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Abstract: Text mining is process of finding meaningful information from large amount of unstructured text documents. Key phrases are an
important means of document summarization, clustering, and topic search. Only a small minority of documents have author-assigned
keyphrases, and manually assigning keyphrases to existing documents is very tedious. Therefore it is highly desirable to automate the keyphrase
extraction process. Kea-mean clustering Algorithm is combination of k-mean and keyphrase extraction algorithm. In Kea-means algorithm,
documents are clustered into several groups like K-means, but the number of clusters is determined automatically by using the extracted

keyphrases.

Set of training documents and machine learning is used to determine phrases are keyphrase or not. Cluster analysis is required in text mining for
grouping objects. Keyphrase extraction algorithm returns several keyphrases from the source documents. The Kea-means clustering algorithm
provides easy and efficient way to extract documents from document resources.
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l. INTRODUCTION

Text mining is a mechanism to understand and extract
meaningful information from large amount of the semi-
structured or unstructured text data. Information extraction
identifies Keyphrase and relationships within text. A
keyphrase is defined as meaningful and significant
expression consisting of one or more words in documents
[3]. Set of training documents and machine learning is used
to determine phrases are keyphrase or not.

The learning process is use to find a mapping from
documents to categories using a set of training documents,
which can be accomplished by training a classifier for each
category. For Machine Learning, Artificial Neural Network
is used. In supervised learning the network user assembles a
set of training data. The training data contains examples of
inputs together with the corresponding outputs, and the
network learns to understand the relationship between the
two.

A new document is then processed by each of the
classifiers and assigned to those categories whose classifiers
identify it as a positive example. Cluster analysis is required
in text mining for grouping objects It does this by looking
for predefined sequences in text, a process called pattern
matching. These procedures contain text summarization,
text categorization, and text clustering. Text summarization
is the procedure to extract its partial content reflection its
whole contents automatically. Text categorization is the
procedure of assigning a category to the text among
categories predefined by users. Text clustering is the
procedure of segmenting texts into several clusters,
depending on the substantial relevance.

A. Pre-processing steps for Text:

The first step in text clustering is to transform
documents, which typically are strings of characters into a
suitable representation for the clustering task. Text data are
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pre-processed with the aid of stop words removal technique
and stemming algorithm  [1].

a. Remove stop-words: The stop-words are high
frequent words that carry no information (i.e.
pronouns, prepositions, conjunctions etc.). Remove
stop-words can improve clustering results.

Training Documents

Removal « Non informative word
stop words « ex.{the,and,when,more}
l * Removal of suffix to
. generate word stem
Word Stemming « grouping words
« increasing the relevance
‘ ex {walker,walking} ...walk
Term Weighing ----- { « Importance of term in DOC }

Figure 1: Pre-processing Steps

b. Stemming: Stemming means the process of suffix
removal to generate word stems. This is done to
group words that have the same conceptual meaning,
such as work, worker, worked and working.

1. ABOUT CLUSTERING

The "means” in k-means refers to the centroid of the
cluster, which is a data point that is chosen arbitrarily and
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then refined iteratively until it represents the true mean of all
data points in the cluster. The "k" refers to an arbitrary
number of points that are used to seed the clustering process.
The k-means algorithm assigns each data point to exactly
one cluster. Text clustering process contains four main parts:
text reprocessing, word relativity computation, word
clustering and text classification. The first step in text
clustering is to transform documents, which typically are
strings of characters into a suitable representation for the
clustering task.

Step 1: Place randomly initial group centroids into the two
dimension space.

Step 2: Assign each object to the group that has the closest
centroid.
Step 3: Recalculate the positions of the centroids.

Step 4: If the positions of the centroids didn't change go to
the next step, else go to Step 2.
Step 5: End.

A. About kea-means clustering:

The Kea-means clustering algorithm used for clustering
that improves the K-means algorithm by combining it with
the keyphrase extraction algorithm. Main drawback of K-

means clustering that the number of total clusters is pre-

specified in advance. The Kea-means clustering tries to
solve the main drawback of K-means clustering.

K-means
clustering

Figure 2: kea-mean clustering

In Kea-means algorithm, documents are clustered into
several groups like K-means, but the number of clusters is
determined automatically by the algorithm by using the
extracted keyphrases. The system architecture of the Kea-
means clustering is shown in Figure 2.

1. ABOUT KEYPHRASE

A keyphrase is “a sequence of one or more words that is
considered highly relevant”. Keyphrase provide information
about documents. Keyphrases give a high-level description
of a document's contents that decide whether or not it is
relevant for them. Entering a keyphrase into a search engine,
all documents with this particular keyphrase attached are
returned to the user. Manually attaching keyphrases to
existing documents is a very laborious task. Therefore
automatic keyphrase extraction is used. There are two
different ways of approaching the problem:

a) keyphrase assignment

b) keyphrase extraction

In keyphrase assignment, it is assumed that all potential
keyphrases appear in a predefined controlled vocabulary.

The learning problem is to find a mapping from documents
to categories using a set of training documents. A new
document is then processed by each of the classifiers and
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assigned to those categories whose classifiers identify it as a
positive example.

V. ABOUT CATEGORIZATION AND
CENTROID BASED CLASSIFIER

The text categorization task is to train the classifier using
documents, and assign categories to new documents.
A. Centroid-Based Classifier:
Input: new document d;
Training collection:D={d;,d,,...d, };
predefined categories:C={cy,cC,....,c};
/ICompute similarities
for(dieD){ Simil(d,d;) =cos(d,d;); }
e. [//Select k-nearest neighbour

oo o
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Docu ¢ Docl.:jment
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Figure 3: Categorization Architecture
1
II
| w>f
II
| ds scos(a)<cos(8)
|
| 7 .
| +d, is more close to d;
I'. / than d;
\ /
II I.l’ . dl
II - o ot
| x"x o’
|/ W L4
\o/ o Lanett
oo
S

Figure 4: Model: K-Nearest Neighbour Classifier

Construct k-document subset D, so that

Simil(d,d;) < min(Simil(d,doc)
f. //Compute score for each category

g. //Output: Assign to d the category ¢ with the
highest score:

V. BUILDING MODEL: TRAINING AND
TESTING

Kea’s extraction algorithm has two stages, training and

extraction. The training stage uses a set of training
documents for which the author’s keyphrases are known.
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Each training document, candidate phrases are identified
and their feature values are calculated. For each phrase is
then marked as a keyphrase or a non-keyphrase, using the
actual keyphrases for that document.

Testing Phase

Training Model

Categorization

Training Phase

Figure 5 : Training and Testing

The text categorization task is to train the classifier using
these documents, and assign categories to new documents.
In the training phase, the n documents are arranged in p
separate folders, where each folder corresponds to one class.
In the next step, the training data set is prepared via a feature
selection process.

Training is a process for making the machine, learn
something from the environment by experience. Learning is
an inherent characteristic of the human beings. When this
learning is done by a machine, it is usually referred to as
'machine learning'.

The training stage uses a set of training documents for
which the author’s keyphrases are known. For each training
document, candidate phrases are identified and their feature
values are calculated. Each phrase is then marked as a
keyphrase or a nonkeyphrase, using the actual keyphrases
for that document.

Supervised learning requires a trainer, who supplies the
input-output training instances. The learning system adapts
its parameters by some algorithms to generate the desired
output patterns from a given input pattern. The input data for
the extractor and also the model builder has to be in text
files with the ending .txt and all in the same directory. After
removing stopwords next step to find a set of candidates for
phrases. Finally stem of the candidates are searched with the
help from Lovins stemmer. Feature value calculated.
Keyphrase extraction model build by training the system
with texts files and their key phrases. These training
documents must have the ending ‘.txt’. Their keyphrase
documents are also text documents with the same name but
with the ending ‘.key’

Use this model for extracting key phrases from more
documents. The model determines the overall probability
that each candidate is a keyphrase, and then a post-
processing operation selects the best set of keyphrases. To
select keyphrases from a new document, Kea determines
candidate phrases and feature values, and then applies the
model built during training. The model determines the
overall probability that each candidate is a keyphrase, and
then a post-processing operation selects the best set of
keyphrases.
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Figure 6 : Weighting model: example
Wi = Freq;;* log(N/ DocFreqj) (D)

Where:

a. N = the number of documents in the training
document collection.

b. tf = Term Frequency weighting

c. DocFreg;= the number of documents in  which the
j™ term occurs

d. Freqgij= the number of times j™ term occurs in
document

A. Extracting Keyphrases:

Kea uses set of training documents to generate model for
which keyphrases are known. The resulting model can then
be applied to a new document from which keyphrases are to
be extracted. First, Kea computes TFIDF scores and
distance values for all phrases in the new document.

VI. ABOUT MACHINE LEARNING: ANN

Artificial neural network (ANN) is set of nodes (units,
neurons, processing elements)
a. Each node has input and output
b. Each node performs a simple computation by its
node function
ANN refer to multilayer perceptron (MLP) network,
which is most widely used type of neural network [4]. It
consists of input layer, one or more hidden layers and output
layers.
Input: D is dataset consisting of training tuples and their
associated target values.
Output: A trained neural network
Weights in network are initialize to small random numbers.

Figure 7: ANN model example

A Neural Network Model is a computational model

consisting of three parts:

a) Neural Network graph

b) Learning algorithm that indicates how learning takes
place.

c) Recall techniques that determine how information is
obtained from the network.
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Output =f(i,w,+i,w,+i,w,+bias)

bias

Figure 8: Neural Network node

The artificial neural network consists of many artificial
neurons. An artificial neuron is roughly imitating brain
neuron, and it receives information from outside or other
artificial neurons. It is use of easy operation, and output
results to outside or other artificial neurons. In artificial
neural model, an artificial neuron is called processing unit,
outputs of every processing unit send out in fan shape,
become inputs of other processing unit. The relation
between the inputs and outputs of a processing unit is
representatives of sum of weighted product function, as
shown in figure 9.

VII. RESULTS

System implemented in JDK1.6 and input dataset
consists of text files containing only text data. To extract
keyphrases from documents first of all model built which
can be used for the purpose of extraction, and for this
system is train from some known facts using supervised
learning. Hence the implementation of algorithm consists of
two steps, Training and extraction. Training is a process for
making the machine, learn something from the environment
by experience. When learning is done by a machine, it is
usually referred to as 'machine learning'. Supervised
learning requires a trainer, who supplies the input-output
training instances. The learning system adapts its parameters
by some algorithms to generate the desired output patterns
from a given input pattern.
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Figure 9: Example ‘.txt’ file

The input data for the extractor and also the model
builder has to be in text files with the ending .txt and all in
the same directory. The text should be as clean as possible
i.e. without code tags. The language of the input should be
English. After removing stopwords next step to find a set of
candidates for phrases. finally stem of the candidates are
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searched with the help from Lovins stemmer. Feature value
calculated.
A. Experiment I:

The keyphrases discovered are stored in a “.key’ file for
each test file. In table 1, there are only three equal terms in
the two columns so algorithm discovers three words of the
original author keyphrase phrases. But, the results obtained
are not bad, because the other keyphrase phrases discovered
are related to the original ones and to the topic of the course.

|1 Test Mining === =)

System Tools

woreona] [_onen | [

BloloTel=lo] « ]
Figure : 10 Adding and deleting testing phase data
Table 1. Keyphrases assigned by author and extracted by KEA.

Author keyphrases Kea keyphrases
addition addition
Loop Exercise
condition condition
Variable Error
Value Value
Procedure Runtime
= Toxkanmg =

slected Text file

Figure 11: Result showing keyphrases of selected text documents

B. Experiment I1:

In clustering statistical classification includes precision
and recall. Precision is the fraction of retrieved instances
that are relevant, while recall is the fraction of relevant
instances that are retrieved. Both precision and recall are
therefore based on an understanding and measure of
relevance. Table 2 gives the difference between Precision
and Recall.
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Table 2 : Comparison of Precision and Recall

Precision Recall

1) It is measure of extractness.
2) Precision is equal to number of
relevant document retrieved by
search divided by total number of
documents retrieved by that search

1) It is measure of
2) Recall is equal to number
of relevant document retrieved
by search divided by total
number of documents.

3) It measure how precise search is. 3) It measure how complete

search is.

4) Higher precision means less
unwanted documents.

4) Higher recall means less
missing documents.

There are five test documents are used. The result of
each of the individual test document for top 3, top 5
keyphrases is shown by using the proposed system.

Table 3: Comparison of Proposed System Precision and Recall

Document No Proposed System

TP FP FN Prec Rec
Docl(Top-3) 1 2 8 0.33 0.11
Doc1(Top-5) 3 2 6 0.6 0.33

Document No Proposed System

TP FP FN Prec Rec

Doc2(Top-3) 2 1 8 066 | 02

Doc2(Top-5) 3 2 7 0.6 0.3

Document No Proposed System

TP FP FN Prec Rec

Doc3(Top-3) 2 1 2 0.67 0.5

Doc3(Top-5) 2 3 2 04 0.5

Document No Proposed System

TP FP FN Prec Rec

Doc4(Top-3) 1 2 6 033 | 014

Doc4(Top-5) 2 3 5 04 0.29

Document No Proposed System

TP FP FN Prec Rec

Doc5(Top-3) 1 2 16 | 033 | 0.06

Doc5(Top-5) 1 4 16 0.2 0.06
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a) Precision (P): The percentage of correctly extracted
tags out of all extracted

b) Recall(R): The percentage of correct extracted tags
out of all correct

pP= TP
TP+FP @)
R= TP
TP + FN 3)

Where,

a. TP =True Positive, (correct result)

b. FP = False Positive,(unexpected result)

¢. FN = False Negative,(missing result)

The result of extraction of keyphrases depends very
much on the domain of the training set of documents,
because these are the training instances that make the system
learn. To get better result of extraction of keypharses from
any business text document, it is necessary to train the
system on some documents of the same domain.

VIIl.  CONCLUSION AND FUTURE WORK

Keyphrase and K-mean clustering algorithm is important
for obtaining the appropriate cluster context and the low
quality clustering results will decrease extraction
performance. Kea mean algorithm provides efficient way to
extract test documents from large quantity of resources. This
algorithm develop faster algorithm for clustering. To get
better result of extraction, it is necessary to train the system
on same domain. In the future, need to develop a faster
algorithm for clustering.
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