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Abstract- Genetic Algorithm (GA) is a robust and popular stochastic optimization algorithm for large and complex search spaces. The major 

disadvantages of Genetic Algorithms are premature convergence and revisits to individual solutions from search space. In other words Genetic 

algorithm is a revisiting algorithm that leads to duplicate function evaluations which is a clear waste of time and computational resources.  In 

this paper, a non-revisiting genetic algorithm with adaptive mutation is proposed for the domain of function optimization. In this algorithm 

whenever a revisit occurs, the underlined search point is replaced with a mutated version of the best/random (chosen probabilistically) individual 

from the GA population. Moreover, the suggested approach is not using any extra memory resources to avoid revisits. To test the power of the 

method, the proposed non-revisiting algorithm is evaluated using nine benchmarks functions. The performance of the proposed genetic 

algorithm is superior as compared to simple genetic algorithm as confirmed by the experimental results. 
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I. INTRODUCTION 

Developing new optimization techniques is an active 

area of research and Genetic Algorithm (GA) is a 

relatively new stochastic optimization algorithm 

pioneered by Holland [1]. A GA is capable of finding 

optimal solutions for complex problems in a wide 

spectrum of applications due to its global nature. A GA is 

an iterative procedure that maintains a population of 

structures that are candidate solutions to the specific 

problem under consideration.  During  each temporal 

increment (called a generation), the  structures  in the  

current  population are rated for their effectiveness as  the 

problem  solutions through a fitness function,  and on the 

basis of these evaluations, a new population  of  candidate 

solutions is formed using specific genetic operators such 

as  reproduction, crossover, and mutation[2]. In fact, a 

GA mimics the natural principle of survival of fittest. A 

fitness proportionate selection and GA operators ensures 

the better and better fit solutions to emerge in successive 

generations. However, GAs is not without limitations. 

Two such problems are: 1. premature convergence i.e. 

many a times a GA converges to some local optimal 

solution. 2. Redundant function evaluations.   

A simple genetic algorithm do not memorizes the 

search points or solutions to the problem that it visits in 

its life time and it revisits lots of search points generating 

duplicate solutions which results into redundant fitness 

computations. Here, a revisit to a search position x is 

defined as a re-evaluation of a function of x which has 

been evaluated before. The problem of revisit is all the 

more severe towards the end of a GA run. In many 

domains the fitness evaluation is computationally very 

expensive and lots of time is wasted in revisiting the parts 

of the search space and duplicate function evaluations.   

The problem of redundant function evaluations has been 

addressed by several researchers by providing GA a long 

term memory i.e. the GA stores all the search points 

visited and their corresponding fitness into some data 

structure. In such approaches every time a new search  

 

point is produced by GA, before actually computing its 

fitness, the memory of GA is looked into and if this 

search point exists, its fitness is not recomputed. If the 

new solution is not in the memory, its fitness is computed 

and appended to the memory. The problem with all such 

approaches is that now GA spends a significant amount of 

its time in memory look ups and a very large data 

structure is required as supplemented GA memory. 

Binary search trees, Binary partition tress and heap 

structures have been used as GA memory [3]. It is not 

uncommon for a GA to run for thousands of generations 

with a population of hundreds of individuals. If we 

assume a GA with 100 individuals and 5000 generations, 

we shall need a data structure that can store 250000 

problem solutions and that is when we assume half the 

individuals produced are duplicates.   

The GA shall require 500000 look ups to avoid 

redundant fitness computation. GAs is already considered 

slow as compared to other optimization techniques and 

these approaches further slow down GA’s performance. 

Clearly this method is successful only in the domains 

where fitness computations are significantly larger than 

the memory look ups and not suitable at all for domain of 

function optimization where fitness evaluation is 

relatively less expensive. 

In this paper, we propose an improved GA with 

adaptive mutation operator to avoid revisits and 

redundant fitness evaluations. This GA has the elitist 

approach and retains the best individual in every new 

population. A look up for revisits is made only in the 

current population along with the population of previous 

generation. If any individual produced is found duplicate, 

it is replaced probabilistically with a mutated version of 

the best individual or of a random individual. The 

mutation operator is adaptive in the sense that its power 

of exploration decreases and power of exploitation 

increases with the number of generations. 

The proposed approach demonstrates that the 

duplicate removal introduces a powerful diversity 

preservation mechanism which not only results in better 
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final-population solutions but also avoids premature 

convergence. The results are presented for nine 

benchmark functions and illustrate the effectiveness of 

duplicate removal through adaptive mutation. The results 

are directly compared to a simple GA which is not 

removing duplicate.  

Rest of the paper is organized as below. Section II 

describes the related work. The proposed non revisiting 

Genetic algorithm which removes duplicate individuals 

through adaptive mutation is given in section III. 

Experimental design and results are enlisted in section IV. 

Section V concludes the papers and points to the future 

scope of this work. 

II. RELATED WORK 

Mauldin [4] was among the first ones who enhanced 

the performance by eliminating duplicate genotypes 

during a GA run. Mauldin used a uniqueness operator 

which removes duplicate and similar genotypes in an 

evolving population. This operator only allowed a new 

child x to be inserted into the population if x was greater 

than a Hamming-distance threshold from all existing 

population genotypes. Davis [5] also showed that, by 

using binary coded GA for a comparable number of child 

evaluations, that removes duplicates in the population has 

superior performance.   

Eshelman and Schaffer [6] later re-confirmed this 

observation. Eshelman and Schaffer used new operators 

and selection-based innovations for their test. They 

checked the performance by preventing duplicates. They 

used thirteen mathematical test problems like epistatic 

problem for their test. Their results showed that the 

prevention of duplication of individuals reduced the 

number of evaluations required to find the global 

optimum. Povinelli and Feng [7] also work on duplicate 

individuals. They use a small hash table to store all 

visited individuals. When this table is full, it is thrown 

away and a larger table is used.  Kratica [8] works on 

visited individuals by using a small fixed size cache 

which store all visited individuals. When this cache is 

full, an old entry is thrown away to make place for a new 

entry using the least-recently-used strategy. They 

confirmed the improvement to GA by adding the cache, 

but they do not store all the individuals and thus do not 

guarantee non-revisiting.  

Friedrich et al. [9] analyze that an evolutionary 

algorithm with a population greater than 1 using uniform 

bit mutation but no crossover has better performance by 

duplicate removal. He observed that the duplicate 

removal method changes the time complexity of 

optimization. Ronald [10] used the Hash table to reduce 

the number of comparisons. However, he compared a 

child only with the current population. So it does not 

guarantee for non-revisiting. Yuen and Chow used a 

novel binary space partitioning tree to eliminate the 

duplicate individuals [11].  

Saroj et al. (2010) used a heap structure to avoid the 

redundant fitness evaluations in domain of rule mining. 

Their approach proved to be effective for large datasets 

where fitness evaluation was computationally expensive 

[12].  

III. PROPOSED NON-REVISITING GA WITH 

ADAPTIVE MUTATION 

Non-revisiting algorithm is the one which do not visit 

the search points already visited. The improved GA with 

non-revisiting algorithm and adaptive mutation has to 

perform some extra steps than a simple GA. These steps 

are used to found the duplicate individuals. If any 

duplicate individual is found then it is mutated and 

reinserted in the current population. The duplicates are 

looked with respect to current and the previous generation 

only. There is a special condition that the best individual 

is preserved and not mutated. The flow chart and 

algorithm for the proposed GA is given in Fig. 1 and Fig 

2 respectively.  
 

 

 

 

  

 

 

     

 

 

 

 

 

                                                        

 

 

 

                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Step by Step Procedure for the Improved GA 

The mutation applied is Gaussian adaptive mutation. 

The Gaussian function generates a random number 

around 0 mean. The formula for mutation is as follows.  

rations)total_geneeneration/(current_g                

*mscale*mshrinkmscalemscale

 
mscale)*rand(gaussian_best_xx(i)  

The amount of mutation is controlled by the two 

parameters mscale and mshrink. Here, mscale represents 

the variance for mutation for the first generation and 

mshrink represents the amount of shrink in mutation in 

successive generations. The mutation scale decreases as 

the number of generation increase. It is clear from the 

above formulae that such kind of mutation is exploratory 

towards initial runs and exploitative towards the final runs 
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of the GA. We have kept the mscale as 1.0 and mshrink 

equals to 0.75. 

 

Figure 2: Algorithm for improved GA with no-revisit 

The proposed non-revisiting GA with adaptive 

mutation has three key strengths. 

a. It automatically assures maintenance of diversity 

and prevents premature convergence. Most of the 

individuals in a GA population are guaranteed to 

be different. By nature, it is impossible for a 

population to consist of one kind of individual 

only. 

b. It doesn’t require large data structure to store the 

individuals for to do a look up for duplicates and 

only uses the previous and current populations 

which are anyway available. 

c. It probabilistically takes the advantage of the best 

individuals and converges faster without suffering 

problem of convergence. 

IV. EXPERIMENTAL RESULTS 

A. Test function set: 

Nine Benchmarks functions in four dimensions used 

to test the proposed GA are as follows. 

a. Rastrigin’s function 

b. Sphere function 

c. Generalized Rosenbrock function 

d. Generalized Rastrigin function 

e. Griewank’s function 

f. Ackley function 

g. Rotated Griewank’s function 

h. Rotated Weierstrass’s function 

i. Branin function 

All these function are shown in detail in the 

Appendix. The first four functions are unimodal 

functions; the next six are multimodal functions designed 

with a considerable amount of local minima. The eighth 

function and nine are rotated multimodal functions. The 

improved GA is implemented in MATLAB. A 

comparison is made between a simple GA and the 

proposed GA on the basis of mean fitness and the best 

fitness over the generations.  The best fitness is the 

minimum score of the population [13]. Both the GAs stop 

when there is no improvement in the best score over last 

fifty generations. The population size is kept at 20 for all 

the functions and, the crossover and mutation rates are 

equal to 0.6 and 0.01 respectively.   

The normal mutation rate is kept low as adaptive 

mutation to remove duplicates is also applied. The best 

individual or a random individual is mutated with equally 

likely (probability = 0.5) to replace the revisited points in 

the new population.  We have used real encoding, linear 

scaling, roulette wheel selection, heuristic crossover and 

Gaussian mutation. The mean fitness and the best fitness 

of the final populations are shown in Table 1. These 

results are averaged over 20 runs of the GAs. A graph 

comparing the performance of the proposed GA and 

simple GA for Rastrigin’s function is shown in Fig 3.  
 

 

Figure 3: Performance comparison between improved GA and simple 

GA 

Table1: A comparison of mean and best fitnesses for the nine 

benchmark functions 

BENCHMARKS 

FUNCTION 

BEST 

FITNESS 

MEAN 

FITNESS 

 SGA Improved 

GA 

SGA Improved 

GA 

Rastrigin’s function 0.589 0.053 6.684 3.817 

Sphere function 0.002 0.001 0.279 0.105 

Generalized Rastrigin 

function 

0.079 0.002 6.474 5.414 

Griewank’s function 0.001 0.001 0.077 0.021 

Generalized Rosenbrock 

function 

0.031 0.017 28.22 21.34 

Ackley function 0.024 0.013 1.426 0.936 

Rotated Griewank’s 

function 

0.001 0.001 0.041 0.017 

Rotated Weierstrass’s 

function 

0.212 0.083 1.531 1.321 

Branin function 0.146 0.054 1.134 1.011 

The accuracy of our approach is better for all the nine 

benchmark functions. It is quite clear from the results that 

the performance of the non-revisiting GA with adaptive 

mutation is better than the simple GA. 

V. CONCLUSION 

In this paper, a novel non-revisiting GA with adaptive 

mutation is proposed and tested in the domain of function 

optimization. Though new improved GA may not 

completely eliminate the revisits to the same points in the 
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search space and redundant function evaluation, it 

guarantees enough diversity to avoid the problem of 

premature convergence. The envisaged approach achieves 

better accuracy without much overheads of searching 

time for duplicates individuals and large data structures to 

serve as the long term memory for a GA.  

The mechanism of a probabilistic adaptive mutation 

provides the much required balance between exploration 

and exploitation along with faster convergence to the 

optimal. It is exploratory in the initial runs of GA and 

exploitative towards the final runs of GA. More the 

number of generations of the GA, smaller will be the 

change in the new individual that replaces the revisited 

search point. The experimental results are very 

encouraging and show that the improved GA is clearly 

superior to its conventional counterpart. The adaptation of 

the current approach is underway for the domain of rule 

mining in the field of knowledge discovery.  

Appendix 

A. Benchmarks Functions: 

a. Rastrigin’s function [14]: 

f1(x) = 10x+ 2-10cos (2πx) +10] 

Where x [-5.12, 5.12] D 

Min f1(x) = f1 ([0, 0….0]) =0 

b. Sphere function [14]: 
2 where x [-5.12, 5.12] D 

Min f2(x) =f2 ([0, 0….0]) =0 

c. Generalized Rosenbrock function [14]: 

f3(x) = i+1-xi
2)2 + (xi-1)2] 

Where x  [-5.12, 5.12] D 

Min f3(x) = f3 ([1, 1….1]) =0 

\ 

d. Generalized Rastrigin function [14]: 

f4(x) = 2-10cos (2πx) +10] 

Where x [-5.12, 5.12] D 

Min f4(x) = f4 ([0, 0… 0]) =0 

e. Griewank’s function [14]: 

f5(x) = 2-  

Where f5(x)  [-5.12, 5.12] D 

Min f5(x) = f5 ([0, 0… 0]) 

f. Ackley function [14]: 

f6(x) = -20 exp (-0.2√ i
2)-exp 

( i) +20+e 

where x  [-5.12, 5.12] D 

Min f6(x) = f6 ([0, 0… 0]) = 0 

g. Rotated Griewank’s function [14]: 

f7(x) = 2-  

Where z=xM , f7(x)  [-5.12, 5.12]D 

Min f7(x) = f7 ([0, 0… 0]) 

h. 8. Rotated Weierstrass’s function [14]: 

 f8(x) =     //D2=D2 

i. Branin function [14]: 

f9(x) = (x2- x1
2+ x1-6)2+10(1 - ) cosx1+10 

Where x  [-5.12, 5.12]  

Min f9(x) = f9 ([-3.142, 12.275]) =  

f9 ([3.142, 2.275]) 
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