
Volume 3, No. 2, March-April 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 111

ISSN No. 0976-5697

A Comparative Study of Transaction Models in Mobile Computing Environment
Veenu Saini

Assistant Professor, Department of IT
PG Govt. College-11, Chandigarh, India.

vnusaini@yahoo.co.in

Abstract: The mobile computing paradigm introduces new technical issues in the area of database systems. However, techniques for traditional
distributed database management have been based on the assumption that the location of end connections among hosts in the distributed system
does not change. On the other hand, in mobile computing, these assumptions are no longer valid and mobility of hosts creates a new kind of
locality that migrates as hosts move. Consequently, existing solutions for traditional distributed database management may not be applicable
directly to the mobile computing environment. Users, either static or mobile must be able to access data by submitting transactions. It has been a
challenge for researchers to define and implement efficient transaction processing and update techniques in mobile computing. Many research
proposals that focus on supporting transaction processing models in mobile computing environments have been developed. However, there are
still major issues that have not been completely solved. One of the problems is to support the requirement for mobile transaction processing
system. Here in this paper, I have presented a comparative analysis of existing mobile transaction models on the basis of some issues (transaction
properties, mobility, distributed execution, disconnection and heterogeneity) in mobile computing environment.

Keywords: Mobile Transaction; Transaction Properties; Mobile Computing; Heterogeneity

I. INTRODUCTION

A transaction is nothing but a legitimate implementation
of database operation [1]. Users can interact with the
database by one or many database operations. The database
operations can be gathered together to form a unit of
execution program that is called a transaction. A transaction
starts from creating a coherent state of database [2]. A
transaction transforms the database from one consistent state
to another consistent state.

The ACID (atomicity, consistency, isolation and
durability) properties of a transaction ensure that: (a) a
transaction always keep the database in a consistent state,
(b) a transaction does not disturb other transactions during
their concurrent execution processes, and (c) the consistent
state of the database system that is established by a
committed transaction withstands software or hardware
failures.

A distributed transaction processing system is a
collection of sites or nodes that are connected by
communication networks. A mobile host can be
disconnected from the database servers for long periods;
therefore, transactions that are executed at the mobile host
may suffer from long blocking if the necessary data is not
available at the mobile host. To deal with this problem, the
mobile transaction processing system should have the
capacity to cache enough data so that it can carry out the
transactions while being disconnected from the database
servers.

Here I have surveyed existing mobile transaction models
(Kangaroo transaction model, Report and Co-transaction
model, Two-tier transaction model, Pro-motion transaction
model, Weak -Strict transactions model, Pre-serialization
transaction model and Moflex transaction model) on the
basis of some issues for mobile transaction processing
system.

II. PRIOR LITERATURE

Lars Frank [1999], in this paper the author has focused
on implementing the global semantic ACID property in
systems using mobile computing. The global atomicity
property has been implemented by using retainable, pivot
and compensable sub-transactions in that order. The global
consistency property has been managed by the application
programs themselves supported by tools. The global
isolation property has been implemented by using counter
measures to the missing isolation of the updating
transactions and the global durability property has been
implemented by using the durability property of the local
DBMS systems. To implement ACID properties, a model
called Countermeasure Transaction Model has been
introduced in this paper. In The Countermeasure
Transaction Model a global transaction consists of a root
transaction (client transaction) and several single site sub-
transactions (server transactions). The sub-transactions
themselves can be nested transactions; i.e. a sub-transaction
may be a parent transaction for other sub-transactions. Tools
used to access remote sub-transactions are: Remote
Procedure Call, Update Propagation, and Transaction
Message. This Model ensures ACID properties in multi-
database system[3].

Hossam S. Hassanein [2000], in this paper, the focus is
to study the effects of transactions characteristics on system
performance. A detailed simulation model is developed and
conducted several experiments to measure the impact of
transactions characteristics on the performance. First, the
effect of the number of leaves on the performance of nested
transactions is investigated under different shaping
parameters. Also, effects of the depth of the transaction tree
on the system performance are investigated. This paper
introduced a comprehensive simulation model for studying
the performance of nested transactions in database systems.

The model was used to investigate the performance
effects of two main factors on a system with nested
transactions: the number of levels and the number of leaves

Veenu Saini , International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 111-117

© 2010, IJARCS All Rights Reserved 112

of the transaction tree. It was shown that, in general,
increasing the number of leaves improves the performance
of the system. This was observed for any number of levels,
transaction size, and data contention level and leaf arrival
time, with or without common items. However, at high data
contention levels and large transaction sizes, increasing the
number of leaves beyond a certain limit may cause
performance degradation. This is due to the significant
increase in the restart ratio caused by increasing the number
of leaves. It is also shown that increasing the number of
levels of nested transactions degrades the system
performance for nested transactions of small number of
leaves. The effect of the number of levels on the
performance of nested transactions of large number of
leaves is insignificant, especially at high mutli-programming
levels [4].

Lisa Clark, Omer Erdem Demir [2003], this paper,
presents a survey of transaction management models for
wireless and mobile databases. Comparison of the models
has been presented in this paper and comparison shows that
the execution models are designed for specific network and
data distribution topologies. They also relax the ACID to
make the models more responsive and to avoid the
deadlocks. Some of the models also define transactions of
different consistency levels [5].

III. MOBILE TRANSACTION MODELS

A. Kangaroo transaction model (KTM):

a. Description:
 The Kangaroo transaction model [5] [6] is designed to

capture the movement behavior and the data behavior of
transactions when a mobile host moves from one mobile cell
to another. This transaction model is built based on the
concepts of global and split transactions in a heterogeneous
and multi-database environment. The global transaction is
split when the mobile host moves from one mobile cell to
another, and the split transactions are not joined back to the
global transaction. The Kangaroo transaction model assumes
that the mobile transactions may start and end at different
locations. The characteristics of the Kangaroo transaction
model are :-
a) Mobile transactions that include a set of sub-

transactions called global and local transactions are
initiated by mobile hosts. These mobile transactions
are entirely executed at the local database servers that
reside on the fixed and wired connected networks.

b) The execution of a Kangaroo sub-transaction in each
mobile cell is supported by a Joey transaction that
operates in the scope of the mobile support station. The
Joey transaction plays role of a proxy transaction to
support the execution of the sub transactions of the
Kangaroo transaction in the mobile cell.

c) The movement of the mobile host from one mobile cell
to another is captured by the splitting of the on-going
Joey transaction at the old mobile support station and
the creating of new Joey transaction at the new mobile
support station. The execution of the Joey transaction
is supported by the Data Access Agents (DAA) that act
as the mobile transaction managers at the mobile
support stations.

Figure 1 presents the architecture of Kangaroo
transaction model.

Figure 1- Kangaroo transaction model

b. Transaction properties:
The Kangaroo transaction is the basic unit of

computation in mobile environments. The serializability of
mobile transactions is not guaranteed, and there is no
dependency among Joey transactions, i.e., each Joey
transaction can commit independently. Two transaction
processing modes, which are compensating and split modes,
are supported by the model. For compensating mode, when
a failure occurs, the entire Kangaroo transaction is undone
by executing compensating transactions for all those Joey
transactions. For split mode, the local DBMS takes
responsibility for aborting or committing sub-transactions.
c. Mobility:

The Kangaroo transaction model keeps track of the
movement of mobile hosts via the support of the DAA that
operates at the mobile support station. In other words, the
mobility of mobile hosts is captured on the condition that
the mobile hosts always may communicate with the mobile
support stations. While mobile hosts move from one mobile
cell to another, the hand-off processes are carried out by the
DAAs.
d. Disconnection:

Disconnected transaction processing is not considered in
Kangaroo transaction model. The processing of Kangaroo
transactions is entirely moved to the fixed database servers
for executing.
e. Distributed execution:

The mobile transactions are initiated at the mobile hosts,
and entirely executed at fixed hosts. Transaction results are
forwarded back to the mobile hosts. The Kangaroo
transaction model has shown that the structure of mobile
transactions at the specification and execution phases (with
the dynamic support of Joey transactions) can be different
because of the mobility behavior, i.e., fast or slow
movements, of the mobile host.
B. Reporting and Co-transaction model (RCTM):

a. Description:
Reporting and Co-transactions transaction model [7] is

based on a two level nested transaction model. A reporting
transaction TR shares its partial results to top-level
transaction S by delegating its operations. The delegation
process can happen at any time during the execution of
transaction TR. A co-transaction is a reporting transaction
but it cannot continue executing during the delegation
process. Thus, the co-transaction behaves as a co-routine,

Veenu Saini , International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012,111-117

© 2010, IJARCS All Rights Reserved 113

and resumes execution when the delegation process is
completed.

This model arranges the mobile transaction into
following four types:

a) Atomic transactions: It is related with substantial
events the normal aborts and commits properties.

b) Non-compostable transactions: It is not linked with
compensating transaction. It can execute at any
time and the parents of these transactions have the
responsibility to commit and abort [8].

c) Reporting transactions: A report can be regarded as
a delegation of state between transactions. The
reporting transaction not assigning all its results to
its parent transactions .It only has one receiver at
any time during execution. The updating is
completed permanently if receiving parent
transaction is successfully executed but if receiver
parent transactions unsuccessfully terminate then
corresponding reporting transaction abort.

d) Co-transactions: These transactions executed like
co-procedures executed. When one transaction is
executed then control passes from current
transaction to another transaction during sharing
the results. At a time either both transaction
successfully executed or failed.

b. Transaction Properties:
The top-level transaction is the unit of control, and

atomic sub transactions are compensable transactions. A
Reporting transaction that is compensable does not have to
delegate all of the committed results to the top-level
transaction when it commits. Sub-transactions that are non-
compensable delegate all of their operations to the top-level
transaction when it commits.

c. Mobility:
The locations of mobile hosts are determined via the

identification of mobile support stations. However, the
model does not mention explicitly what happens when
mobile hosts move from one mobile cell to another

d. Disconnection:
Delegation operations require a tight connectivity

between the delegator (i.e., Report and Co-transaction)
transactions and the delegate transaction (i.e., the top level
transaction). Therefore, disconnection is not supported in
this model.

e. Distributed Execution:
 The model supports distributed transaction processing

among mobile hosts and fixed hosts where the network
connectivity among these hosts is assumed to be available
when it is needed.

C. Pro-Motion Transaction Model (PMTM):

a. Description

The Pro-motion transaction model [6] is a nested
transaction model. The Pro-motion model focuses on
supporting disconnected transaction processing based on the
client-server architecture [9]. Mobile transactions are
considered as long and nested transactions where the top-
level transaction is executed at fixed hosts, and sub
transactions are executed at mobile hosts. The execution of

sub-transactions at mobile hosts is supported by the concept
of compact objects (As shown in Figure 2).

Methods common to all
compacts

Type specific Methods

Obligations Data Consistency Rules
State Information

Figure 2 - Compacts as objects

Compact objects are constructed by compact manager at
database servers. Necessary information is encapsulated
within a compact object. The compact objects are co-
managed by the compact managers (resided at the database
servers), the mobility managers (at base host), and the
compact agents (at the mobile hosts). The compact object
plays a role as a contractor that supports data replication and
consistency between mobile hosts and database servers.
When a mobile host is disconnected, the compact agent
takes responsibility for managing all local database
operations of mobile transactions at the mobile host. When
the mobile host reconnects to database servers, the compact
objects are verified against global consistency rules before
the locally committed mobile transactions are allowed to
commit. Figure 3 shows the architecture of the Pro-motion
transaction model. Transaction processing consists of four
phases: hoarding, disconnected, connected, and
resynchronization [10]. Shared data is downloaded to the
mobile host in the hoarding phase. When the mobile host is
disconnected from the fixed host, transactions are
disconnectedly executed at the mobile host. If the mobile
host connects to the fixed database, the transactions are
carried out with the support of the compact manager. When
the mobile host reconnects to a fixed host, the results of
local transactions are synchronized with the database.

Figure 3- Pro-motion transaction architecture

b. Transaction Properties:
The Pro-motion transaction model supports ten different

levels of isolation. Transactions are allowed to locally
commit at mobile hosts; the committee results of these
transactions are made available to other local transactions.
However, the local committed results must be validated
when the mobile hosts reconnect to the database servers.
Therefore, the durability property of transaction is only
ensured when the transaction results are finally reconciled at
the fixed database.
c. Mobility:

Though the mobility manager supports communications
between the mobile host and the database servers, however

Veenu Saini , International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 111-117

© 2010, IJARCS All Rights Reserved 114

in the Pro-motion transaction model the feature of mobility
is not explicitly discussed.

d. Disconnection:
Pro-motion transaction model supports disconnected

transaction processing via the support of compact objects.
When the mobile host is disconnected from the fixed
database, the sub-transactions are split and executed at the
mobile host (these split sub-transactions are not joined when
the mobile host reconnects to the fixed database).
Disconnected transaction processing is a dominant
transaction processing mode in Pro-motion even when the
mobile hosts are able to connect to the database server.
Therefore, the Pro-motion transaction model requires high-
capacity mobile resources at the mobile hosts.

e. Distributed Execution:
Transactions are mostly executed at mobile hosts and the

results are reconciled at the database servers. Therefore, the
distributed transaction processing is not strongly supported
by the model.

D. Two - tier transaction model (2TTM):

a. Description
The two-tier (also called Base-Tentative) transaction

model is based on a data replication scheme. For each data
object, there is a master copy and several replicated copies.
There are two types of transaction: Base and Tentative. Base
transactions operate on the master copy; while tentative
transactions access the replicated copy version. A mobile
host can cache either the master or the copy versions of data
objects. While the mobile host is disconnected, tentative
transactions update replicated versions. When the mobile
host reconnects to the database servers, tentative
transactions are converted to base transactions that are re-
executed on the master copy. If a base transaction does not
fulfill an acceptable correctness criterion (which is specified
by the application), the associated tentative transaction is
aborted. The two-tier transaction model is shown in Figure
4.

Figure 4 - Two-tier transaction model

b. Transaction Properties
Tentative transactions locally commit at the mobile host

on replicated copies, and the committed results are made
visible to other tentative transactions at that mobile host.
The final commitments of those tentative transactions are
performed at the database servers.

:

c. Mobility:
Two-tier transaction model does not support the mobility

of transactions.

d. Disconnection
While the mobile hosts are disconnected from the

database servers, tentative transactions are locally carried
out based on replicated versions of data objects.

e. Distributed Execution:
Two distinct transaction execution modes are supported:

connected and disconnected. Transactions are tentatively
carried out at disconnected mobile hosts, and re-executed as
base transactions at the database servers.

E. Weak-Strict transaction model (WSTM):

a. Description:
The Weak-Strict (also called Clustering) transaction

model consists of two types of transaction: weak (or loose)
and strict [9]. These transactions are carried out within the
clusters that are the collection of connected hosts which are
connected via high-speed and reliable networks [11]. In each
cluster, data that is semantically related is locally replicated.
There are two types of a replicated copy: local consistency
(weak) and global consistency (strict). The weak copy is
used when mobile hosts are disconnected or connected via a
slow and unreliable network. Weak and Strict transactions
access weak and strict data copies, respectively. Figure 5
presents the architecture of this transaction model. When
mobile hosts reconnect to database servers, a
synchronization process reconciles the changes of the local
data version with the global data version.

Figure 5 - Architecture of Weak-Strict Transaction Model

b. Transaction Properties:
Weak transactions are allowed to commit within its

cluster, and results are made available to other local weak
transactions. When mobile hosts are reconnected, the results
of weak transactions are reconciled with the results of strict
transactions. If the results of a weak transaction do not
conflict with the updates of strict transactions, weak
transactions are globally committed; otherwise they are
aborted.

c. Mobility:
The concept of transaction migration is proposed to

support the mobility of transactions, and to reduce the
communication cost. When the mobile host moves and
connects to a new mobile support station, parts of the
transaction that are executed at the old mobile support
stations are moved to the new one. However, no further
details about the design or implementation are given.

Veenu Saini , International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012,111-117

© 2010, IJARCS All Rights Reserved 115

d. Disconnection
 The Weak-Strict transaction model supports transaction

processing in disconnected and weakly connected modes via
weak transactions.

e. Distributed Execution:
Transaction execution processes can be distributed

between the mobile host and the database servers within a
cluster that the mobile host participates in. However, the
distributed transaction processing among mobile hosts in a
cluster is not discussed.

F. Pre-serialization transaction model (PSTM):

a. Description:
Pre-serialization transaction model [5] is built on top of

local database systems. Mobile transactions (also called
global transactions) are submitted from mobile hosts
through the global transaction coordinators that reside at the
mobile support stations. This mobile transaction is entirely
processed at local database systems (As shown in Figure 6).
At each node (or site), there is a site manager that
administrates all the transactions executed at that node.
When a global transaction is prepared to commit, a global
transaction coordinator will carry out an algorithm, called
Partial Global Serialization Graph algorithm that detects any
non-serializable schedule among the mobile transactions. If
there is a cycle in the graph, i.e., the schedule is non-
serializable, the mobile transaction is aborted.

Figure 6- Pre-serializable Transaction Model

b. Transaction Properties:
Each sub-transaction of a global transaction is managed

by the local transaction manager. The global serializable
graph of transactions is constructed by collecting sub-graphs
from the local sites. The atomicity property of the global
transaction is relaxed by the concepts of vital and non-vital
sub-transactions.

If a vital sub-transaction aborts, its parent transaction
must abort. However, the parent transaction does not abort if
a non-vital sub-transaction aborts. When a sub-transaction
commits at the local database system, the results are made
visible to other transactions at this local database system.

c. Mobility:
The global transaction coordinators that reside at the

mobile support stations support the mobility of mobile

transactions. This is done by transferring the global data
structure from one global transaction coordinator to another
as the mobile host moves from one mobile cell to another.

d. Disconnection:
 Mobile transactions are submitted from a mobile host,

and sub transactions are executed at local database servers.
When the mobile host is disconnected, the global transaction
is marked as disconnected if the disconnection is known and
planned. The execution of the global transaction is still
carried out at the local database servers. On the other hand,
if the disconnection is unplanned, the global transaction is
suspended. The global transaction is resumed when the
mobile host reconnects to the mobile support station.

e. Distributed Execution:
Mobile transactions are submitted from mobile hosts,

and the entire transactions are distributed among local
database servers through the support of mobile support
stations. The mobile hosts do not take part in the execution
processes.

G. Moflex transaction model (MTM):

a. Description:
The Moflex transaction model [12] [13] is an extension

of the Flex transaction model to support mobile transactions.
The Moflex model is built on top of multi-database systems
and based on the concepts of split-join transactions. The
main characteristics of a Moflex transaction are:
a) A Moflex transaction that consists of compensable or

non-compensable sub transactions is initiated by the
mobile host. These sub-transactions are submitted to
the mobile transaction manager (MTM) that resides at
the mobile support station. The MTM will send these
sub-transactions to the local execution monitor (LEM)
at local database systems for executing [14]. Figure 7
presents the architecture of Moflex transaction model.

b) Each Moflex transaction T is accompanied by a set of
success and failure transaction dependency rules, hand-
over control rules, and acceptable goal states.
Dependent factors that include the execution time, cost
and execution location of transactions are also
specified in the definition of the Moflex transaction.
Furthermore, joining rules are provided to support the
join of the split sub-transactions (sub-transactions are
split when the mobile host moves from one mobile cell
to another).

Figure 7 - Architecture of Moflex Transaction Model

Veenu Saini , International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 111-117

© 2010, IJARCS All Rights Reserved 116

b. Transaction Properties:
The mobile transaction managers make use of the two-

phase commit protocol to coordinate the commitment of the
Moflex transaction. The Moflex transaction commits when
its sub-transactions that are managed by MTM have reached
one of the acceptable goal states, otherwise it is aborted. A
compensable sub-transaction is locally committed, and the
results are made visible to other transactions. For non
compensable sub-transactions, the last mobile transaction
manger, which corresponds to the end location of the mobile
host, plays the role as the committing coordinator.

c. Mobility:
The mobility of transactions is handled by splitting the

sub-transaction, which is executed on the local database at
the current mobile cell, as the mobile host moves from one
mobile support station to another (with the support of the
mobile transaction manager). Hand-over control rules must
be specified for each sub-transaction. If a sub-transaction is
compensable and location independent, it will be split into
two transactions; one will continue and commit at the
current local database, the second will be resumed at the
new location. If the sub-transaction is location dependent, at
the new location, the sub-transaction must be restarted. If a
sub-transaction is non compensable, the sub-transaction is

either restarted as a new one in the mobile cell if it is
location dependent, or continued if it does not depend on the
location of the mobile host.

d. Disconnection:
Moflex transaction model does not support disconnected

transaction processing. The Moflex transaction model
requires network connectivity between the mobile host and
the mobile support stations during the execution process.

e. Distributed execution
The execution of a Moflex transaction is transferred to

local database systems at fixed hosts to be carried out there.
Moflex transaction model provides a framework to specify
the execution of transactions in mobile environments. The
main drawback of the Molex transaction model is that the
specification of mobile transactions must be fully specified
in advance, therefore, the Moflex transaction model may not
have the capacity to deal with un-expected or un-planned
situations.

Table 1 below summarize the Comparative study of
some selected existing mobile transaction models alongwith
the summary of its Strengths and Weaknesses in Table 2.

Table 1: Comparative study of some selected existing mobile transaction models

Model Name Atomicity Consistency Isolation Durability Mobility Disconnection Distributed
Execution

Heterogeneity

Kangaroo
transaction model Yes No No No Yes

Partially No Yes No

Reporting and Co-
transaction model Yes Yes Yes Yes No No Yes No

Pro-motion
transaction model No No No Yes No Yes No No

Two-Tier(Base -
Tentative)
transaction model

Yes Yes No Yes No Yes Yes No

Weak-Strict
(Clustering)
transaction model

No Yes No No Yes
Partially Yes Yes No

Pre-serialization
transaction model Yes No No Yes Yes Planned-Yes

Unplanned-No No No

Moflex transaction
model Yes Yes Yes Yes Yes No No No

Table 2 : Strengths and Weaknesses of existing mobile transaction models

S.
No.

Existing
Transaction

Models

Strengths Weaknesses

1. Kangaroo
transaction model

i. It supports Mobility.
ii. It supports Distributed Execution.

i. It does not guarantee serializability.
ii. It supports Mobility but condition is that the mobile hosts

always may communicate with the mobile support stations.
iii. It does not support disconnected transaction processing.

2. Reporting and Co-
transaction model

i. It exhibits Transaction Properties.
ii. It supports Distributed Execution.

i. The model does not mention explicitly what happens when
mobile hosts move from one mobile cell to another. So this
model does not support Mobility.

ii. Disconnection is not supported in this model. because
Delegation operations require a tight connectivity between the
delegator transactions and the delegatee transaction

3. Pro-motion
transaction model

i. Among Transaction Properties, Durability is
ensured.

ii. Pro-motion transaction model supports
disconnected transaction processing via the support
of compact objects.

i. Mobility is not explicitly discussed in this model.
ii. For supporting disconnection transaction processing, it

requires high-capacity mobile resources at the mobile hosts.
iii. The distributed transaction processing is not strongly

supported by the model.
4. Two-tier

transaction model
i. It supports disconnected transaction processing.

When disconnection occurs, tentative transactions
i. Two-tier transaction model does not support the mobility of

transactions.

Veenu Saini , International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012,111-117

© 2010, IJARCS All Rights Reserved 117

 are locally carried out based on replicated versions
of data objects.

ii. It supports Distributed Execution.

ii. Among Transaction Properties, Isolation is not achieved,
because Tentative transactions locally commit at the mobile
host on replicated copies, and the committed results are made
visible to other tentative transactions at that mobile host.

5. Weak-Strict
transaction model

i. It ensures Consistency property of Transaction.
ii. The concept of transaction migration is proposed to

support the mobility of transactions, and to reduce
the communication cost.

iii. The Weak-Strict transaction model supports
transaction processing in disconnected and weakly
connected modes via weak transactions.

iv. It supports Distributed execution between mobile
host and the database servers.

i. It does not give any further details about the design or
implementation in case of mobility.

ii. It does not discuss the distributed transaction processing
among mobile hosts in a cluster.

6. Pre-serialization
transaction model

i. It ensures Atomicity & Durability.
ii. It supports Mobility. This is done by transferring

the global data structure from one global
transaction coordinator to another as the mobile
host moves from one mobile cell to another.

i. if the disconnection is unplanned, the global transaction is
suspended, so it does not support unplanned disconnection.

ii. It does not support Distributed execution, because mobile
hosts do not take part in the execution processes.

7. Moflex transaction
model

i. To exhibit ACID properties, it uses Two Phase
commit protocol.

ii. It supports Mobility, for this handover rules are
specified.

i. It does not support disconnected transaction processing.
ii. The specification of mobile transactions must be fully

specified in advance, therefore, the Moflex transaction model
may not have the capacity to deal with un-expected or un-
planned situations.

iii. It does not support Distributed execution.

IV. CONCLUSION

In this paper, it has been concluded that some of the
selected existing mobile transaction models support
numerous issues like mobility, disconnection, distributed
execution, transaction properties. All the models which have
been surveyed, have not taken into account the feature of
heterogeneous database, so the researchers can do work on
this issue by incorporating existing models or by proposing
a new model. This comparative study shows the
performance evaluation of mobile transaction models and
these indications are treated as checkpoints in the future.

V. REFERENCES

[1]. P. K. Chrysanthis, “Transaction Processing in Mobile
Computing Environment”, IEEE Workshop on Advances
in Parallel and Distributed Systems, pp77-83, 1993.

[2]. D. Barbara:”Mobile Computing and Databases – A
Survey”, IEEE Transactions on Knowledge and Data
Engineering (TKDE), 11(1), pp 108-117, 1999.

[3]. P. K. Reddy and M. Kitsuregawa: Speculative Lock
Management to Increase Concurrency in Mobile
Environments, International Conference on Mobile Data
Access (MDA), 1999, pp 82-96.

[4]. K. A. Momin and K. Vidyasankar: Flexible Integration of
Optimistic and Pessimistic Concurrency Control in Mobile
Environments Advances in Databases and Information
Systems - Database Systems for Advanced Applications
(ADBIS-DASFAA), 2000, pp 346-353.

[5]. Lisa Clark, ¨Omer Erdem Demir, “Transaction
Management in Mobile Distributed Databases” 2003.

[6]. Lars Frank, “Atomicity Implementation in Mobile
Computing”, in Proceeding of 10th International Workshop
on Database and Expert System Application , pp: 105, sep
1999.

[7]. R. Alonso and H. F. Korth. “Database System Issues in
Nomadic Computing”, in Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pp. 388 – 392, 1993.

[8]. M. Satyanarayanan, “Fundamental Challenges in Mobile
Computing”, in Proceedings of fifteenth annual ACM
symposium on Principles of Distributed Computing, pp: 1-
7, 1996.

[9]. Ayse Yasemin Seydim, “An Overview of Transaction
Models in Mobile Environments”, 1997.

[10]. Jim Gray, Andreas Reuter, “Transaction Processing:
Concepts and Techniques”, Morgan Kaufmann Publishers,
1993.

[11]. W. Booth, G. G. Colomb and J. M. Williams: “Transaction
Processing Models in Wireless Network”The Craft of
Research, University Of Chicago Press, 1995.

[12]. Sharmila John Francis , Elijah Blessing Rajsingh,
“Performance Analysis of Clustering Protocols in Mobile
Ad hoc Networks”, Journal of Computer Science 4(3),pp :
192-204, 2003.

[13]. E. Pitoura and G. Samaras: “Data Management for Mobile
Computing”, Kluwer Academic Publishers, 1998.

[14]. T. Tmiclinski and B. R. Badrinath,” Data management for
mobile computing” Sigaiod Rfcord, 22(1):34-39, March
1993.

	Figure 1- Kangaroo transaction model
	Figure 2 - Compacts as objects
	Figure 3- Pro-motion transaction architecture
	Figure 5 - Architecture of Weak-Strict Transaction Model
	Figure 6- Pre-serializable Transaction Model
	Figure 7 - Architecture of Moflex Transaction Model
	Table 1: Comparative study of some selected existing mobile transaction models
	Table 2 : Strengths and Weaknesses of existing mobile transaction models

