approach, however, is an algorithm for metric 
based partitioning of large diagrams that allows selective 
visualization of semantically coherent diagram regions. 

III. A CASE STUDY 

Mathaino is a tool for simultaneously migrating legacy 
user interfaces to multiple web-based platforms [5, 18]. 
Mathaino is part of the CelLEST environment for 
interaction based reengineering of legacy systems [3]. The 
complete system consists of about 450 classes. Of these, the 
core package has been selected for reverse engineering. 

A. Examined Model Properties: 
a. Number of Classes (NOC): This is a general measure 

for the overall size of a software module, such as a Java 
package for example. NOC values can be counted in 
various ways, depending on how interfaces are 
represented and how “special” classes, such as container 
and inner classes, are counted. Therefore, high NOC 
values may indicate a more detailed representation.  

b. Number of Associations (NOA): This metric measures 
the amount of interconnectedness between different 
classes by means of associations. However, more care 
has to be taken when interpreting NOA values than 
concerning NOC. Low NOA values may hint on an 
imprecise reverse engineering algorithm, but can also be 
the result of abstraction, for example recognition of 
inverse associations. As in the latter case, low values are 
considered better, NOA should be measured both before 
and after doing abstractions. 

c. Types of Associations: The UML supports different 
kinds of associations like directed, bidirectional, 
aggregation and composition. Additionally, the meaning 
of an association may be modified by applying 
adornments (e.g., tags or qualifiers) to its ends. In this 
section, we examine, which UML adornments and 
association kinds have been encountered, and under 
which conditions they have been employed in reverse 
engineering. This allows conclusions about the meaning 
that has been imposed on a feature by a particular tool. 

d. Handling of Interfaces: An interface is a specifier for 
the externally-visible operations of a class, component, 
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or other classifier (including subsystems) without 
specification of internal structure [12]. In UML 
diagrams, interfaces are drawn as classifier rectangles or 
as circles. The interfaces are attached by a dashed 
generalization arrow to classifiers that support it. 
This indicates that the class provides (implements) all of 

the operations of the interface. The circle notation is used 
when the operations of the interface are hidden. 

A class that uses or requires the operations supplied by 
the interface may be attached to the circle by a dashed arrow 
pointing to the circle. From the reverse engineering point of 
view, generation of such dependencies is important for 
understanding the usage of interfaces and for concluding 
component structures and dependencies (e.g., to abstract a 
set of class diagrams to a component diagram). 

Furthermore, different ways of handling interfaces may 
impact the NOC metric and possibly the readability of the 
respective class diagram.  
e. Handling of Java Collection classes Java collection: 

classes are an implementation-specific means to handle 
collections (e.g. sets, list or maps) of objects. In design, 
such features do not appear, but are rather modeled by 
using association adornments like multiplicity or 
qualifiers. We examine, whether the reverse-engineering 
algorithms recognize Java collections and their contained 
types, or handle them like ordinary classes. Container 
resolution is important not only in design recovery, but 
also in metric based analysis [8]. 

f. Multiplicities: In the UML, to-many associations 
between objects are described by means of multiplicities. 
Precise information about multiplicities is difficult to 
derive and requires ideally dynamic-analysis techniques, 
which are not supported currently by the tools we 
examined. We examine, if and to what extent 
multiplicities are recognized by means of the available 
static analysis methods. 

g. Role Names: The function of role names at association 
ends is comparable to that of attribute names in the sense 
of giving to an association between classes a meaningful 
descriptor, which depends on the end it is attached to. 
Therefore in reverse engineering, role names can hold 
relevant additional information about the system 
infrastructure.  

h. Inner classes: Java inner classes, too, are an 
implementation specific feature that hides a class 
definition within the specification of another class. Thus, 
recognizing inner classes is important to reflect the entire 
system structure. 

i. Class Compartment Details: We examine the level of 
details when resolving method signatures, e.g., whether 
parameter identifiers are resolved (in addition to the 
parameter type). This is especially important when 
analyzing the complete source code from method 
implementations. 

IV. RESULTS FROM THE TOOLS 

A. Industrial Case Tools: 
The metrics we collected on the behavior of Rose and 

Together are summarized in Table 1. 
a. Classes: Rose was able to find altogether 39 classes, 42 

unnamed anonymous inner classes, and three named non 
anonymous inner classes. Out of 39 conventional 

classes, 11 have inner classes (named or unnamed). Rose 
models inner classes the same way as any other classes 
(with rectangles); thus, the total number of classes in the 
class diagram was 84. The name of the (non-anonymous) 
inner class in the source code is used as the name of the 
modeled inner classes. In the case of unnamed inner 
classes, Rose generates numbers (in numerical order, 
starting from “1”) to label the unnamed inner classes. 
For instance, one of the classes, called Mathaino 
MainFrame, has 27 unnamed inner classes, named “1”, 
“2”,: : :, “27”. Rose found 42 unnamed inner classes 
owned by 11 different classes and only three named 
inner classes. 
Together, when applied to the “*.java” files of Mathaino, 

recognized the 39 classes of the core package and the three 
named inner classes. Interestingly enough, when applied to 
the “*.class” files of Mathaino, Together recognized all 45 
inner classes, both anonymous and named. In both cases, the 
inner classes were shown on the diagram as part of the 
classes in which they belong to (not as separate rectangles). 
The name compartment of the class reverse engineered by 
Rose contains the name of the actual class and the name of 
its package. Both the attribute and operations compartments 
contain the names, types, and visibility (public, protected, or 
private) of the variables and methods, respectively. 

For each method, the parameter types are also given. 
Together’s diagrammatic representation of classes is 

similar. Both Rose and Together (when applied to the 
“*.class” files of the project) can identify the classes of 
external packages on demand or if there exists a relationship 
(or a reference) to/from the analyzed package. We did not 
count the classes of the external packages. 
b. Handling of Interfaces: Rose uses a circle to illustrate 

interfaces in the class diagram. The (abstract) methods of 
the interfaces are written below the circle, separated with 
two horizontal lines, which is not the style recommended 
in UML. Together illustrates them using class rectangles 
with an Interface stereotype shown above the interface 
name. This notation is also available as an option in 
Rose. Both Rose and Together found four interfaces in 
the Mathaino core package. Both connect the interfaces 
to the classes that realize them, that is, the classes that 
implement the abstract methods defined in the interfaces. 
When the circle notation in used, Rose does that with a 
solid line. When a class with a Interface stereotype is 
used, both tools use a dashed line with a triangle at the 
end pointing to the interface (similar to the inheritance 
notation). 
However, neither Rose nor Together were able to 

generate any dependencies between interfaces and the 
classes that use them (typically shown with a dashed arrow 
from a class pointing to the interface). This is an obvious 
limitation to understanding the roles of the interfaces. 
Further, interface dependencies are needed for abstracting a 
class diagram into a component diagram, understanding the 
interaction among different components, etc. 
c. Associations: The total number of associations found by 

Rose was 83. In Rose models, the relationship between 
an owner class and its inner class (named or unnamed) 
using an association with a fixed role name, this$0. 
Therefore, 45 of the modeled associations are generated 
base on an inner class – owner class relationship. The 
other 38 associations model the relationship between a 
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class and the types of variables it defines. In these 
associations, only the end of the association which is 
connected to the class representing the type of the 
variable is given a role name. The role is named by the 
variable itself. Rose does not produce  multiplicities for 
the associations. In all cases, associations are directed. 
Together did not extract any associations when applied 
to the “*.class” files of Mathaino. When applied to the 
“*.java” files, it extracted 16 associations. These 
associations are directional but do not specify any roles, 
neither do they specify multiplicities. 
Neither tool generated any aggregation or composition 

relationships. 
d. Handling of Java Collection Classes: Rose and 

Together handle container classes similarly. The 
container types of attributes used in the Mathaino core 
package (namely, Vectors) were not represented 
differently from any other attribute types; they are 
written (as strings) in the variable compartment of the 
class. That is, if a class has a variable, say v, the type of 
which is Vector, the variable compartment contains a 
string v : java.util.Vector. 

B. Fujaba: 
At the time of the writing, reverse engineering the 

Mathaino package with FUJABA does not (yet) produce 
sophisticated results. Especially, FUJABA is not yet able to 
reasonably deal with the to-many associations in Mathaino. 
According to the round-trip engineering approach, FUJABA 
assumes that all attributes are encapsulated with certain 
access methods where the method names contain the 
attribute name. The Mathaino system does not employ such 
access methods. Instead, the private container attributes are 
used directly within various logical methods. Due to the lack 
of explicit access methods, the analysis of container/Vector 
entry types is not even triggered. Instead, uni-directional to-
one associations to the class Vector are created. Similarly, 
FUJABA is not yet able to merge any pair of uni-directional 
associations to one bi-directional association. In FUJABA, 
this merge relies on the existence of explicit access methods 
that call each other, mutually. Without explicit access 
methods, this feature is not even triggered. 

Generally, FUJABA provides a very flexible reverse 
engineering mechanism, that e.g. allows the user to de- fine 
application specific patterns for the detection of certain 
higher level design pattern elements. Unfortunately, this 
does not yet apply for basic reverse-engineering features 
like association detection. Due to this case study, this will be 
fixed in the near future.  
a. Classes: FUJABA is able to identify the top-level classes 

and all explicit, named inner classes. However, FUJABA 
ignores anonymous inner classes since it does not use 
this construct in forward engineering and thus it does not 
expect it in reverse engineering. However, this 
information is provided by our parser and the FUJABA 
team is currently discussing, whether such anonymous 
inner classes should be contained in the class diagram. In 
addition to the Mathaino classes, FUJABA shows all 
non-primitive classes that are used as attribute types as 
the target of to-one associations. Classes used as 
parameter or return types or for local variables are 
shown optionally.  

b. Handling of Interfaces: Interface classes are shown as 
usual classes with the stereotype _Interface_. Classes 

implementing the interface inherit from it. Interface 
usage is not depicted, although usage information is 
provided by the FUJABA parser. An optional 
incorporation of uses relationships is current work. 

c. Role Names: Role names are derived from the identifiers 
of non-primitive attributes and are shown at the target 
association end of directed associations. When merging 
directed associations, both role names are taken, 
resulting in an undirected association with role names at 
both ends.  

d. Handling of Java Collection Classes: FUJABA uses an 
adaptable list of pre-defined container classes. Attributes 
of this type are automatically examined for their entry 
type by looking for usages of their add methods. On 
success such container attributes are turned into to-many 
associations. However, due to performance reasons, 
currently this mechanism is triggered through a name-
based identification of encapsulating access methods. 
This heuristic did not work for the Mathaino system.  

e. Merging Inverse Associations: The merging of pairs of 
inverse associations is (again) based on the identification 
of access methods that call each other mutually. While 
this works great in round-trip engineering, this did not 
work for theMathaino system. The FUJABA team 
currently considers additional heuristics. 

f. Aggregation and Composition: In FUJABA, 
aggregation and composition is reflected in certain 
“isolateYourselfAndBecomeGarbageCollected” methods 
that are forwarded to contained elements in case of a 
composition relationship. The Mathaino system does not 
contain such methods. 

g. Multiplicities: Due to conceptual considerations, 
FUJABA does not support lower multiplicity bounds, 
neither for to-one nor for to-many associations, neither 
on forward nor on reverse engineering. Thus, non-
primitive attributes are shown using a 0..1 multiplicity 
and container  attributes with identified entry types are 
shown using a 0..n multiplicity.  

h. Inner Classes: Named inner classes are shown as usual 
classes in the class diagram. If applicable, the optionally 
shown package name contains the surrounding class and 
or method name. So far, anonymous inner classes are 
ignored.  

i. Class Compartment Details: All standard UML class 
compartment details like (class name, attributes and 
methods) are supported at implementation detail level. 
For attributes, visibility, identifier, type and an optional 
multiplicity for arrays are shown. Method signatures 
include identifiers and types of parameters. Since this 
easily overcrowds the class diagram, the attribute and the 
method compartment may be collapsed by default if they 
exceed a certain size. The next version of FUJABA will 
provide scrollers for large attribute or method 
departments. 

C. Idea: 
When reverse engineering the Mathaino core package 

with IDEA, several transformation steps have been applied 
to the basic implementation level UML model to recognize 
the examined model properties. Descriptions of these steps 
are included in the following sections about the analysis 
results. Since some characteristics of the UML model 
change during the transformation steps, the pre-defined 
metrics suite was calculated anew after each step. 
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a. Metric Calculations: For calculation of the NOC metric, 
both the number of classes from the mathaino core 
package as well as the total number of classes related to 
it (e.g. by UML associations) have been counted. Inner 
classes have been taken into account in addition to plain 
classes, if they were defined uniquely with a separate 
name. Classes from external packages were considered, 
if a relationship (or reference from method bodies) to the 
Mathaino core package existed. In total, 42 classes have 
been discovered. This umber is composed of 39 plain 
classes and three named (unique) inner classes (in total, 
45 inner classes have been found, but anonymous inner 
classes were not considered here). Additionally, 35 
external classes have been found, resulting in a total of 
77 classes (not counting the anonymous inner classes). 
The initial number of associations was 56. As  expected, 

this number was reduced after each transformation step. 
During container resolution, two associations were 
discarded, because the respective contained classes were of 
type String, which is handled like a primitive type and is not 
shown as an individual class (cf. section 4.3; NOA after 
container resolution was 54). Finally, seven association pairs 
have been merged to bidirectional associations, resulting in 
a final NOA of 47. 
b. Handling of Interfaces: For interfaces, the default UML 

meta model representation as subclasses of Classifier is 
used. This means that they appear in the resulting class 
diagrams as separate interface rectangles. The number of 
interfaces is independent from the number of classes and 
no subset of the latter. Four interfaces have been found 
in the core package and another six external interfaces 
have been in use, summing up to a total of 10.  

c. Role Names: Role names are derived from the identifiers 
of non-primitive attributes and are shown at the target 
association end of directed associations. In the special 
case of an association depicting the relationship of an 
inner class to its defining class, the keyword ’this’ is 
used at role name at the association end of the defining 
class. When merging directed associations, both role 
names are taken, resulting in an undirected association 
with role names at both ends. 

d. Handling of Java Collection Classes: At 
implementation level, containers are shown as individual 
classes. To reveal the true relationships between a source 
object and the objects stored in a container, a resolution 
process is employed that analyzes the source code for 
accesses to the interface of container objects [6]. While 
examining the Mathaino core package, 16 container type 
attributes have been found, all of which were Vectors. 15 
of these could be resolved. Two could not be represented 
graphically because the type of the contained objects was 
String, which is not represented in the diagram as an 
individual class but handled as a primitive attribute. 
These were rendered using the textual UML attribute 
notation with a multiplicity attached. Finally, one 
container attribute could not be resolved at all, because 
the source code of its containing class did not contain 
any invocations of the container attribute’s store 
operation. Since IDEA examines the source code for 
invocations of the collection classes’ interface to 
determine the contained type, this one was not 
resolvable. Because of the single remaining association, 
the container class Vector was kept in the diagram. For 

the graphical representation of the resolved containers, 
the UML qualifier notation has been employed [6], 
which shows a qualified attribute (the vector index)  t the 
association source end and a 0..1 multiplicity at the 
target end, denoting that the number of contained 
elements is fi- nite. Experience with this UML notation 
has shown that it is not always suitable in large 
diagrams. The problem is that the notation consists of 
two parts (one at each association end), but that it is not 
always possible to view both ends at the same time. 
Having only the multiplicity end without the qualifier 
tends to be confusing, since only the source end, but not 
the target end gives a hint on the qualifier of the 
association. We have circumvented this UMLspecific 
problem by extending the qualifier notation by a tagged 
value fqualifiedg at the target association end. 

e. Merging Inverse Associations: We discovered seven 
pairs of potentially inverse associations [7]. All of them 
were unique, that is, no ambiguities with other 
associations were encountered during the merging 
process. Therefore, we decided to merge all of them. 
Three different kinds of inverses have been found: 
Between independent classes. In this case, redefined 

pairs of role names or known relations from the design can 
be taken as hints for merging. When these are not available, 
it is only possible to analyze the role names and rule out 
ambiguities. 

_ Between class and contained class (i.e. a class hose 
objects are stored in a container attribute of the source 
class). These are considered related because of the tomany 
association between source and targets. 

_ Between class and inner class. These were considered 
inherently associated because of the tight relation between 
inner class and defining class (cf. section 4.3). To recognize 
the second group of inverses, the sequence of model 
abstraction steps is crucial, as they can only be discovered 
after resolution of container classes.  
f. Aggregation and Composition: According to the UML 

specification documents [13] [17], aggregation is an 
informal feature that is not characterizable in a precise 
way, as would be required to recognize it from the 
source code. Different than composition, aggregation has 
a rather imprecise definition, which describes a whole-
part relationship between source and target classes. The 
best way to recover this relation from existing programs 
is sufficient knowledge of the software architecture. 
Since we did not have a person locally available 
knowing the system in detail, we decided to use 
aggregation only in one rather clear case, namely where 
a role name (at the association between classes Mathaino 
Desktop Handler and Mathaino MainFrame) contained 
the keyword “owner” and thus suggested an aggregation 
relationship. In the UML, composition defines 
constraints about the instances of classes, not about 
classes themselves. Therefore, correct recognition of 
composition requires dynamic analysis techniques, 
which are not yet supported by IDEA. However, this is 
subject to future work. 

g. Multiplicities: The following multiplicity values and 
ranges are discovered by the IDEA tool: _ ’0..1’ The 
target element is initialized somewhere in  the source 
code (at an unknown position). It cannot be determined 
statically, whether an initialization will actually happen 



J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,94-102 

© 2010, IJARCS All Rights Reserved                                                                                                                                             99 

at runtime. _ ’1’ The target element is definitely initiated 
at  object creation time, i.e. either in the constructor or 
the class initialization block. 
’*’ The star multiplicity represents a container class, e.g., 

a Set or a Collection. When using the qualifier notation for 
Lists, Vectors or arrays, the multiplicity ’0..1’ is used 
together with a qualifier. The meaning of this is that every 
index is assigned zero or exactly one element (the list is 
finite). 

Of these multiplicities, all but ’*’ have been  ncountered 
in the Mathaino core package. The star multiplicity was not 
used, because the only container type employed was Vector, 
which is represented using the aforementioned qualifier 
notation. 
h. Inner Classes: IDEA recognizes non-anonymous  inner 

classes by parsing the byte code. These are  epresented 
like conventional classes, using the Java naming 
convention for inner class names (as UML does not 
include this concept). Since an association to an inner 
class is implicitly bidirectional (based on the way inner 
classes are realized in Java), this construct can be 
considered the pure form of an inverse association. For 
each inner class, an association to its defining class is 
shown with the role name ’this’, to indicate accessibility 
of the defining class from within the inner class. 

i. Class Compartment Details: All standard UML class 
compartment details like (class name, attributes and 
methods) are supported at implementation detail level. 
For attributes, visibility, identifier, type and an optional 
multiplicity for arrays are shown. Resolution of method 
signatures includes identifiers of parameters, which 
facilitates understanding of internal structural relations 
and metrics analyzes [8]. Thus, the complete design and 
implementation level signature information is available 
in the class diagram.  

V. COMPARATIVE RESULTS EVALUATION 
AND ANALYSIS 

Precisely understanding the differences between the 
UML models reverse engineering by the CASE tools 
employed in this case study is a challenge. The examined 
tools, and to our knowledge CASE tools in general, fall 
short on supporting the comparison of different UML 
models against each other. Some ASE tools offer profiling 
utilities for measuring a predefined set of metrics, but they 
differ significantly from each other, making it difficult to 
compare the results in a uniform manner. Furthermore, none 
of the tools is able to deduce the semantically equivalent 
elements between individual UML models and compare 
their internal states. In addition to inspecting the produced 
UML models and comparing the results by hand, we also 
exported them into TED [4], a proprietary UML CASE tool 
developed by the Nokia Research Center, by using an XMI 
bridge. The esults were compared using a set of UML model 
operations on a research prototype, the BMO (Basic Model 
Operations) toolkit [9]. A UML model operation produces a 
new UML diagram on the basis of existing ones. Set 
operations comprise one fundamental category of model 
operations. They apply set theoretical operations (i.e. union, 
difference or intersection) for two diagrams of the same 
type, and are typically functions with signature D x D _! D, 
D denoting a UML diagram type. These set operations, 
together with a few customized scripts, were used for 

automatically comparing the UML models under a common 
workbench.  

A. Automatic Model Comparison Using Ted: 
In this particular case study, the BMO toolkit was used to 

compare the three models produced by Rational Rose, 
Together, and IDEA. The models were first analyzed using a 
predefined metrics calculation schema, and subsequently set 
operations were performed on the models in order to find 
the possible interesting commonalities and differences 
between them. Even with a relatively small system as 
Mathaino, it becomes evident that manual comparison of the 
models is tedious at best, especially for larger scale studies.  

Only the IDEA model (as it was saved in XMI) 
conformed to the manually calculated metrics. Both Rose 
and Together models contained model elements external to 
the core package inspected. Together omits the package 
structure, placing every model element under a common 
package thus making it impossible to restrict the data only to 
that of the Mathaino core. For example, there were 121 
classes, 43 associations, and 12 interfaces in the Together 
model. Rose generates model elements other than those 
covered in this case study, namely stereotypes, comments, 
components (reflecting the Java package structure) etc. The 
differences in metrics from different tools also point out the 
weaknesses of XMI and especially the different XMI export 
implementations of the tools. Therefore more interesting 
than single model metrics are the differences and properties 
that can be instantly spotted. The BMO tool tries to draw the 
attention of the user on the potentially interesting properties 
and evident differences. Table 2 shows the number of 
counterpart classes, interfaces, operations, attributes, 
associations, and generalizations found between different 
models by BMO.  

After a counterpart relationship has been generated, 
BMO allows the results of the operations to be visualized in 
TED. Since the different CASE-tools excel in different areas 
of reverse engineering, union operation can be used for 
combining these models into a more complete representation 
of the original system. Difference operation can be used for 
exploring the model features generated by only one of the 
CASE-tools, and intersection shows the minimal sub model 
that both the CASE-tools agree on. The most useful 
operation in the context of this case study is the symmetric 
difference, which can be used to visually differentiate 
between the interpretations of different CASE tools. 
Symmetric difference shows the parts generated only by one 
tools but not by the other. The differences typically result 
from different capabilities and interpretations of the tools.  

Figure 1 shows a portion of a TED class diagram 
describing the symmetric difference of IDEA and Rose 
models, centered on the Mathaino MainFrame class. TED is 
not able to use visual cues such as colors for differentiating 
the sources of different model elements, but with the help of 
the textual description produced by BMO, the origin of the 
elements can be deduced. It is immediately evident from the 
picture how Rose is able to generate the (unnamed) inner 
classes, but IDEA generates multiplicities, association end 
role names and a composition relationship. The parallel 
associations between Mathaino Mainframe and Mathaino 
Desktop Handler classes, the upper generated by Rose and 
the lower  y IDEA, show the different capabilities of the 
tools, and also reveal the potential problems when 
combining the results. The techniques described here help to 
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pinpoint the potentially interesting differences between the 
models, and in the context of this case study, the capabilities 
of the tools   

B. Results Analysis: 
We compared the results of the examined tools in two 

different categories: basic and advanced concepts. Basic 
concepts refer to the UML core elements like classes and 
associations, and demands that the results are a valid 
representation of the underlying software module (i.e. no 
central elements have been omitted or represented 
imprecisely). The second category evaluates the tools’ 
capability to generate a more abstract representation rather 
than a plain implementation level view. This includes 
strategies for design recovery and recognition of facts that 
are not immediately visible from the source code. 
a. Basic concepts: All of the examined tools succeeded in 

recognizing the basic UML features like classes, 
interfaces and associations. Only in one case Together 
failed to recognize a part of the plain associations. At 
this level, the results could be compared easily using 
metrics like NOC and NOA. The numbers were 
generally identical for all tools and the occurring 
differences could be explained by the different 
approaches or ways to count. For example, anonymous 
inner classes and package-external classes are handled 
differently by each tool. Similar differences existed for 
associations. Concluding, the creation of a correct 
implementation-view representation could be handled by 
all four tools. 

b. Advanced concepts: In the second, advanced 
comparison, it could be seen that the reverse engineering 
capabilities of the industrial tools do not go far beyond 
the basic UML features. More abstract representations 
and recognition of advanced features are clearly the 
domain of the research tools: these managed to recognize 
all of the features from the property suite either 
completely or at least to a certain degree, while the 
industrial tools did not address several of them at all (for 
example, multiplicities, inverse associations and 
container resolution have not been addressed by the 
industrial tools). 
This leaves the impression that understanding and   

application of the UML in reverse engineering is still at a 
rather low level in industry. Our observation is underpinned 
by the fact that when comparing different tool versions from 
the previous two years, no major advancements could be 
found for the reverse engineering modules of the industrial 
tools. 

The advanced concepts are semantically more 
challenging to be inferred than the basic concepts. This 
means that they provide better support for the user in 
understanding the software: by application of the complex 
UML features, a broader syntax is available to the analyst. 
This allows more detailed information to be added to the 
class diagrams than is possible in the basic reverse 
engineering. On the other hand, it means that interpretations 
are needed. Therefore, the generation of the advanced 
concepts should be subjected to user acceptance. In a 
desirable case, the user involvement is supported either by 
allowing the user to configure the interpretations or by a 
providing facilities for incremental generation of different 
concepts (as done, e.g., in IDEA). 

In this study we compared the reverse engineering 
facilities of four tools. To estimate the quality of the 
diagrams more objectively, they should also be compared 
with a “correct class diagram”, which could be a design 
model or a model manually constructed by the experts of the 
subject system. This study nonetheless shows that there are 
significant differences among the tools and suggests that 
UML has not been used in its full potential in reverse 
engineering so far. This is somewhat surprising, since UML 
is de facto industrial standard for the presentation of various 
design artifacts in object-oriented software development. 
Using UML also in reverse engineering is therefore 
desirable; the familiar notation is easy to understand and 
using the same notation as used in software development 
opens possiblities for round-trip engineering.  

VI. RELATEDWORK 

Various empirical studies on comparisons of reverse 
engineering, program comprehension, and information 
extracting tools have been presented [2, 10, 1, 16]. Bellay 
and Gall presented a study in which they compared four 
reverse engineering tools by applying them to a commercial 
embedded software system, written in C [2]. They aimed at 
pointing out the differences in capabilities and identifying 
their strengths and weaknesses, especially considering their 
usability, extensibility, and applicability for analyzing 
embedded software systems. 

VII. SUMMARY AND CONCLUSION 

Reverse engineering of UMLmodels for the subject 
objectoriented software system can be carried out roughly 
according two principles: (1) pulling out as much 
information as possible from the subject system and 
modeling it somehow using UML models or (2) aiming at 
design level models that are populated with the source code 
information whenever it is convenient. To some extent, the 
former resembles the traditional bottom-up reverse 
engineering, while the latter has a top-down flavor. Our 
motivation in this case study was to find out to what extent 
the UML is used or applicable in tool-supported reverse 
engineering. We compared four tools from both industry and 
research in terms of their reverse engineering capabilities. 
We carried out both manual and automated comparisons.  

The manual comparison is needed to understand the 
interpretations and mappings used to generate a class 
diagram. With automatic comparison, in turn, metrics data 
as well as differences and similarities between models can 
be quickly and easily found out. Using a standardized 
notation such as UML for the representation of software 
models makes it possible to successfully exploit model 
manipulation operations, such as set operations, for model 
analysis and comparison also with reverse engineered 
models. It is very difficult, if not impossible, to build such a 
workbench for empirical evaluations of traditional reverse 
engineering tools because of the notational differences. 
Even though in this study we focused on class diagrams, 
similar model operations can be built, e.g., for high-level 
component diagrams. The bottleneck in this approach is the 
exchange format: even though XMI 1.1 has its severe 
limitations, it is currently the only common exchange format 
supported by the UML-based CASE-tool vendors. 
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Our examination shows that although all tools  rovide a 
reliable reverse engineering functionality, only the  research 
prototypes provided algorithms for advanced analyses. The 
focus in the reverse engineering facilities of the industrial 
tools, in turn, seem to be on the UML core features. Despite 
of the constantly ongoing development, the advanced 
reverse engineering strategies have not been considered in 
these tools. Concerning the industrial tools, one crucial 
problem is the maturity of UML support in general. They do 
not support the UML notation in its entirety. For example, 
Together has only limited support for association classes 
and qualifiers, and both Rose and Together do not support 
nary associations. Although Together is easily extensible via 
its OpenAPI and Rose via its Rose Extensibility interface 
(REI), the underlying data model contains lots of 
simplifications that make it hard (and sometimes 
impossible) to reflect the full richness of the UML 
metamodel. 
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