
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 123

ISSN No. 0976-5697

Active Scrutiny Techniques for the Reconstruction of Architectural Views

J.M.S.V.Ravi Kumar*, I. Rajendra kumar, Dr. M. Babu Reddy, K. Phaneendra and G. Rajendra

Lakireddy Bali Reddy College of Engg. Mylavaram, Andhra Pradesh, India

*venkat7063@Gmail.Com,rajendralbrce@gmail.com, m_babureddy@yahoo.com,

panikanakamedala@yahoo.co.in,rajendra.raju@gmail.com

Abstract: In advance an understanding of software systems is an important discipline in many software engineering contexts. It is necessary that

software engineers are assisted as much as possible during this task, e.g., by using tools and techniques that provide architectural views on the
software at hand. This Ph.D. research addresses this issue by employing dynamic analysis for the reconstruction of such views from running
systems. The aim is to devise new generalization techniques and novel visualizations, to combine them, and to appraise the benefits through
substantial case studies and forbidden experiments. This paper describes our approach, reports on the results thus far, and outlines our future
steps Software Evolution Research Lab.

Keywords: Active, scrutiny, techniques, software, engineering, architectural views, testsuites, UML, automates

I. INTRODUCTION

Program comprehension is an important discipline that

has been subject to research for a long time. It is a process

of which perhaps the most well-known purpose is the

facilitation of software maintenance tasks: when

modifications to a software system are necessary, the

engineer must first familiarize himself with (part of) the
system at hand. However, as a software system evolves over

time, its architectural documentation (if existent at all) often

becomes outdated, which leaves the engineer with no choice

than to study such artifacts as source code and system

behavior. Unfortunately, this is a very time-consuming

activity and Corbi has reported [4] that up to 50% of

maintenance efforts is spent on gaining a sufficient

understanding of the system. The use of specialized tools

and techniques that provide comprehensible views [3] of the

software can significantly reduce this effort, particularly

when dealing with complex systems. Much attention in this
context has been given to the reconstruction of static

architectural views such as the module view type (e.g., [1]),

which comprises the visualization of a system’s structural

information.

A. Dynamic Analysis:

The component & connector (c&c) view type, on the
other hand, is based on dynamic analysis, which is the

analysis of data gathered from a running program. The

system is executed according to a certain scenario and, in

the process, various runtime data are collected that are

subject to (postmortem) analysis. Effective visualizations of

the resulting execution traces provide an insight into the

program’s inner workings, particularly in terms of its

behavior. Through the use of suitable abstractions, the

gathered data may be lifted to an architectural level, thus

leading to c&c views. The principal added value over static

approaches is the revelation of detailed object interactions
and late binding, thus allowing for accurate pictures of a

software system. However, these details come at a price:

while being dependent on the level of information that is

collected, the massive amounts of data that often result from

dynamic analyses call for smart abstractions and

visualizations [15]. While several common visualization

techniques do exist, they typically do not suffice when the

system at hand is large and complex. In general, a
visualization technique faces a twofold challenge: it must

depict (1) structural information and (2) large amounts of

runtime information without confusing the viewer, e.g.,

without the need for excessive scrolling. UML sequence

diagrams, for example, present sequences of events in a

chronological and therefore intuitive fashion, but tend to

become increasingly unreadable when handling large

systems or long execution traces. Moreover, the abstractions

that are being offered are typically manual in nature (e.g.,

[13]).

B. Research questions:

Having illustrated the problems and issues that we are

facing, we now formulate four research questions to guide

us through the research process:

a) In the context of program comprehension, do

testsuites account for suitable scenarios when

performing dynamic analysis?
b) Can we come up with (automatic) abstractions to

make existing visualizations of large executions

scalable and human-readable?

c) On the other hand, can we devise new, flexible

visualization techniques to cope with large amounts

of data? 4. Based on the previous two questions, can

we lift our visualizations to an architectural level?

Through the use of dynamic analysis, this research seeks

to address these research questions by improving existing

and devising new abstraction and visualization techniques,

while maintaining scalability and interactivity. We will
elaborate on the results achieved thus far, evaluate our

techniques using open source and industrial systems, and

finally, validate them through controlled experiments.

II. APPROACH

A. Visualization Criteria:

When discussing the construction of “comprehensible”

visualizations, we need criteria that capture

comprehensibility. We consider the following two properties

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,123-126

© 2010, IJARCS All Rights Reserved 124

from the realm of visual programming languages to be

appropriate in determining the comprehensibility of a view

[14]: Accessibility of related information viewing related

information in close proximity is essential. When two screen

objects are not in close proximity, there is the psychological

claim that these objects are not closely related to each other,

or are not dedicated to solving the same problem. Use of

screen real-estate The term “screen real-estate” refers to the

size of a physical display screen and connotes the fact that

screen space is a valuable resource. Making optimal use of

the available screen real-estate is necessary
to prevent excessive scrolling and thus reduce the required

effort while locating information.

B. Techniques:

In order to cope with the large amounts of dynamically

gathered data, we roughly distinguish between two
techniques: efficient abstractions, and novel visualizations.

Though being subject to powerful combinations, we plan for

our initial efforts to address each of these approaches more

or less separately. We will utilize the Symphony framework

[7] in that there exists a distinction between data gathering,

knowledge inference, and information interpretation (Figure

1). Sequence diagrams UML sequence diagrams, especially

those generated from runtime data, are a straightforward

Figure 1. The reconstruction process.

means to visualize program behavior in an intuitive fashion.
While the reverse engineering of such diagrams in itself is

not new (e.g., [2]), it is our opinion that the abstraction issue

in this context has not been sufficiently addressed and

evaluated, and that the origin of the necessary execution

scenarios often remains unclear. It is our intention:

a. to use test cases for scenarios, as they tend to trigger

specific features and because we consider them to be

an ideal starting point when domain knowledge is

lacking. Moreover, test case visualizations may serve

as documentation in Agile software development [8,

12];
b. to concentrate on abstraction mechanisms. We are

especially interested in abstractions that can be

applied automatically, e.g., based on metrics that are

gathered during the testcase execution.

Trace visualization For the effective visualization of

execution traces, we need distinct solutions for the

size problems of both large systems on the one hand

and long traces on the other. We therefore propose to

employ two linked views:

c. The notion of hierarchical edge bundles [9], a

visualization technique that bundles the static

relationships between a system’s structural elements,

can be extended with a temporal aspect to visualize

execution events. This technique is particularly

attractive in our context since the projection of a

system’s structure on a circle is very efficient in

terms of screen real-estate, and because the bundling

aspect will improve the readability of the many

relationships.

d. To provide a navigable overview of the trace, we

propose to use an extended version of the

information mural by Jerding et al. [11]. We

elaborate on this concept by using an improved form
of scaling. The resulting view is to be linked to the

aforementioned view, and serves to prevent the

viewer from getting lost.

C. Evaluation and Validation:

Evaluation The implementation of our techniques
requires a thorough testing phase to assess their usefulness.

We will achieve this by applying tool prototypes on a

diverse set of open source systems, among which are

medium-sized systems such as JHOTDRAW 1 (300 classes)

and CHECKSTYLE 2 (800 classes), and the more complex

AZUREUS 3 (4000 classes).

Additionally, our research project’s scope grants us

access to industrial software such as CROMOD, a complex

system that regulates climate conditions in greenhouses.

Whenever possible, we will involve the domain experts

in determining the effectiveness of our techniques.

Validation Following the development of a series of
techniques and tools, we plan to conduct a controlled

experiment.

The purpose is to determine the extent to which

visualization tools actually help during certain maintenance

tasks. The idea is for heterogeneous groups of graduate and

Ph.D. students to perform a series of change requests on an

unknown system, with part of the participants having access

to our supporting tools while the others are merely dealing

with the source code.

D. Survey:

In order to create a comprehensive overview of related

work and to assist the definition and refinement of our

future research directions, we conduct a survey of dynamic

analysis techniques in parallel with the activities mentioned

earlier. The focus in this study is on all papers that use these

techniques in the context of software understanding and that

have been published in any of the major conferences and
journals related to reverse engineering.

III. PRELIMINARY RESULTS

A. SDR:

We have conducted an experiment [5] in which we have

reverse engineered and abstracted a form of UML sequence

diagrams, which we call scenario diagrams. At the basis of

this process lies a program’s test suite, of which the test

cases are used as execution scenarios. Using our Scenario

Diagram Reconstruction (SDR) framework, a test suite is
instrumented and executed, during which the events (i.e.,

method calls) are converted to scenario diagram

specifications. In order to make the diagrams more readable,

we also collect several runtime metrics to propose sets of

(customizable) abstractions on the views.

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,123-126

© 2010, IJARCS All Rights Reserved 125

Figure 2 depicts the reconstruction process. In terms of

the Symphony framework, the entities on the top row are the

data gathering phase; the usage of abstractions (changing the

views) corresponds to knowledge inference; and the

Figure 2. Reconstructing scenario diagrams.

visualization of the resulting diagrams comprises the

information interpretation phase. Our approach has been

evaluated on a small system consisting of 25 classes,

yielding promising results.

B. Extravis:

In another experiment, we have developed a novel

visualization tool to handle large execution traces [10]. The

solution that we propose is twofold: the massive sequence

view uses importance-based anti-aliasing (IBAA) to provide

a zoom able overview of the trace, whereas the circular

bundle view warrants for the grouped visualization of the
call relations in the current timeframe. The latter technique

is illustrated in Figure 3, in which the calls are shown in a

light-to-dark fashion so as to indicate their directions.

The tool, Execution Trace Visualize (EXTRAVIS)4, is

based on the views that were proposed in Section 2.2 and

reflects a strong emphasis on scalability. It has proven

effective [6] in three distinct program comprehension

contexts, among which are trace exploration, feature

location, and feature comprehension. The subject systems

included JHOTDRAW (150,000 events) and CROMOD

(270,000 events).

C. Dynamic Analysis Survey:

Our survey of dynamic analysis techniques is underway

and we are in the process of systematically organizing the

material that we have collected, which amounts to

approximately 150 papers from eight conferences and four

journals. We are using formal concept analysis to group the
papers by keywords and research topics addressed.

IV. FURTHER RESEARCH

A. Views and Dualities:

The views that were created using the techniques

mentioned earlier are subject to improvement. For example,

in the context of scenario diagram reconstruction, there is

clearly a need for intricate abstraction methods to keep the

diagrams sufficiently readable, particulary when dealing

with large

Figure 3. visualize implementation traces.

software systems. The idea is for the runtime metrics to

play a key role in automatic abstractions. Moreover, by

omission of the more detailed interactions, we hope to

attainVisualizations at a more architectural level.

With respect to trace visualization, the major issue is the

massive amounts of data. Our tool implementation indicated

a lack of computational resources, and the limited amount of
screen real-estate prohibits the display of all information

without (unwanted) abstractions. An alternative would be to

introduce a preprocessing step that involves certain

abstractions. Finally, our experiments revealed an

interesting duality: whereas EXTRAVIS’s strength lies in

scalability and overview, the views presented by SDR’s

scenario diagrams are more intuitive because of their

chronological ordering. More effort is needed to present new

views that combine the best of both worlds, e.g., by

combining these techniques or presenting derivations

thereof.

B. Evaluation:

To further evaluate our techniques, we plan to conduct

studies on systems that are larger and, thus, more

challenging. The introduction of new abstraction

mechanisms in the reconstruction of scenario diagrams, for

example, requires extensive testing and tweaking, as was
indicated in preliminary experiments with CHECKSTYLE

(800 classes). Also, we feel that it must be verified whether

our test suite visualizations actually capture the essence of

the test cases at hand; one could think of conducting a

controlled experiment or, in an industrial context, consulting

the domain experts. With respect to our trace visualization

technique, we expect the bundle view to scale up pretty well

due to the circle approach, and we plan to verify this

assumption by means of studies on AZUREUS and larger

industrial systems.

V. REFERENCES

[1]. I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux as a case
study: Its extracted software architecture. In Proc. 21st Int.
Conf. on Software Engineering (ICSE), pages 555–563, 1999.

[2]. L.C. Briand, Y. Labiche, and J. Leduc. Toward the reverse
engineering of UML sequence diagrams for distributed java

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,123-126

© 2010, IJARCS All Rights Reserved 126

software. IEEE Trans. on Software Engineering, 32(9):642–
663, 2006.

[3]. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.
Little, R. Nord, and J. Stafford. Documenting Software
Architectures: Views and Beyond. Addison-Wesley, 2002.

[4]. T.A. Corbi. Program understanding: Challenge for the 1990s.
IBM Systems Journal, 28(2):294–306, 1989.

[5]. B. Cornelissen, A. van Deursen, L. Moonen, and A. Zaidman.
Visualizing testsuites to aid in software understanding. In
Proc. 11th European Conf. on Software Maintenance
andReengineering (CSMR), pages 213–222. IEEE, 2007.

[6]. B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. van
Wijk, and A. van Deursen. Understanding execution traces
using massive sequence and circular bundle views. In Proc.
15th Int. Conf. on Program Comprehension (ICPC), pages
49–58. IEEE, 2007.

[7]. A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and
C. Riva. Symphony: View-driven software architecture
reconstruction. In Proc. 4th Working Conf. on Software
Architecture (WICSA), pages 122–134. IEEE, 2004.

[8]. A. Forward and T. Lethbridge. The relevance of software
documentation, tools and technologies: a survey. In Proc.
ACM Symp. on Document Engineering, pages 26–33, 2002.

[9]. D. Holten. Hierarchical edge bundles: Visualization of
adjacency relations in hierarchical data. IEEE Trans. on
Visualization and Computer Graphics, 12(5):741–748, 2006.

[10]. D. Holten, B. Cornelissen, and J. van Wijk. Visualizing
execution traces using hierarchical edge bundles. In Proc. 4th
Int. Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT), pages 47–54. IEEE, 2007.

[11]. D. Jerding and J. Stasko. The information mural: A
technique for displaying and navigating large information
spaces. IEEE Trans. on Visualization and Computer Graphics,
4(3):257–271, 1998.

[12]. B. Marick. Agile methods and agile testing.
http://testing.com/agile/agile-testing-essay.html (accessed
June 8th, 2007), 2004.

[13]. R. Sharp and A. Rountev. Interactive exploration of
UML sequence diagrams. In Proc. 3rd Int. Workshop on
Visualizing Software for Understanding and Analysis
(VISSOFT), pages 8–15. ACM, 2005.

[14]. S. Yang, M. M. Burnett, E. DeKoven, and M. Zloof.
Representation design benchmarks: a design-time aid for vpl
navigable static representations. J. Visual Lang. &
Computing, 8(5-6):563–599, 1997.

[15]. A. Zaidman. Scalability Solutions for Program
Comprehension through Dynamic Analysis. PhD thesis,
University of Antwerp, 2006.

