
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 175

ISSN No. 0976-5697

Optimization of Non Structured Query in Semantic Web by use of the Monitor

Structure
Ahmad Kazemi*

MS Student mechatronic, Islamic Azad University,
Majlesi Branch, Iran

Ahmadkazemi_2006@yahoo.com

Dr. Mehdi Sadeghzadeh

Professor Islamic Azad University,
Mahshahr Branch, Iran

 Sadegh_1999@yahoo.com

Dr. Amir Masoud Rahmani
Associate Islamic Azad University, Science and Research

Branch Tehran, Iran

Dr. Houshang Kazemi
Professor Islamic Azad University,

Majlesi Branch, Iran

Abstract: web queries are based on path expressions which are equal to a combination of some elements connected to each other in a tree pattern

structure, called query tree pattern (qtp). The main operation in web query processing is to find the nodes that match the given qtp in the
document. A number of methods have offered for qtp matching; but the majority of these methods process all of the query nodes to access all
qtps in the document. A few methods such as tjfast process only nodes that satisfy leaves of qtp. All of above methods are trying to find a way
just to optimizing direct comparing of nodes and to find the answer of query, directly via these comparisons. In this paper, we describe a novel
method to find the answer of query without access to real data of the document blindly. In this method, first, the query will be executed on query
guidance and this leads to a plan. Using this plan, it will be clear how to process leaf nodes and how to achieve query results, before processing
of the document nodes. Therefore, none of document nodes will be processed blindly.

Keywords: Web, Twig Joins, Tjfast, Path Indexes And Evaluation.

I. INTRODUCTION

Query processing is an essential part of any WEB

database. Both XPath and XQuery, the two most popular

query languages in WEB domain, are based on path

expressions. A path expression specifies patterns of

predicates selection on multiple elements that has a tree

structure named Query Tree Pattern (QTP). Consequently,

in order to process WEB queries, all occurrences of QTP in

the WEB document should be found. This is an expensive

task when huge WEB documents are involved. Consider the
following query: Q1: // A[.//B]//C//D; The structure of an

WEB query could be shown in a QTP, for example the QTP

of query Q1 is presented in Figure 1.

The aim of all WEB query processing methods is to find

all QTP instances in the WEB document. A number of

methods are proposed to answer queries like Q1. We

classify these methods into three groups:

Group A: Methods in this group are based on a famous

method named Structural Join [1]. In structural join, query
is decomposed into some binary join operations. Thus, a

huge volume of intermediate results are produced in these

methods.

Group B: Holistic twig join methods [2] do not decompose

the query into its binary Parent-Child (P-C) or Ancestor-

Descendant (A-D) relationships but they need to process all
of the query nodes in the document.

Group C: It is better to process only nodes that satisfy

leaves of QTP. TJFast [12] is such a method.

Three Groups above called containment joins.

Containment join methods use an index named Name

Indexes to quick access to elements which have same tag

name. for example to answer Q1, this index makes it

possible to access to all A, B, C and D nodes in the

document; but all of methods above, do not consider the

place of elements. They are trying to find a way just for

optimizing direct comparing of nodes and to get the answer

of query, directly via these comparisons whereas many of
these comparisons do not produce any part of the query

answer.

On the other hand, there are some path indexes like

Strong DataGuide, Fabric Index, ToXin, APEX, Index1, A(k)

Index, and F&B which are indexing the path of document’s

nodes to facilitate access to nodes required in WEB query

processing methods [3] [6] [7] [9] [10] [13][14].

These path indexes are other kinds of query processing

methods which are against the A, B and C group methods.

Path indexes usually have two parts:

a. Structural Summery (SS) that summarizes
document structure and describes relation between elements.

b. Extend that keeps real data of the document based

on Structural Summery.

Ahmad Kazemi et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,175-181

© 2010, IJARCS All Rights Reserved 176

root

title

book

author author

name name

title

book

author

name address

title

article

author

name address

author

name

1

1/2

1/2/2

1/2/2/1

1/2/3

1/2/3/1

1/3

1/3/1 1/3/2

1/3/2/1 1/3/2/2

1/4

1/4/1 1/4/2

1/4/2/1 1/4/2/2

1/4/3

1/4/3/1

1/2/1

1 1, …

2 1/2 , 1/3, …

3 1/4, …

4 1/2/1 , 1/3/1, …

5 1/2/2 , 1/2/3 , 1/3/2, …

6 1/4/1, …

7 1/4/2 , 1/4/3, …

8 1/2/2/1 , 1/2/3 /1, 1/3/2/1,

…

9 1/3/2/2, …

10 1/4/2/1 , 1/4/3/1, …

11 1/4/2/2, …

(a)

(b)

root

title

book

author title

article

author

name address

1

2

5

3

11
name

9
address

4 6 7

10 8

(c)

Figure 2. (a) A sample WEB document (b) Its Structural Summary (c) It’s extend

Both of them are shown as b and c in figure 2. All of

methods in this group behave as follows: At first, structural

relationship (A-D or P-C) between query elements are

compared with Structural Summary. As result, Extends of

nodes that match with query is returned. For example in
Match Processing of query Book/author/name on SS in

figure 2, node number 8 matches with query. Therefore, all

of its Extends will be returned as results. This method is

considerable because it apply query on a small set named SS

and to execute the query it doesn't need to access to real data

of the document; But always queries are not such simple.

For example to answer the queries such as a//b[c] or

a[.//b]/c they need to access real data of the document.

Therefore, this method has not enough performance.

None of the containment join methods uses full potential

of path indexes or structural summaries, while these have
great potential to guide us to sighed processing.

In this paper, we propose a compound method that uses

structure summary as query guidance. In this method, query

will be executed on structure summary that has very small

size in comparison with the document. For this purpose,

there is no need to access to real data of the document.

Result of this execution is generation of a plan called

Monitor Structure (MS). MS shows leaf nodes of the query

and the way of their processing in the document. This save

us from direct and blind processing in the document

II. OVERVIEW OF OUR METHOD

Our method is similar to both Containment Joins and

Path Indexes. In this method, we apply the query on

Structural Summery of the document. SS is similar to

schema of a document and has not close relation with size of

the document. Its size and structure are usually stable or

with a few variation.

Figure 4. A Sample Structural Summary

Step1: as shown in figure 3 and like Path Index methods,

first, query is applied on SS; but here the query is not

executed in its complicated form. It will be split in several
single-branch queries that will be easily answered in all

methods of path indexes [3] [6] [7] [9] [10] [13] [14].

Step2: all single-branch queries execute on SS separately. A

plan that called Monitor Structure is build from execution

result of single-branch queries. MS as process guidance

shows the leaf nodes that are to process and the way of

processing them in the document.

Step3: The document is numbered base on Dewey encoding.

Definition : In Dewey labeling method if node U is the nth

child of node V, the Dewey code of node U is the Dewey

Ahmad Kazemi et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,175-181

© 2010, IJARCS All Rights Reserved 177

code of node V as its prefix continue with n,

Dewey(U)=Dewey(V)+'.'+'n'. For example suppose that

Dewey(V)=<1.3> and node U1 is the 7th child of node V,

then Dewey(U1)=<1.3.7>

As shown in C of figure 2, Based on Dewey numbers, all

nodes corresponding to each node of SS are sorted in

Extend. Third step is similar to Containment Joins methods.

Based on MS, leaf nodes of query that are placed in Extend

will be compared and final result will be generated.

A. Query Splitting And Execution Of Single-Branch

Queries On Structural Summary:

Queries are usually complicated and multi-branch.

Before splitting a query in several single-branch queries, we

should be familiar with Joint point concept.

a. Definition-JP: Joint Point is a node in QTP which
joins more than one branch to each other.

Example: suppose A and B are two branches of a query that

have traversed path from query root a1/a2/…/aj/ax1/…/an

and a1/a2/…/aj/ax2/…/am and ax1 ≠ ax2 then J is joint

point of two branches with a1/a2/…/aj as its path. We do not

mean parent-child relation by / between query elements and

it can be interpreted as /, //, *.

To answer the multi-branch queries, we need to find

joint points of branches that called JP. Complexity of multi-

branch queries is because of JPs. We can easily find place of

these nodes on SS; but we cannot definitely answer to this
kind of query without access to the document. Query

condition is as follow: a JP in a document is part of answer

if it has all of query branches under itself, in other words,

several query branches in the document can be part of

answer if they are conjoint in same JP. This JP cannot be

found just with access to SS and without comparing of

branches in the document; because it is possible that one JP

in the document has not one of query branches under itself.

Example: in Q1, A is joint point of two branches, A//B and

A//C//D. in Q1, A nodes in document are part of answer if

have both of A//B and A//C//D branches.

b. Splitting Query: suppose Q is a multi-branch query
with n JPs and m branches (leaves). Q split in single-

branch queries SQ1, …., SQm so that each SQi is a

branch from root to leaf of one of branches and every

two of SQi and SQj have same prefix from root to one

of the JPs. Total Number of these different JPs is n.

Here our goal is description of algorithm functionality.

For this reason, we explain our method on simple query of

Q1 and then we show how MS can answer to complicated

queries.

c. The procedure: As mentioned above, at first, we must

split query. Query split into single-branch queries.
Then each single-branch query will be executed on SS

separately. Fortunately, in most of path index methods

single-branch queries can be answered easily with SS

and without access to the document data. Result of this

execution will be a list of nodes in SS for each single-

branch query. Path of these nodes will be absolute

(from root to node in SS).

d. Example: suppose we want to execute Q1 query on SS

of figure 4. at first, query split into two single-branch

queries: A//B and A//C//D. we only need to keep and

access to leaves of query for each branch because the

document labeled with Dewey numbers and lower
nodes have some information about upper nodes (path

traversed from root) in themselves. Therefore, for A//B

branch, B1 and B2 nodes and for A//C//D branch, D1

and D3 nodes are answers of single-branch queries. It

is obvious that D2 is not in the results because it has

not condition of single-branch queries. These nodes,

have absolute path W/A1/A2/B1 W/A1/B2 for A//B

branch and W/A1/B2/C1/D3, W/A1/A2/C2/D1 for

A//C//D branch, in turn.

B. Generation Of Ms:

a. Primary Definition: MS is a table with three columns.

First two columns are leaf nodes of two query branches

in SS and its third column is level of JP between two

these branches. Leaf nodes in MS have absolute path.

Therefore, each record of this table shows an operation

called Matching Process.
b. Definition: Matching Process is process of comparing

two or more nodes in the document to achieve part of

answer.

c. The procedure: after splitting query into several

single-branch queries and gaining corresponding nodes

to leaves of single-branch queries in SS, now we have

to achieve JP of these nodes. In Dewey encoding

manner, each leaf indicate a branch. Result of single-

branch queries execution on SS is a list of nodes for

each single-branch query. The Path of these nodes are

absolute (i.e, path of each node is completely specified
from root to node). Now, to achieve JP of these nodes,

we select a node from each list and compare their

absolute paths with each other. If paths of selected

nodes were same from root to level of query JP, we

add those two nodes and level of JP to MS.

d. Example: execution result of single-branch queries of

Q1 on SS in figure 4 are B1 with absolute path

W/A1/A2/B1 and B2 with absolute path W/A1/B2 for

A//B branch and D1 with absolute path

W/A1/A2/C2/D1 and D3 with absolute path

W/A1/B2/C1/D3 for A//C//D branch. Now, we compare

elements of each branch with each other. If traversed
paths from root to JP of query, - here A - are the same

between each two comparing nodes, we add one record

which contains those two nodes and JP level of two

nodes. For example B1 and D3 have same path down

to JP A1 (Level of root is considered as 0). Therefore,

we add <B1, D3, 1> to MS. as a result MS has

following records: <B1, D1, 1>, <B1, D1, 2>, <B1,

D3, 1>, <B2, D1, 1> and <B2, D3, 1>.

Primary MS production algorithm for a two-branch

query is shown in figure 5. Let us consider lines from 7 to

10 of algorithm. In this section, for each similar prefix from
root to one JP located between two nodes, algorithm adds

one record with JP level to MS.

This algorithm shows all records that must be added to

MS for each JP; because one node can has more than one JP

(line 7).

e. Example: As is obvious in SS, B1 has two JPs (A1, A2)

and D3 has one JP (A1); but these two nodes have

same path just up to JP A1.

Ahmad Kazemi et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,175-181

© 2010, IJARCS All Rights Reserved 178

Figure: 5 The Pseudocode of the R_T Production

Figure 6: Final Result Production

FINAL RESULT

Final result is constructed based on the ResultTable.

Each record in the ResultTable guides query processor to

produce a part of the final result. Therefore, final result is

the union of partial results produced for each record of

ResultTable.
a. The procedure: Consider a given record in a

ResultTable and its fields. Two first fields are two

nodes in a Structure Summary. As mentioned in

introduction, each node in Structure Summary has an

ordered list of related nodes' Dewey number in the

WEB document that called Extend. Elements of these

two lists should be compared with each other to

produce part of the final result. This process is called

Matching Process. The matching process starts with

comparing current node labels of lists (first ones at the

beginning). If comparing nodes have same prefix up to
JP level (third field), those are part of result.

b. Example: Consider record B1, D1 of the previous

ResultTable (the JP value of the record is assumed 2).

Suppose their related node labels form the below lists:

Level of W is assumed ε.

B1-extend = {1/3/6, 1/7/1}

D1-extend = {1/2/2/1, 1/2/2/2, 1/3/3/1, 1/3/5/7, 1/6/2/2,

1/7/1/2}

Applying the algorithm of matching process on these

lists forms the below output list:

OutputList = {(1/3/1, 1/3/3/1), (1/3/1, 1/3/5/7), (1/3/6,

1/3/3/1), (1/3/6, 1/3/5/7), (1/7/1, 1/7/1/2)}
Lines number 8 and 9 of figure 6, give us nodes that

have same prefix up to JP level and are part of Matching

Process results. For nodes such as 1/2/2/1 which have not

successful matching process, we should jump to next first

node that is just greater in this level (look at jump(L)). For

example in level 2, if node 1/2/2/1 is current node, then next

node will be 1/3/3/1.

III. MS AND COMPLICATED QUERIES

In previous sections, overall procedure of algorithm to

answer a two-branch query is shown; but there are queries

that are more complicated in database' world. In this section,

we show MS flexibility and applicability in these queries so

that we can answer these queries with processing of leaf

nodes just once.

A. Jps With More Than Two Branches:

As mentioned in primary definition, MS is a table with

three columns that first two columns are nodes of each

branch and its third column is common level between two

branches; but in the world, it is possible that several

branches were joined together in one JP. For example,

assume Q2: //A[./C][./D]/B;

Figure: 8 Pseudo code of Matching Process

Figure: 10 Pseudo code of Matching Process

Here it is enough that we change primary definition of

MS as follows:

Secondary Definition of MS: MS is a table with
M+1columns for a JP with M sub-branch so that its 1st to Mth

columns are leaves of branches and last column is common

level of JP between all nodes.

We also need to change pseudo code of figure 6 as figure

7 to generate final result for each MS record.

B. Queries With Several Jps:

In a query, each MS will be used for one JP. Therefore,

for queries with M JPs we need M MSs; but these MSs

cannot be used independently and there is relationship

between them. Therefore, we need two changes: first, we

use MS_model instead of MS in figure 3.

a. Definition: MS_model shows a set of n MS for a query

with n JP along with their relations.

Ahmad Kazemi et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,175-181

© 2010, IJARCS All Rights Reserved 179

b. Example: suppose that we want to build an MS_model

for query of figure 8. This QTP has three branches

(A//B/C, A//B/D, A/E//F). The first joint point is B

which joins two first branches A//B/C and A//B/D. A is

another JP between two first and third branch. As

shown in figure 9, A uses output of B. Therefore,

output of MSB will be used as a field of MSA.

Second change must be in sequence of nodes processing

to generation of Final Result. This change illustrated in

figure 10. Pseudo code of figure 10 show a bottom-up

processing. This means that at first it process those JPs that
are in lower position in QTP tree. The procedure is as

follows: when there are orders of process between several

JP, it begins with first JP (line No.3). A recursive procedure

called Math_Proc is used that consider orders of process. If

matching process was successful for a MS (line No. 7), this

procedure tests next MS (line No. 8). This process continues

while matching process is successful for all MSs, (line No.

5, 6). If matching process was not successful for one MS, we

must do jump from either that or previous MS (line No. 10)

and matching process begin from previous MS (line No. 11).

C. Queries with *, ?, // and /:

MS method is similar to both Path Index and

Containment join methods. For single-branch queries, path

indexes undertake the responsibility of query conversion to

absolute path. Fortunately, some of them such as YAPI[19]

have acceptable performance on various operators (*, ?, //

and /) in single-branch queries and don’t need to access to

real data of the document and just with access to SS can

answer to various kind of single-branch queries.

IV. EXPERIMENTAL RESULTS

In this section we present the result of our experiments.

As discussed above, we categorize the existing WEB query

processing method into three groups. We compared our MS

methods with Twig2Stack and TJFast. Twig2Stack is selected

as the representative of holistic twig join algorithms of

Group B and TJFast as the representative of Group C, the
methods which only access leaf nodes of QTP in the WEB

document. As mentioned above our MS methods are

classified into the Group C too.

a. Our path index: In second step our method needs to

one of path indexes to convert single-branch queries to

absolute path of result nodes in SS. There are many

path index methods to choose; but each method tries to

answer to complicated queries by itself. Therefore, for

many of queries they need to access to real data of the

document and thus they have not enough performance

whereas in our method a path index is used just on SS

and to answer to single-branch queries. Therefore, it

must have only two below properties:

i. Its SS is small and it answers to single-branch queries

quickly.

ii. It is applicable for all single-branch queries with all

possible operators (*, ?, //)

Among all path index methods, the best option that
provides two above properties is YAPI [19]. It is quickest

and cheapest method to answer to single-branch queries.

b. Data sets: We use four datasets TreeBank [15], XMark

[17] and DBLP [11] and a Random dataset in our

experiments. DBLP is a famous dataset which is a

shallow and wide document. Against DBLP, we use

well-known TreeBank dataset which is a deep

document.

c. Random dataset: We build random dataset with the

depth of 12 and width of node – maximum number of

children of a node – 10. The elements tags of this
dataset are only A, B, C, D, E and F. In this way, one

element could have one or some homonymous nodes

as children. As a result, the Structural Summery of the

document could be complex and nested. Here, the

numbers, types and orders of children of nodes are

chosen accidentally.

d. Original Dewey: In our experiments, the extended

Dewey labels are not stored by the dotted-decimal

strings displayed (e.g.\1.2.3.4"), but rather a

compressed binary representation. In particular, we

used UTF-8 encoding as an efficient way to present the
integer value, which was proposed by Tatarinov et al.

[8].

e. Queries: In order to compare our MS method with

TJFast, we use queries that are listed in the Table 1.

Each query has its distinguished property. The query

XQ1 is a single query with P-C relationships. For this

kind of queries we do not need to generate MS. The

queries XQ4 and XQ5 are multi-branch queries with A-

D relationships. The query XQ3 is also a multi-branch

query but with P-C relationships and XQ2 is

combination of A-D and P-C relationships.

We choose three parameters to compare our MS method
with TJFast: i) number of elements read, ii) Size of disk files

scanned and iii) execution time

f. Number of elements read: In both methods, just leaves

of QTP will be processed; but there are two

fundamental differences: 1) in TJFast at first, each

node will be checked whether it has single-branch

condition or not; but in our method, we only access

those nodes, which are member of one query branch. 2)

TJFast try to answer the query by direct comparing of

each branch leaves in document and it compares many

leaves that have not any structural relation with each
other; but in our method with considering MS, only

those leaves will be compared that have structural

relation with each other and many nodes don’t need to

be accessed because they have no counterpart in other

branch.

This difference is more obvious in parent and child

queries.

Ahmad Kazemi et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,175-181

© 2010, IJARCS All Rights Reserved 180

g. Size of disk files scanned: In TJFast method when we

do comparisons, we need to save some nodes because

it is possible that they can produce part of answer in

comparison with another node in the future. This is

because TJFast try to answer the query by direct

comparing of nodes blindly; but in our method, we do

not need to save any intermediate data because the way

of node processing and answering the query are

specified in MS.

h. Execution time: the execution time of TJFast seems to

be more than MS. TJFast needs to decode the labels to
their paths and then compare them but in our method,

there is no need to decode node labels. Figure 12

confirms the discussion. Our experiments run on a PC

with 2.2 GHz Intel Pentium IV processor running Red

Hat Linux 8.0 with 2 GB of main memory.

Table 1. Queries used to compare MS with TJFast

Query Name Query Data Base

XQ1 /site/people/person/gender XMARK
XQ2 /S[.//VP/IN]//NP TreeBank
XQ3 /S/VP/PP[IN]/NP/VBN TreeBank
XQ4 //article[.//sup]//title//sub DBLP
XQ5 //inproceedings//title[.//i]//sup DBLP

Table 2. Queries used to compare MS with Twig
2
Stack

Query Name Query Data Base

XQ5 //dblp/artcle[author]/[.//title]//

year
DBLP

XQ6 //people//person[.//address/zi

pcode]/profile/education
XMark

XQ7 //S//VP/PP[IN]/NP/VBN TreeBank

i. Twig
2
Stack: In this section, we compare our method

with Twig2stack method as representative of B

group methods. We compare our method with

Twig2stack in two criteria of i) number of elements

read and ii) execution time. Queries are in table 2,

Twig2stack like all of methods in its group will access

to all QTP nodes to answer the query. Therefore, it

will have more node access than TJFast method to
answer the query; but it does not need to convert

Dewey numbers to path elements' name, as a result, in

some cases it operates better than TJFast in execution

time factor. Figure 13 confirms the discussion.

j. Random Dataset: Here we execute our queries on

Random Dataset that is described before. This dataset

has many namesake elements and a non-uniform
structure. Therefore, it shows efficiency of methods

clear.

k. Single-branch queries: Both MS and Twig2stack,

execute 8 single-branch queries A1, A2, …, A8 with 2,

3 , …, 9 length respectively. All queries are Partial, i.e,

they begin with //, As shown in figure 14, as many as

number of single-branch queries' nodes increase,

number of elements to be accessed in the document in
MS decrease.

l. Multi-branch queries: Both MS and TJFast, execute

A1, A2, A3 and A4 queries which have 2, 3, 4, 5

branches respectively. As shown in figure 14 in both

methods when number of branches increases, number

of node accesses will increase whereas growth rate of

MS is very less than growth rate of TJFast.

0

100000

200000

300000

400000

500000

600000

700000

Q1 Q2 Q3 Q4 X5

N
u

m
b

e
r

o
f

e
le

m
e
n

ts
 r

e
a
d

TJFast

RT

0

1000

2000

3000

4000

5000

6000

7000

Q1 Q2 Q3 Q4 Q5

S
iz

e
 o

f
d

is
k
 f

il
e
s
 s

c
a
n

n
e
d

(
k
 B

y
te

s
)

TJFast

RT

0

2000

4000

6000

8000

10000

12000

Q1 Q2 Q3 Q4 Q5

E
x
e
c
u

a
ti

o
n

 T
im

e
(m

s
)

TJFsat

RT

Figure 12. MS in Comparison with TJFsat

0

5000

10000

15000

20000

25000

Q1 Q2 Q3

N
u

m
b

er
 o

f
el

em
en

ts
 r

ea
d

Twig2 stack

RT

0

5000

10000

15000

20000

25000

Q1 Q2 Q3

T
o

ta
l

e
x
c
u

a
ti

o
n

 t
im

e
(m

s
)

Twig2stack

RT

Figure 13. MS in Comparison with T2S

0

1

2

3

4

5

6

A1 A2 A3 A4 A5 A6 A7 A8

N
u

m
b

e
r

o
f

E
le

m
e
n

t
re

a
d

(m
il

l)

Twig2stack

RT

0

1

2

3

4

5

6

7

A1 A2 A3 A4

N
u

m
b

e
r

o
f

e
le

m
e
n

ts
 r

e
a
d

(m
il

l)

Tjfast

RT

Figure 14. MS and Random DataSet

Ahmad Kazemi et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,175-181

© 2010, IJARCS All Rights Reserved 181

V. CONCLUSION

In this paper we have presented to the viewer. Using

this graph, nodes can be compared to the blind did. We

are trying to answer the question for us to process all

the nodes that are produced or processed in other words

the number of nodes equal to the number of nodes to be

answered. But we are still far from perfect equality. We

try to improve the papers and later works with the

following methods to achieve this equality:

 Provide a new method for answering queries branch, a
branch of our process.

 Provide a new method for the query execution time

Btvanymnmayshgr that build the structure using the

display screen to be able to reach the structure.

Provide complete optimization techniques on the

screen.

VI. REFERENCES

[1]. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M.,
Srivastava, D., Wu., Y. Structural Joins: A Primitive for
Efficient WEB Query Pattern Matching. In Proc. ICDE:
141-152(2002)

[2]. Bruno, N., Koudas, N, Srivastava, D. Holistic Twig Joins:
Optimal WEB Pattern Matching, In Proc. SIGMOD
Conference: 310–321(2002)

[3]. Chung, C., Min, J., Shim, K. Apex: An adaptive path index
for xml data. In Proc ACM Conference on Management of
Data SIGMOD: 121 - 132(2005)

[4]. Dewey, M. Dewey Decimal Classification System.
http://www.mtsu.edu/~vvesper/dewey.html

[5]. Fontoura, M., Josifovski, V., Shekita, E., Yang, B.
Optimizing Cursor Movement in Holistic Twig Joins, In
Proc. CIKM Conference: 784 – 791(2005)

[6]. Garofalakis, M. N., Gionis, A., Rastogi, R., Seshadri, S.,
Shim. K. XTRACT: A system for extracting document type
descriptors from WEB documents. In Proc. ACM
SIGMOD Conference: 165 - 176 (2000)

[7]. Goldman, R., Widom, J. DataGuides: Enabling Query
Formulation and Optimization in Semistructured
Databases. In Proc. 23rd VLDB Conference: 436—
445(1997)

[8]. Haerder, T., Haustein, M, Mathis, C., Wagner, W. Node
labeling schemes for dynamic WEB documents
reconsidered, In Proc Data & Knowl. Engineering, Elsevier
(2006)

[9]. Kaushik, R., Bohannon, P., Naughton, J., and Korth, H.
Covering Indexes for Branching Path Queries, In Proc.
11rd SIGMOD Conference, 2005, 133–144

[10]. Kaushik, R., Krishnamurthy, R., Naughton, J., and
Ramakrishnan, R. On the integration of structure indexes
and inverted lists, In Proc SIGMOD Conference, 2002,
779-790

[11]. Ley., C. DBLP Computer Science Biblography,
http://www.informatik.unitrier.de/ley/db/index.html

[12]. Lu. J., Ling, T. W., Chan, C. Y., and Chen, T. From region
encoding to extended dewey: On efficient processing of
WEB twig pattern matching. In Proc VLDB Conference,
2005, 193–204

[13]. Milo, T., and Suciu, D. Index Structures for Path
Expressions. In Proc. ICDT, 1999, 277-295

[14]. Rizzolo. F. and Mendelzon. A., Indexing WEB Data with
ToXin, in Proc.5th. WebDB conference 2001)

[15]. Schmidt, A. R., et al. The WEB Benchmark Project.
Technical Report, INS-R0103, CWI, 2003.

[16]. Tatarinov, I. , Viglas, S. , Beyer, K. S.,
Shanmugasundaram, J. , Shekita, E. J. and Zhang, C.
Storing and querying ordered WEB using a relational
database system. In Proc. of SIGMOD, 2002, 204-215.

[17]. U. of Washington WEB Repository.
http://www.cs.washington.edu/research/xmldatasets/.

[18]. Yu, T., Wang, W., and Lu, J. TwigStackList¬: A Holistic
Twig Join Algorithm for Twig Query with Not-predicates
on WEB Data. In Proc. ICDE: 141-152(2005)

[19]. Zamato, G., Debole, D., Zezula, P and Faust YAPI: Yet
Another Path Index for WEB searching In Proc. Springer:
141-152(2003)

