
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 154

ISSN No. 0976-5697

A Security Test Method on Agile Software Development Based on ISTQB

Hossein Janeh and Sam Jabbehdari
Department of Computer Engineering,

Islamic Azad University,

Tehran North Branch, Iran

hjaneh@gmail.com, sjabbehdari@gmail.com

Ramin Nassiri*

 Department of Computer Engineering,

 Islamic Azad University,

Tehran Central Branch, Iran

r_nasiri@iauctb.ac.ir

Abstract: Today, Web applications are growing rapidly. Considering Enterprise requirements to acquire unified systems and web-base
applications, agile method(s) could be conceived as a major development method for web solutions at the first glance. Thus, Security is the

most important non-functional requirement in a development process. In this paper, we present a method to test security requirements in agile
software development, based on ISTQB, which is globally known as the recent robust framework for software testing. Deploying ISTQB would
be present standardization to our proposed method.

Keywords: Agile development, Security testing, ISTQB, Web application.

I. INTRODUCTION

Agile methods are developed against the ad-hoc

traditional methods such as waterfall in addition to a few

recent ones [1].Ordinary methods are based on several steps
that more often begin with requirement specification,

Continued with design and followed by ordinary steps until

at the end a software product is obtained. These traditional

methods actually are suffered while there are urgent needs

for change according to the dynamism in user environment

[2]. Agile means nimbleness in change according to

customer’s frequent changing in requirements. Technical

progress in developing web base system and moving to

iterative process may get us the idea of agile security testing

[3].

ISTQB is a world-wide non-profit organization
responsible for defining various guidelines such as test

structure and regulations, accreditation; certification, etc.

Working groups within the ISTQB are in charge

of developing and maintaining a variety of software test

techniques in addition to the syllabi and exams provided to

software tester training courses. The ISTQB is assisted by

representatives from each existing National and Regional

Board. A National Board is a working group of testing

specialists from a specific country or region. Members

actually are professionals and recognized experts from

industry, consultants, trainers, academic professors,

scientists and specialists from other organizations [4].
In ISTQB, there are four distinct levels for testing:

1.component testing 2.integration testing 3.system testing

and 4.acceptance testing [5].

We map our method to these four levels of testing and

employ ISTQB framework for testing security in each level.

Then we use our method in a case study. The results show

that our approach is suitable enough for security testing.

II. BACKGROUND AND RELATED WORKS

A. Security in Agile Development:

First, we use some definitions from ISTQB standard

Glossary [6]:

a. Security: Attributes of software products that bear on

its ability to prevent unauthorized Access, whether

accidental or deliberate, to programs and data.

b. Security testing tool: A tool that provides support for

testing security characteristics and vulnerabilities.

c. Security testing: Testing to determine the security of

the software product.

d. Agile software development: A group of software

development methodologies based on iterative
incremental development, where requirements and

solutions evolve through collaboration between self-

organizing cross-functional teams. [6]

The Agile Manifesto’s core principles and security has

significant mismatches have been identified by various

writers and panelists such as satisfy the customer unless

customer is highly security-aware.[7]

In[8] XP method was analyzed from a security

engineering standpoint. This is done by analyzing XP in the

light of two security engineering standards; the Systems

Security Engineering-Capability Maturity Model (SSE-

CMM) and the Common Criteria (CC). The result is that XP
is more aligned with security engineering than one might

think at first. However, XP also needs to be tailored to better

support and to more explicitly deal with security

engineering issues.[8]

Another research has shown how the security features

can be augmented into agile methods. Key security features

are mentioned in all phases of development. They are

Security-relevant subjects, Security-relevant objects,

Security classification of objects and subjects and Risk

management. First, security-relevant objects are identified.

Then upon it's conduct, the security-relevant subjects are
identified. After that then it would be possible to classify

security-relevant objects and subject and risk analysis from

it in requirement phase. In test phase, test selected features

functionalities and qualities according to the essentials [9].

Keramati and et al [10] focused on agile methodologies

in order to empower them with security activities. For each

security item, first one should determine an agility degree.

After that deploys security activity ordered by the high level

agility degree to low agile activity and the minimum degree

Ramin Nassiri et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,154-157

© 2010, IJARCS All Rights Reserved 155

is the new mixed activity degree. If this degree is

acceptable, then the security activity is passed, and may

proceed to next security activity. This algorithm continues

until all security activity is tested. This could be used for

penetration testing which ended up with the last agile

activity [10].

B. Securities Testing in Agile:

Agile Security Testing of Web-Based Systems via

HTTPUnit is done by employing a highly testable

architecture and using an automated testing framework. t

The farmeworkcan bypass the presentation layers and

interact directly with the underlying web application server

via HTTPUnit. This gives the team the ability to perform

security testing for critical vulnerabilities that are best
mitigated by secure programming practices on the web

application server. [3]

Figure 1. highly testable architecture as shown in [3]

In Figure1 one can see this architecture. This means that

there is a software layer dedicated to testing the data

services layer, another layer dedicated to testing the business

services layer, and a third dedicated to testing the
presentation layer. [3]

In” Security Testing in Agile” by Gencer Erdogan et al

[11], AST (Agile Security Testing) method is extended,

and three additional stages are augmented to it as : 1.

Penetration testing and mitigation false positive: After each

execution of penetration testing, reviews the result and

detect false positive . This needs tools to mark false positive

and preventing them in the next execution. 2. Postmortem

evaluation: It shows the reason that why some bugs are not

discovered in development phase and patching the test tools

for cover them. 3. Knowledge repository: It is for saving
some valuable information. The new method has named

Extended Agile Security Testing (EAST) and includes a few

steps as: 1. Design misuse case. 2. Use testable layer

architecture.3.Automatic code review. 4. Fill knowledge

repository.5.Penetration testing and mitigation false

positive. 6. Postmortem evaluation [11].

Figure 2. Extended AST method by [8]

Extending Agile Security Testing and integrating it into

Scrum shown in figure 2.

III. THE PROPOSED METHOD

We need a feedback for our development in the security

testing process, so we get the idea of weighting and make

four arrays according to ISTQB four levels in testing

software: component, integration, system and acceptance

test. Figure3 shows the V- model in ISTQB[12].The four
layers on the right side appearance. Definition of these

layers in ISTQB:

a) Component testing: The testing of individual software

components.

b) Integration testing: Testing performed to expose

defects in the interfaces and in the interactions between

integrated components or systems.

c) System testing: The process of testing an integrated

system to verify that it meets specified requirements.

d) Acceptance testing: Formal testing with respect to user

needs, requirements, and business processes conducted
to determine whether or not a system satisfies the

acceptance criteria and to enable the user, customers or

other authorized entity to determine whether or not to

accept the system.

Figure 3. V-model in ISTQB[12]

Ramin Nassiri et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,

© 2010, IJARCS All Rights Reserved 156

We map each security item to ISTQB’s layer test. and

use ten items from Stephen de Vries article” Security

Testing Web Applications throughout Automated Software

Tests”[13] and replace acceptance testing with system

testing, because in ISTQB, the concept of system testing

adapts to it. The result is shown in table1.

Table 1. ISTQB and Security Items

Items Component Testing Integration Testing System Testing Acceptance Testing

SQL Injection Static analysis Use Case Testing

Input Validation Static analysis Static analysis Equivalence Partitioning

Special Characters Static analysis Static analysis Equivalence Partitioning

Active script injection Use Case Testing

Authorization Control flow Use Case Testing

Cookie Transport Control flow Use Case Testing

Logout/Log off State Transition State Transition

Expiration State Transition State Transition

HTML Injection Use Case Testing

Lockout State Transition State Transition

a. Each array has a number of test items we can test on

those. For example, input validation is in the first three

levels, and HTML Injection is in the system testing.

These arrays are 2 dimensional, first dimension is the

security item name and another shows the weight of

this item. (Related to our work).this value is a number

between 0 to 5.

b. After a first iteration, we have created a single element

(such as a class) thus we refer to array one(component

array) and choose a highest weight element for testing

in our project. Duration time we spent on it depends on
deliver planning to customer.

c. In the integration phase, we do similar work as we did

in the component level. If a fault detects for an item

and if that item exists in the previous array, which

means this fault may not be discovered in previous

step, so we add one unit to its weight in the previous

array to emphasize it for another development. It may

be increase the ability to find such defect in earlier

steps in future. So the cost of finding and fixing
defects will be fewer.Figure4 from [5] shows this

clear.

Figure 4. Cost of defects[5]

Sometime, it is possible that responsible team(s) for one

component doesn’t fulfill its job in the appropriate time so

the component integrated with it cannot be tested. It is better

to postpone testing than ignore test.

Figure 5 s that the security test place in extreme

programming (XP) agile method. The dotted border includes

the XP iteration phase. It continues until the final product is

completed. Pair programming is in the Coding step, and the

team may define a security tester and in this way one of the

programmers writes the code and other does the security

testing.

d. In the system testing, we have a whole system and in

this step, we use ISTQB specification-based (Black

box) techniques to discover the security bugs. If an

item has a fault, and it is in the previous array (such as

SQL injection), the one unit is added to its weight in

the previous array.

We use new weights for next iteration.

Figure 5. Security test place in extreme programming

We describe our algorithm in pseudo code:

Array C//this array have component testing element

//W(c) =weight of component c

Array S// this array have system testing element

Array I// this array have integration testing element

Switch (development phase)

Case “component test”

Do

{

Select item c from C where ∀c’∈ C, W (c’) ≤ W(c)

Test c;

Remove c from C;

}

Until (time expired or no item in C)

If (time expired && C is not empty)

For each c in(C ∪ U) increase W(c);

Case “integration test”

Do

Ramin Nassiri et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,154-157

© 2010, IJARCS All Rights Reserved 157

{

Select item i from I where ∀i’∈ I, W (i’) ≤ W (i)

Test i;

Remove i from I;

}

Until (time expired or no item in I)

If(time expired && I is not empty)

Foreach (i in (I ∪ S) increase W (i);

Foreach item in i
If(i has bug and i is in C) increase W(c) where i=c;

Case “system test”

Do

{

Select item s from S where ∀s’∈ I, W (s’) ≤ W (s)

Test s;

Remove s from S;

}

Until (time expired or no item in S)

Foreach item in S

If(s has bug and s is in I) increase W (i) where s=i;

IV. CASE STUDY

We deployed this method in design and developing a

helpdesk for interaction between employer and experts in

systems. We used XP practice to accomplish it and each
iteration approximately took an one and a half week. We

developed our solution with MS visual studio 2010 and SQL

server 2008. The outcomes are described hereafter.

a. Component Testing: in this phase, we use NUnit

2.5.10 for testing input validation and special

characters, by writing suitable test cases which test

classes for accepting usual input and despising banned

ones. The same scenario used for testing special

characters. NUnit is a free DotNet version of JUnit, a

tool that consists of several functions and methods for

testing single classes [14].
b. Integration Testing: in this phase, we use code

analysis tools built-in visual studio.net 2010, and it can

be use for static review our code and detect

vulnerabilities. In some cases, it detects false positives.

Code analysis has several security options and one of

them is Review SQL queries for security

vulnerabilities (CA2100), and we are confident that

this item is enabled.

c. System Testing: the items in this phase use black-box

techniques. For SQL injection, we use a misuse case

scenario and with some tools such as FG-injector try to
inject malicious code to our website. For input

validation, use equivalence partitioning: we classified

all possible input and select one member from each

section.

d. Acceptance Testing: this level is related to the end-

user, and we not suppose a special method for this.

We show how our proposed method works by figures

depict by table2.

Table 2. Case study results

Iteration

number

duration Test duration(including

security test)

Iteration1. 10 day 2 day

Iteration2. 11 day 3 day

Iteration3. 11 day 3 day

Iteration4. 10 day 2 day

Finally, we delivered our product to third party security

tester before release, and the security degree of our software

was good enough.

V. CONCLUSION

In this paper, we adapted our security testing, as a new

method, to ISTQB and use ISTQB standard concepts as a

general for security testing as a specific usage. We showed

that ISTQB includes sufficient definitions and standards for

our purpose, in addition to several benefits. First, this settles

the time of test in our progress, and thus we have certain

timelines for it. Second, the standard concept leads to a

general concepts in all team’s mind, and it prevents an
excess time for matching team member together, especially

when a new member added to team. Finally, It may push to

Coding Standards that is one of XP’s core practices.

VI. REFERENCE

[1] Vladan Devedˇzic ́ and Sa˘sa R. Milenkovi ,Teaching Agile
Software Development: A Case Study ,IEEE,2010

[2] Victor Szalvay, co-founder, An Introduction to Agile
Software Development, Danube Technologies, Inc,2004

[3] A. Tappenden, P. Beatty, J. Miller , A. Geras, M. Smith ,Agile
Security Testing of Web-Based Systems via HTTPUnit,
IEEE,2005

[4] http://www.ISTQB.org

[5] Dorothy Graham,Erik van Veenendaal ,Isabel Evans ,Rex
Black, Foundations of Software Testing,2010

[6] Standard glossary of terms used in Software Testing, Version
2.1 (dd. April 1st, 2010)

[7] State-of-the-Art Report (SOAR) ,Software Security
Assurance, July 31, 2007

[8] Jaana Wäyrynen, Marine Bodén, and Gustav Boström,
Security Engineering and eXtreme Programming:An
Impossible Marriage?, XP/Agile Universe 2004, LNCS 3134,
pp. 117–128, 2004

[9] Mikko Siponena, Richard Baskervilleb and Tapio
Kuivalainena , Integrating Security into Agile Development
Methods, IEEE,2005

[10] Hossein Keramati, Seyed-Hassan Mirian-Hosseinabadi,
Integrating Software Development Security Activities with
Agile Methodologies, Sharif University of Technology ,
IEEE, 2008

[11] Gencer Erdogan, Per Håkon Meland and Derek
Mathieson,”Security Testing in Agile web Application
Development”, Agile Processes in Software Engineering and
Extreme Programming, Volume 48, Part 1, pp.14-
28,Springer-Verlag Berlin Heidelberg.,2010

[12] Rex Black,Advanced Software Testing Vol. 1, Rocky Nook
,October 2008

[13] Stephen de Vries ,Security TestingWeb Applications
throughout Automated Software Tests, Corsaire Ltd. 3 ,United
Kingdom

[14] http://www.nunit.org

