
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

REVIEW PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 94

ISSN No. 0976-5697

Comparative Performance Evaluation Of Software Architectural Styles With UML

Kamna Gauri*, Dipanwita Thakur
Dept.of Computer Science & Electronics,

AIM & ACT Banasthali University, Tonk (Rajasthan), India

kamna.gk@gmail.com

dipanwita.thakur@gmail.com

Abstract: This paper presents a performance evaluation of different Software Architectural styles. We all have seen many books and articles to
consider the feel of different Software Architectural styles of a system. A good architecture should be approachable, simple, clear separation of

concerns, resilient, balanced distribution of responsibilities. Here we provide an introduction to the field of Software Architecture, Software
Architectural styles. Software Architecture is also described as a strategic design i.e. how a solution is implemented and many application product
lines are built around core architecture with variants that satisfy particular customer requirements.

Keywords: architectural style; component; connector; architectural structure framework

I. INTRODUCTION

A Software Architectural style defines a structure or

structures of the system in terms of software elements

(components, connectors), externally visible properties of
these elements and the relationships among them [1]. An

awareness of these Architectural styles can simplify many

problems of stakeholders in defining the system architecture

because these styles play a role of the vehicle for

stakeholder communication in the case of large and

heterogeneous system. The taxonomy of Architectural

Styles and the case studies have incorporated parts of

several published papers. To a lesser extent material has

been drawn from other articles by the authors.

Software Architecture determines how system

components are identified and allocated, how the
components interact to form a system, the amount and

granularity of communication needed for interaction, and

the interface protocols used for communication among

stakeholders: Customers, managers, designers,

programmers, tester and maintainer. Architectural styles

define classes of designs along with their associated known

properties. Generally these styles manifests the earliest set

of design decisions such as constraints on implementation,

articulates organizational structure and enables quality

attributes [5].

“Abstraction layering and system decomposition provide

the appearance of system uniformity to clients, yet allow
Helix to accommodate a diversity of autonomous devices.

The architecture encourages a client server model for the

structuring of applications.”

UML has established itself as a leading Object oriented

analysis and design methodology. It is a language for

specifying, constructing, visualizing and documenting

artifacts of software intensive systems. [3]

While architectural concepts are often embodied in

infrastructure to support specific architectural styles and in

the initial conceptualization of a system configuration, the

lack of an explicit, independently characterized architecture

or architectural style can significantly limit the benefits of

software architectural design. [4]

In any style components are connected by connectors as

they are the building block of architecture.

Components Connectors

Software Architecture = { Elemnets, Form, Rationale }

According to [6] there are three classes of software

elements namely processing elements, data elements and

connecting elements.

An important aspect of Software Architecture is

representation. The representational clarity and power of a

Software Architectural description is very significant and

determines the completeness and hence success of the

succeeding steps in the software development lifecycle

which build on this description. Researchers have used text,
boxes-and-lines [5], data flow diagrams and other pictorial

and textual methods for this purpose.

The software architecture of a system can be therefore

represented as a set of views, and a combination of these

views comprises of the system as a whole. The major

drawback of using the view approach is that the

representation becomes view-centric; the side effect is

redundancy among different views. These redundancies can

Software

Architecture
Tools

Modules

Procedure

Processes

Databases

Procedure

calls

Event

Broadcast

Database

queries

Kamna Gauri et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 94-99

© 2010, IJARCS All Rights Reserved 95

cause inter-view mismatches, such as inconsistencies and

incompleteness [7].

Though the different ADLs server their purpose

satisfactorily, each of them embodies a particular approach

to the specification and evolution of an architecture, with

specialized modeling and analysis techniques that address

specific system aspects in depth [8].

However, this emphasis on depth over breadth of the

model can make it difficult to integrate these models with

other development artifacts, because the rigor of formalisms

tends to ignore the more day-to-day development concerns
[9].

II. PIPE AND FILTER

The pipe and filter architectural style provides a structure
that process a stream of data. This style has only one

component type i.e. filter and this filter does some

transformation and passes data to other filters through pipes.

Recombining filters allows you to build families of related

filters. Pipes are the connectors between a data source and

the first filter, between filters, and between the last filter and

a data sink.

Data source is an entity (e.g., a file or input device) that

provides the input data to the system. It may either actively

push data down the pipeline or passively supply data when

requested, depending upon the situation.

Data sink is an entity that gathers data at the end of a
pipeline. It may either actively pull data from the last filter

element or it may passively respond when requested by the

last filter element.

A. Style Invariants:-

a. Filters are independent (no shared state)
b. Filter has no knowledge of up- or down-stream

filters

B. Suitability:-

a. Well suited for those systems that mainly do data

transformation

C. Advantages:-

a. Filter is independent i.e. no need to know the id of

filters sending/receiving data.

b. A pipe is a two way connector.

D. Disadvantages:-

a. A pipe is a unidirectional channel which moves

streams of data from one filter to another.

b. A pipe must connect the output port of one filter to

input port of another.

III. IMPLICIT INVOCATION STYLE

Instead of invoking a style procedure directly......

a. A component can announce (or broadcast) one or

more events.

b. Other components in the system can register an

interest in an event by associating a procedure with

the event.

c. When an event is announced, the broadcasting

system (connector) itself invokes all of the

procedures that have been registered for the event

Component interfaces are methods and events.

Connectors includes Implicit or Explicit Invocation.

A. Style Invariants:-

a. Announcers of events are unaware of the regarding

which component will be affected by those event

invocations.

b. Components can not make conjectures about the

order of processing.

B. Suitability:-

a. Suitable for applications that involve loosely-

coupled collection of components.

b. Particularly useful for those applications which

includes

a) Changing a service provider

b) Enabling or disabling capabilities

C. Advantages:-

a. Reusability i.e. any component can be introduced

into a system simply by registering it for the events

of that system.

b. Easy system evolution i.e. Components may be

replaced by other components without affecting the

interfaces of other components in the system.

D. Disadvantages:-

a. Components relinquish computation control to the

system.

b. No knowledge of what components will respond to

event.

c. No knowledge of order of responses i.e. when

responses are finished.

IV. REPOSITORY STYLE

When large amounts of data are to be shared, the

repository style of sharing is most commonly used. Shared

data is held in a central database or repository and may be

accessed by all sub-systems. In order to exchange the data
between sub systems, each sub-system maintains its own

database and passes data explicitly to other sub-systems

Component consists of a central data structure

representing the current state of the system and a

collection of independent components that operate on

central data structure.

Connectors consists procedure calls or direct memory

access.

A. Suitability:-

a. Suitable for applications in which the central issue

is establishing, augmenting, and maintaining a

complex central body of information.

Kamna Gauri et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 94-99

© 2010, IJARCS All Rights Reserved 96

B. Advantages:-

a. Competent way to share the large amount of data.

b. Issues like backup, security and concurrency

control are managed in a centralized manner.

c. Sharing model is circulated as the repository
schema.

C. Disadvantages:-

a. Data evolution is difficult and expensive

b. Difficult to distributed data.

c. Sub systems must agree on a repository data model

certainly conciliation.

V. OBJECT ORIENTED STYLE

The data representation is hidden from other objects

because objects are responsible for conserving the
invariance of the data demonstration.

Components are objects i.e. Data and its associated

operations.

Connectors are messages and method invocation

A. Style Invariants :-

a. Internal representation is hidden from other objects.

B. Suitability:-

b. Suitable for those applications where a central issue

is identifying and protecting related bodies of

information/data.

C. Advantages:-

a. By locating only related methods and features in an

object, and using different objects for different sets

of features, one can achieve a high level of

cohesion.

b. It provides for improved testability through

encapsulation.
c. It provides for reusability through polymorphism

and abstraction.

D. Disadvantages:-

a. While interaction with other objects an object must

know the identity of that another object

b. Objects cause side effect problems i.e. if there are
two objects A and B and both use object C

Whenever the identity of an object changes it is

necessary to modify all other objects that explicitly

invoke it.

VI. LAYERED ARCHITECTURAL STYLE

In this style, system is organized hierarchically i.e. like

Multi level client – server where each layer acts as both a

client and a server and exposes an interface to be used by

above layers.

Components are typically collections of procedure

Connectors are typically procedured calls under inhibited

visibility.

For e.g. in a client server style Components are clients

and servers and connectors are Remote Procedure Call

based network interaction protocols.

The set of clients is often variable, and the connections

are commonly made only as needed. There may be several

servers providing the same services, in which case a client

may connect to any, and may look up a server in some kind

of directory in order to locate an appropriate one; clients
may be directed to whichever server is least busy, in order to

balance the load and provide fastest service. Style

Invariants:-

a. Limit layer (component) interactions to adjacent

layers; because in pure layer system Inner layers

are hidden from all except the adjacent outer layer

for certain function.

b. Virtual machine styles results from fully opaque

layers.

A. Suitability:-

a. Suitable for applications that involve distinct

classes of services that can be organized

hierarchically.

B. Advantages:-

a. In contrast to Object Oriented style, changes in a

layer affect at most the adjacent two layers.

b. Increasing abstraction levels because only carefully

selected procedures from the inner layers are made

available (exported) to their adjacent outer layer.
c. Reuse i.e. different implementations (with alike

interfaces) of the same layer can be used

interchangeably.

C. Disadvanatges:-

a. Performance requirements may force the coupling
of high-level functions to their lower-level

implementations.

b. Universally not applicable.

c. Difficult to find the right levels of abstraction.

VII. INTERPRETER STYLE

Interpreter architecture mimics a coded component using

a program written in some language. It is a special kind of a

layered architecture where a layer is implemented as a true

language interpreter. Interpreter style is used in rule based

system: Prolog, Coral and scripting languages: Awk, Perl.

Componnets consists one state machine for the execution

engine and three memories i.e

a. current state of the execution engine

b. program being interpreted

c. current state of the program being interpreted

Kamna Gauri et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 94-99

© 2010, IJARCS All Rights Reserved 97

Connectors includes procedure calls and direct memory

access.

A. Suitabilty:-

Suitable for applications in which the most appropriate

language or machine for executing the solution is not

directly available.

B. Advantages:-

a. Simulation of non implemented hardware

b. Facilitates portability of application or languages

across a variety of platform

C. Disadvantages:-

a. Extra level of indirection slows down execution.

b. Problems with scalability.

VIII. PROCESS – CONTROL STYLE

One sub-system has overall responsibility for control and

starts and stops of other sub-systems or processes.

Components are process definition which includes

mechanism for manipulating some process variables and

control algorithm for deciding how to manipulate process

variables.

Connectors are the data flow relations for process

variables, set point (desired value for a controlled variable)

and sensors (to obtain values of process variables pertinent

to control)

A. Style Invariants:-

a. Topologies like open loop & closed loop and Data

flow i.e. forward through open loop system,

circulating in closed – loop system

B. Suitability:-

a. Suitable for applications whose purpose is to

maintain specified properties of the outputs of the

process at given reference values.

C. Advantages:-

a. Efficiency i.e. using continuous updates and by

following a moving intention.

D. Disadvantages:-

a. Completeness & correctness
b. Control system analysis methods.

IX. EVENT BASED STYLE

In event-based implicit invocation architecture,

components register their interest in specific events with an
event manager. As part of the registration process, each

component makes a callback method on its provided

interface available to the event manager as one of its

required interfaces. Thereafter, whenever a registered event

is detected by the event manager, it calls the callback

method of every component registered for it and then gives

each one the event.

Components are independent, concurrent event generators

and/or consumers

Connectors includes event buses for data sending

A. Style Invariants:-

a. Components communicate with the event buses,
not directly to each other

B. Suitability:-

a. Prevalent for large-scale distributed applications is

the event-based style.

C. Advantages:-

a. Highly decoupled, Easy to evolve, effective for

highly distributed applications.

D. Disadvantages:-

a. However, they are not very flexible. If, for instance,

an object of interest is interested in producing an

event notification on a number of subjects or

channels, it has to explicitly publish the notification

on all of them.

b. If we assume that the event service is implemented

as a centralized element, it can rapidly become a
critical bottleneck as the number of components it

has to serve grows.

X. PEER – TO - PEER STYLE

In a peer-to-peer architecture, all components are at the

same level and each may require the interface of any or

every other component. A peer-to-peer architecture provides

little structure for a system. State and behavior of clients or

servers are distributed among peers. Network messages take

place in the form of data elements.

Components independent components (peers) having their

own state and control thread

Connectors Network protocols, generally ritual

A. Style Invariants:-

a. Network (may have redundant connections between

peers) can vary arbitrarily and dynamically.

B. Sutability:-

b. Suitable for decentralized computing with flow of

control and distributed resources among peers.

C. Advantages:-

a. Highly robust in the face of failure of any given

node.
b. Scalable in terms of access to resources and

computing power.

D. Disadvantages:-

a. Vigilance on protocols

Kamna Gauri et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 94-99

© 2010, IJARCS All Rights Reserved 98

XI. BLACK BOARD STYLE

Blackboard architecture has a blackboard component,

acting as a central data repository, and a number of

components that act independently on the common data

structure stored in the blackboard, responding to changes in

it and in response making further changes. The components

interact only through the blackboard.

Components are of two types i.e. Central data structure

and Components which are operatable on the Central data

structure.

Connectors are the blackboard state as system is entirely

controlled by these states.

A. Suitability:-

a. Suitable for those problems for which no

deterministic solution strategy is known.

b. Suitable for artificial intelligence systems such as

vision, speech and pattern recognition.

B. Advantages:-

a. Ensures data integrity and Reliable, secure,

testability guaranteed

C. Disadvantages:-

a. Problems with scalability

XII. RULE BASED STYLE

Inference engine parses user input and determines

whether it is a fact/rule or a query. If it is a fact/rule, it adds

this entry to the knowledge base. Otherwise, it queries the

knowledge base for valid rules and attempts to resolve the

query. Facts and queries takes place as data elements. Rule-

based systems provide a means of codifying the problem-
solving knowhow of human experts. These experts tend to

capture problem-solving techniques as sets of situation-

action rules whose execution or activation is sequenced in

response to the conditions of the computation rather than by

a predetermined scheme. [2]

Components are user interface, inference engine,

knowledge base

Connectors are tightly interconnected, with direct

procedure calls and/or shared memory.

A. Advamtages:-

a. Behavior of application can be very easily modified

through addition or deletion of rules from the

knowledge base

B. Disadvantages:-

a. When a large number of rules are involved then

understanding the interactions between multiple

rules affected the same facts can become very

difficult.

Table I. Architectural Structural Framework [10]

Architectural structures Components Relations Use

Module structure work assignments is-a-sub module-of Allocating a project‟s labor and other
resources during development and

maintenance.

Conceptual or Logical
structure

Abstractions of the
system‟s functional

requirements.

shares-data-with Understanding the interactions between
units in the problem space.

Process or Coordination
Structure

Processes or threads – Synchronizes-with

– Can‟t-run-without

– Can‟t-run-with

– Preempts,

Modeling dynamic aspects of a running
system.

Physical structure Hardware
(computers, networks,

etc.)

communicates-with Create models to reason about
performance, availability, security, etc

Uses structure procedures or
modules

assumes-the-correct-presence-of To model system extendibility and
incremental system building (e.g., Make file

dependencies).

Calls structure Procedures calls To model trace of execution in a
program.

Data Flow structure Programs or modules transmits-data-to To model data transmission, this can aid
requirements traceability.

Class structure classes and
interfaces

inherits-from, implements To model collections of similar behavior
and parameterizes differences.

XIII. REFERENCES

[1] Bass, L., Clements, P., Kazman, R.: .Software Architecture in

Practice,. Addison-Wesley, 1998, ISBN 0-201-19930-0.

[2] F. Hayes-Roth, „Rule-based systems,” Communications of the

ACM, vol. 28, pp. 921-932, September 1985.

[3] Abdurazik, A.: "Suitability of the UML as an Architecture

Description Language with Applications to Testing," February

2000, ISE-TR-00-01

[4] Allen, R., Garlan, D.: "A formal basis for Architectural

Connection," ACM Transactions on Software Engineering and

Methodology (TOSEM) Volume 6 , Issue 3, Pages: 213 - 249,

1997

Kamna Gauri et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 94-99

© 2010, IJARCS All Rights Reserved 99

[5] Evaluating Software Architectures: Methods & Case Studies,

Addison-Wesley, ISBN 020170482X.

[6] Perry, D., Wolf, A.: "Foundations for the study of software

architecture," ACM SIGSOFT Software Engineering Notes,

Volume 17 , Issue 4 (October 1992), Pages: 40 - 52, 1992.

[7] Egyed, A. and Medvidovic, N. "Extending Architectural

Representation in UML with View Integration," Proceedings of the

2nd International Conference on the Unified Modeling Language

(UML), Fort Collins, CO, October 1999, pp. 2-16 (44 papers out of

166).

[8] Egyed, A. and Medvidovic, N. "Consistent Architectural

Refinement and Evolution using the Unified Modeling Language,"

Proceedings of the 1st Workshop on Describing Software

Architecture with UML, co-located with ICSE 2001, Toronto,

Canada, May 2001, pp. 83-87.

[9] Medvidovic, N., Rosenblum, D.: "Assessing the Suitability of a

Standard Design Method for Modeling Software Architectures." In

Proceedings of the First Working IFIP Conference on Software

Architecture (WICSA1), pages 161-182, San Antonio, TX,

February 22-24, 1999.

[10] Design & Use of Software Architectures: Adopting and Evolving a

Product Line Approach: ISBN: 0201674947.

