
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 105

ISSN No. 0976-5697

A New Scheduler for Relative Threads on Multi Processors by Randomize Algorithm

Morteza Babazadeh*
Department of computer,Babol-branch,Islamic Azad

University, Babol, Iran

Morteza_babazade@yahoo.com

Shirin Hatami

Young research club, Islamic Azad University, Babol-

branch, Babol, Iran
Shirin_hatami@yahoo.com

Abstract: In this paper, we first study the existent method of scheduling multi processors, then we try to propose a new scheduler for multi

processors with randomize algorithm, in the situation that the processes are related with each other. Randomize algorithm is a method like
genetic algorithm but without any cross over function. The proposed method considers all precedence limitations and then tries to observe
priority of the processes. The basic ability of this algorithm is in considering priority for tasks. Proposed algorithm can be run in an acceptable
time for huge amount of tasks.

Key Words: Multiprocessor, scheduling, Randomize Algorithm, Genetic Algorithm

I. INTRODUCTION

Now day's multiprocessors have a several usage in hard
problems, so scheduling is one of the most important
concepts for them. In multi processors the huge amount of
process and threads is existence for execution that can be
relative or irrelative. For scheduling irrelative processes we
have many classic methods like LPT, RLPT, SPT, LSPT [1],
DFS [3], SMP [4], that we do not survey them in this paper.
However several methods are existence for scheduling
relative processes too, such as space sharing.

In line-base architecture this fact that two relative
processes are exist on the same processor or not is effecting
on the execution time because we have a global memory and
each processor has own cache memory. for execute two
processes on two suppurate processor, the first processor
have to rewrite the results on global memory , then the
second copy them on the cache [2] generally, the relation of
the processes can be shown by a DAG (Directed Acyclic
Graph) like G=< V,E,T,C > that :V is the set of processes E

is the set of Relations in graph , Value of Tt represent

the execution time of in V and ijc C is determine the

cost of ije
 . The cost of ije is zero in situation that iv and

jv are executing on the same processor. If we have a

relation line ije then in is a predecessor for jn and jn is

an immediate successor for in . the process that has not any

successor named an output process. An example of process
and thread and the relation between them is shown is table 1.

II. CONCEPT OF PRECEDENCE AND PRIORITY

In the graph that we created for represent relations
between process and threads if ije be a relation from in to

jn then in has precedence to jn . So in figure 1, process A
has precedence to B, in the other word a scheduling that lets
B to execute before A is completely invalid. Each process
can be run after running whole of its precedence.

Tab.1 sample

Figure 1. Sample graph

But another concept is priority. If we represent priority
with a positive number (for example A=2, B=3, C=1) then A
has priority into C, but A and C have not precedence into
each other. In this situation it’s better that A run before C,
however if in a scheduling C run before A it’s a valid
scheduling too. In the proposed method we conserve all of
precedence as a limitation and then we will try to consider
priorities. There are many methods for specify priority that
can be calculate in other parts of operating system but it is
important that scheduling algorithm able to consider priority
number in scheduling. For example one of the methods for
specifying priority is based on number of children’s. In this
way whatever the children and grandchild’s of a process is
more the priority will be greater.

III. STRUCTURE OF PROPOSED CHROMOSOME

In the chromosome that we have designed each gene
represents a thread. In fact we are scheduling base on thread.
Each gene has three fields: C, T and L. and each
chromosome has three fitness: rF , tF and pF (figure 2)

pF TF rF C,T,L

Figure 2. Chromosome structure

Morteza Babazadeh et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 105-107

© 2010, IJARCS All Rights Reserved 106

The first field of the gene (C) represent processor number
that this thread will be execute on it. This field will be
specifying randomly while algorithm is running. The second
field (T) is the beginning time of thread execution. And L is
level number of gene in chromosome.

IV. VALUATION OF L IN GENE

Level number represents the execution sequence of
threads in chromosome. Level number of each gene cannot
be less than it predecessor's level number. Threads that there
is no any precedence between them will give random level
number. we can set L easily by, topological sort algorithm.

V. VALUATION OF T IN GENE

T is the starting time of each thread. After than one
processor selected for a thread we have to calculate start time
of it. We must obtain three conditions to start a thread:

a. Selected CPU has to free (fcT).
b. All of predecessors have to execute (pT).
c. If one of the predecessors executed on another CPU

then the transmission time must be pass (d
iT).By (1)

we have:

That piT is finishing time of predecessor number i , f
iT is

finishing time of execution predecessor i and d
iT is data

transmission time. d
iT is zero if the current thread and its

predecessor be executed on the same CPU. Now by consider
that probably we have k predecessors for each thread, last pT
will be the biggest existence piT . (2)

(2) 1},max{ ipip

After calculation pT and fcT , main value of T is
maximum of fcT and pT (3), whereas in this time CPU is
free, predecessors are executed and data transmission time is
passed.

 (3) },max{ fcp

VI. IMPLEMENTATION OF MUTATION OPERATOR

We implemented mutation in two ways. After selection

one gene for mutation base on mP , we will produce a

number between zero and one that specified kind of
mutation. Now introduction two kind of mutation: 1-
Mutation in C: in this situation the CPU number that will
execute this thread will be changed. Values of each gene is
calculating by consider to values of genes in lower level, so
value of T have to update from mutated gene to greatest level
number.2-Mutation in L: in this situation level number will
be change. In other word the sequence of execution threads
will be change. Any gene cannot mute before its predecessor
or after its successor.

VII. FITNESS OF CHROMOSOME

In this section we will explain method of creation
chromosome fitness. Chromosome has three different fitness

named rF , tF and pF . rF is average of the response time of

threads in a chromosome and we will try reduce its value. tF

or Total time is greater service time in all of the CPU's. We
will try to reduce its value. The optimum total time is
calculating by (4) where n is number of threads and m is
number of CPU's.

(4) n

i

i mSTotaltime

1

/)(

pF has been created for incrementing priority observance.

We will try to reduce its value. In (5) n is number of threads,

iP is priority of thread i, iW is waiting time of it. As you

see below we have to decrement waiting time to grow this
fitness. Between two chromosomes that have equal

rF and tF , the chromosome is better that has a smaller pF .

 (5)
nwpF

n

i

iip /)*(
1

If we have many fitness in a chromosome, we have to
consider one importance coefficient between 0 to 1 for each
fitness as sum of all coefficients is equal one.

VIII. EVALUATION OF ALGORITHM MODEL

For evaluation efficiency of the algorithm we have
implemented proposed algorithm and a classical algorithm
by aid MATLAB. Classical algorithm schedules by verifying
graph. The input graph has been created randomly. Just we
can determine number of nodes. For less than 30 nodes the
classical algorithm is better. For this beyond the proposed
algorithm can scheduling properly but classical algorithm
drops dramatically, as shown in figure 3

0 5 10 15 20 25 30 35 40
0

2000

4000

6000

8000

10000

12000

classical

proposed

number of nodes

e
x
e
c
u
ti
o
n
 t

im
e

Figure 3. algorithm efficiency

Then we have focused on effect of priority factor. So we
generated a random DAG with 25 nodes and ran it several
times on proposed algorithm. in each execution we
incremented priority of a separate node. In figure 4 we have
shown effect of priority factor in response time of separated
node and total time. In all executions basic population is 50,

number of generation is 10, mp is 0.2 and number of CPU is

5.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

priority

tim
e

response time

total time

Figure 4. effect of priority

d
i

f
ipi

Morteza Babazadeh et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 105-107

© 2010, IJARCS All Rights Reserved 107

IX. CONCLUSION

In this project we proposed a new scheduler based

genetic algorithm that can do scheduling with a new edition
of chromosome. One of the positive points in this algorithm

is ability to considering priority in scheduling and achieves

better response time for group tasks.

We think form of designed chromosome is the basic

property of this algorithm. With a little change we can

produce new algorithms with new goals. For example by

producing a relation graph between CPU's we can
scheduling NUMA machines. But proposed algorithm can

be used for collective memory structure in multi processors.

X. REFERENCES

[1]. Tanenbaum, A.S. "Modern Operating Systems" , Prentice

Hall , 1992

[2]. Tanenbaum, "Distributed Systems Principle and paradigms",

Prentice Hall, 2002.

[3]. Chandra, A. , Adler , M. , Shenoy ,P. "Deadline fair

scheduling: Bridging the theory and practice of proportionate

fair scheduling in multiprocessor systems" , In Proceeding of

the 7th IEEE Real-Time Technology and Applications

Symposium , May 2001.

[4]. Holman, P., Anderson, J., "Adapting Pfair Scheduling for

symmetric Multiprocessors", submitted to journal of

Embedded Computing, 2004.

[5]. Auyeung, A., Gondra, I., Dai , H.K., "Intergrating Random

Ordering into Multi-Heuristic List Scheduling Generic

Algorithm", in proceeding of the third International

Conference on Intelligent Systems Design and Applications ,

Springer-Verlag , pp 447-458 , 2003.

[6]. Auyeung , A., Gondra, I., Dai, H.K., "Multi heuristic List

Scheduling Generic Algorithm for Task Scheduling",

Proceeding if the 8th Annual ACM Symposium on Applied

Computing , ACM Press, pp 721-724 , 2009.

[7]. Lee, Y.H., Chen, C. " A Modified Generic Algorithm for

Task Scheduling in Multiprocessor Systems", the 9th

workshop on compiler techniques for high-performance

computing , 2009.

[8]. Alaoui, S.S., Frieder, O., Elghazwi, T.A , "A Parallel Generic

Algoritm for Task Mapping on Parallel Machines",

Proceeding of the 11 IPPS/SPDP'99 Workshops Held in

Conjunction with the 13th International Parallel Processing

Symposium and 10th Symposium on Parallel and Distributed

Processing, Springer verlag , London , UK,1999

