
Volume 2, No. 6, Nov-Dec 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 464

ISSN No. 0976-5697

CONFERENCE PAPER
International Conference on Issues & Challenges in Networking,

Intelligence & Computing Technologies

Organized by Krishna Institute of Engineering and Technology

(KIET) Ghaziabad, India

An Approach for Reusability Measurement of Object-Oriented Code Based Upon CK

Metrics

Vicky Bumbak*, Pradeep Kumar Bhatia

M.TECH CSE, Associate Professor, DEPT. OF CSE

G. J. University of science and technology,

Hisar ,India

Vicky5835@gmail.com, pk_bhatia2002@yahoo.com

Abstract – This study focus on a set of object-oriented metrics that can be used to measure the reusability of object-oriented code. This research

address a new model set of metrics for object-oriented code. Reusability is the process to reduce the cost and improve the quality of software.

Reusability may be achieved by concept of Generic Programming through C++ Templates. There are various techniques to measuring reusability

of object-oriented code. Chaidmber and Kemere (CK) metrics are proposed for measuring reusability of object-oriented code. This paper

introduces new model for reusability measurement of object-oriented code with the help of metrics Number of Template Children (NTC), Depth

of Template Tree (DTT), Method Template Inheritance Factor (MTIF), and Attribute Template Inheritance Factor (ATIF).

Keywords: Object-Oriented code, Reusability, CK metrics, Generic Programming, Templates.

I. INTRODUCTION

It is widely accepted that object- oriented development

requires a different way of thinking than traditional

structured development [1] and software projects are

shifting to object oriented design. The main advantage of

object oriented design is its modularity and reusability.

Object-oriented metrics are used to measure properties of

object oriented designs [2]. Method reflects how a problem

is broken into segments and the capabilities other classes

except of a given class. There are very few metrics in the

literature for measuring the complexity of object-Oriented.

Proposed Metric for an Object- Oriented code, which are

capable to evaluate the System complexity of operation in

method. Most of the metrics for object-oriented design [3].

Recent work in the field has also addressed the need for

research to better understand the determinants of software

quality and other project outcomes such as productivity and

cycle-time in OO software development [4]. There are two

approaches for reuse of code: develop the reusable code

from scratch or identify and extract the reusable code from

already developed code. The organizations that has

experience in developing software, but not yet used the

software reuse concept, there exists extra cost to develop the

reusable components from scratch to build and strengthen

their reusable software reservoir [5]. A software metric is a

measure of some property of a software artifact or its

specification. One of the most difficult topics in software

engineering is the assessment of the non-functional

parameters of a system. Performance, maintainability,

reusability, security, adaptability, etc., are examples of

nonfunctional requirements. While some of the above

mentioned characteristics of a software artifact, like

performance and security, can be measured without

investing important effort, assessing the adaptability and the

reusability is a tedious task [4]. OO software settings. In

addition, many commercial tools are now available to

automatically collect some or all of these metrics (see the

sidebar, “Commercial Tools for OO Metrics Collection”). A

variety of studies have documented relationships between

OO metrics and managerial-performance variables including

effort, reusability, defects and faults, maintainability, and

cost savings [6]. In this paper, set of two metrics is proposed

to measure amount of reusability included in the form of

templates by the designer. These metrics are then

analytically analyzed against CK metrics proposed set of six

axioms. Standard projects are used for application of these

metrics and suggest the ways in which project managers can

use these metrics. Further, the amount of lines of code

(LOC) reduced in projects using templates is also shown.

The paper is organized gives introduction to Generic

Programming with Templates [7].

A. Object Oriented Design

Object-oriented design is concerned with developing an

object-oriented module of a software system to apply the

identified requirements. Designer will use OOD because it is

a faster development process, module based architecture,

contains high reusable features, increases design quality and

so on. “Object-oriented design is a method of design

encompassing the process of object-oriented decomposing

and a notation for depicting both logical and physical as

well as static and dynamic models of the system under

design” [8]. Objects are the basic units of object oriented

design. Identity, states and behaviors are the main

characteristics of any object. A class is a collection of

objects which have common behaviors. “A class represents

a template for several objects and describes how these

objects are structured internally. Objects of the same class

have the same definition both for their operation and for

their information structure” [9]. There are several essential

themes in object oriented design. These themes are mostly

support object oriented design in the context of measuring.

These are discussing in next sub section.

B. CK Metrics Suite

Metrics set proposed by Chidamber and Kemerer

contains six OO design metrics. These metrics are based on

Bunge’s ontology as the theoretical basis and analytically

evaluated against Weyuker’s measurement principles. All

Vicky Bumbak et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 464-467

© 2010, IJARCS All Rights Reserved 465 CONFERENCE PAPER
International Conference on Issues & Challenges in Networking,

Intelligence & Computing Technologies

Organized by Krishna Institute of Engineering and Technology

(KIET) Ghaziabad, India

these six metrics captures the concept of inheritance,

coupling and cohesion [10].

a. Weighted Method per Class (WMC) assesses

complexity of a class through aggregating a complexity

measure of its methods. Complexity of a class can for

example be calculated by the cyclomatic complexities

of its methods. High value of WMC indicates the class is

more complex than that of low values. Consider a class

Ci, with methods M1….Mn that are defined in the class.

Let C1….Cn be the complexity of the methods [11].

Then

 n

 WMC =∑ Ci

 i=1

b. Depth of Inheritance Tree (DIT) Inheritance is when a

class shares the behaviour of another class. When a

subclass inherits from one super class then it is called as

single inheritance and when a subclass inherits from

more than one upper class then it is called as multiple

inheritance. Depth of inheritance of the class is the DIT

metric for the class. In cases involving multiple

inheritances, the DIT will be the maximum length from

the node to the root of the tree [10].

c. Number of Children (NOC) This metric measures how

many sub-classes are going to inherit the methods of the

parent class. (NOC) of a class is the number of

immediate subclasses subordinated to a class in the class

hierarchy. Since inheritance is a measure of reuse, the

reuse is proportional to NOC [4].

d. Coupling Between Object (CBO) The idea of this

metrics is that an object is coupled to another object if

two object act upon each other. A class is coupled with

another if the methods of one class use the methods or

attributes of the other class. An increase of CBO

indicates the reusability of a class will decrease. Thus,

the CBO values for each class should be kept as low as

possible.

e. Response for a Class (RFC) (RFC) is the count of all

the methods that can be invoked in response to a

message to an object of the class or to some method in

the class. The larger the number of methods that can be

invoked from a class through messages, the greater the

complexity of the class [4].

f. Lack of Cohesion of Methods (LCOM) Number of

method pairs whose similarity is 0 minus the count of

method pairs whose similarity is not zero. The larger the

number of similar methods in a class the more cohesive

the class is. Cohesiveness of methods within a class is

desirable, since it promotes encapsulation and lack of

cohesion implies classes should probably be split into

two or more subclasses.

II. GENERIC PROGRAMMING WITH

TEMPLATES

Generic programming focuses on representing families

of domain concepts. There is no universally accepted

definition for generic programming. We refer to generic

programming as the ability to write reusable, independent

programming units that can be plugged together by writing

glue code [13]. “Generic programming is in some ways

more flexible than object-oriented programming. In

particular, it does not depend on hierarchies. For example,

there is no hierarchical relationship between an int and a

string.” An important feature of C++ called templates

strengthens this benefit of object-oriented programming.

Templates are very useful when implementing generic

constructs like vectors, stacks, lists, queues, which can be

used with different data types. Templates can be classified

into two types: Class Templates and Function Templates [7].

A. Function Templates:

Function templates are special functions that can operate

with generic types. This allows us to create a function

template whose functionality can be adapted to more than

one type or class without repeating the entire code for each

type.

In C++ this can be achieved using template parameters.

A template parameter is a special kind of parameter that can

be used to pass a type as argument: just like regular function

parameters can be used to pass values to a function, template

parameters allow to pass also types to a function. These

function templates can use these parameters as if they were

any other regular type.

Figure 1: Source Code for Function Templates.

B. Class Templates:

The limitation of classes to hold objects of any particular

data type can be overcome

Figure 2: Source Code for Class Templates

// addition as a template function.

template <type name T>

T plus (T arg1, T arg2) {

Return (arg1 + arg2);

}

// sample usage

int i = plus (10, 20);

float fval = 20.0f;

float f = plus (10.0f, fval);

template < class M1, class M2, class M3>

class sample

M1 w;

M2 y;

M3 z;

……..

/* when objects of templates class are created using the

following statements Sample <int, float, char>s */

/* the compiler creates the following class sample with three

data members one is of int type, second is float type and third

is of char type */

Class sample

 {

Int w;

 float y;

char z;

…….. };

Vicky Bumbak et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 464-467

© 2010, IJARCS All Rights Reserved 466 CONFERENCE PAPER
International Conference on Issues & Challenges in Networking,

Intelligence & Computing Technologies

Organized by Krishna Institute of Engineering and Technology

(KIET) Ghaziabad, India

by declaring that class as class templates. Thus classes,

which differ only often there is a need for functions, which

have to be used frequently with different data types. The

limitation of such functions is that they operate only on a

particular data type, which can be overcome by using

function template or generic function [7].

III. EXISTING METRICS

A. Number of Template Children (NTC):

The metric NTC can be defined as number of immediate

sub-classes of a template class.

Figure 3: Source Code for calculating metric NTC

In this example there is one class M2 which inherits

from a template class M1 therefore Number of Template

Children (NTC) is 1. The more the value of metric Number

of Children (NTC), more reusable software components are

include in the projects.

B. Depth of Template Tree (DTT):

The metric DTT can be defined as maximum inheritance

path from the class to the root template class.

Figure 4: Source Code for calculating metric DTT

In this example class M2 inherits from class M1 and

class M3 inherits from class M2 thus if we start the root

node at level 0 the Depth of Template Tree (DTT) will be 2.

The greater the metric Depth of Template Tree (DTT) value

greater is the reusability since generic programming is form

of reuse.

C. Method Template Inheritance Factor (MTIF):

MTIF is defined as the ratio of the sum of the methods

inherited from template classes of the system under

consideration to the total number of available methods for

all classes.

 n
 ∑ Wt (Ci)
 i=1
 MTIF = × NO
 n
 ∑ Wa (Ci)
 i=1

 n = Total number of classes

 NO = Number of Objects of Template Classes

WiCi = Number of methods declared in class i

WtCi = Number of the methods inherited form template

class i

Wa(Ci) WiCi + WtCi Total no of methods invoked

Figure 5: Source Code for calculating metric MTIF

No of template inherited method = 0+1=1

No of methods declared in each class =1+1=2

 Total=3

If we create two objects of class M2

 MTIF= (1*2)/3=0.6

The greater the value of metric method Template

Inheritance Factor (MTIF) will result in the increased code

reusability.

D. Attribute Template Inheritance Factor (ATIF):-

ATIF is defined as the ratio of the sum of attributes

inherited from template classes of the system under

consideration to the total number of available attributes for

all classes.
 n
 ∑ Xt (Ci)
 i=1
 ATIF = × NO
 n
 ∑ Xa (Ci)
 i=1
 n = Total number of classes

 NO = Number of Objects of Template Classes

XiCi = Number of attributes declared in class i

Template < class T>

Class M1

{

……

};

Template <class S>

Class M2: public M1 <S>

{

…….

};

Class M3

{

….

};

Template <class T>

Class M1

{

T large (Ta, Tb)

{

….

}

};

Class M2: public M1<S>

{

S sum (S c, S d)

{

…..

}

};

Template <class T>

Class M1

{…}

Class M2: public M1

{….};

Class M3: public M2

{….};

Class M4

{….};

Vicky Bumbak et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 464-467

© 2010, IJARCS All Rights Reserved 467 CONFERENCE PAPER
International Conference on Issues & Challenges in Networking,

Intelligence & Computing Technologies

Organized by Krishna Institute of Engineering and Technology

(KIET) Ghaziabad, India

XtCi = Number of the attributes inherited form template

class i

Xa(Ci) XiCi + XtCi Total no of methods invoked

Figure 6: Source Code for calculating metric ATIF

No of template inherited attributes = 0+2=2

No of attributes declared in each class=2+2=4

 Total =6

If we create two objects in class M2

 ATIF= (2*2)/6=0.6

The more the value of metric Attribute Template Inheritance

Factor (ATIF) more will be the code reusability.

IV. PURPOSED MODEL

Reusability metric (RM) = NTC + DTT + MTIF + ATIF

V. CONCLUSIONS

Reuse not only saves time and cost, if done correctly,

can also improve the quality of software, making it more

maintainable. This paper has presented a reusability metrics

for object-oriented code. The metrics is based on Chidamber

and Kemerer (CK metrics) taken from well used and

accepted object-oriented code. The reusability metric can be

used to provide a value of reusability for Generic

Programming through C++ Templates. This study focus on

a set of object-oriented metrics that can be used to measure

the quality of an object-oriented code. Object-oriented

metrics lead to a number of inherent benefits that provides

advantages at both the management and technical level.

Purposed metrics presented in this paper have been found to

be very useful to find the extent of reusability included in

the code in the form of class and function templates.

Reusability metric (RM) purposed in this paper helps us

to quantative measurement of reusability of object-oriented

code. More value and RM indicates more reusability

adopted in the object-oriented code.

V. REFERENCES

[1]. Hironori Washizaki, Hirokazu Yamamoto_and Yoshiaki
Fukazawa “A Metrics Suite for Measuring Reusability of
Software Components” in proceedings of the ninth
international software metrics symposium, pp. 211,2003

[2]. Bellin, D.Manish Tyagi, Maurice Tyler: “Object- Oriented
Metrics: An Overview” In Proceedings of the 1994
conference of the Centre for Advanced Studies on
Collaborative research,1994

[3]. Sanjay Misra “An Object Oriented Complexity Metric
Based on Cognitive Weights” in proceedings of 6th
international conference on cognitive informatics, pp. 134-
139, 2007

[4]. Octavian Paul ROTARU Marian DOBRE “Reusability
Metrics for Software Components” in the 3rd ACS/IEEE
International Conference on Computer Systems and
Applications, pp. 24, 2005

[5]. Parvinder S. Sandhu, Harpreet Kaur, and Amanpreet Singh
“Modeling of Reusability of Object Oriented Software
System” World Academy of Science, Engineering and
Technology, pp. 162-165, 2009

[6]. David P. Darcy and Chris F. Kemerer Nancy Eickel mann
Motorola nancy “OO Metrics in Practice” in Software,
IEEE, pp.17-19, nov.-dec.2005.

[7]. K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika
Malhotra “Software Reuse Metrics for Object-Oriented
Systems” in proceedings of the third ACIS international
conference on software engineering research, management
and application, pp. 48-54, 2005

[8]. G. Booch . “Object-Oriented Analysis and Design with
Applications” 2nd ed, ISBN 0-8053-5340-2, 1998

[9]. Jacobson, I., Christeerson, M., Jonsson, P.and Overgaard
G: “Object- Oriented Software Engineering: A Uses-Case
Driven Approach”, ISBN-10: 0201544350, 1992

[10]. Mr. U. L. Kulkarni, Mr. Y. R. Arde, Ms. Vrushali G.
“Validation of CK metrics for Object Oriented Design
Measurement” in 3rd International Conference
on Emerging Trends in Engineering and Technology
(ICETET), pp.646-651, 2010

[11]. Shyam. R. Chidamber , Chris. F. Kemerer, “A Metrics
Suite for Object Oriented Design, IEEE Transactions on
Software Engineering” in IEEE Transactions on Software
Engineering , Vol .20 , pp. 476 - 493, June 1994.

[12]. C. Neelamegam, Dr. M. Punithavalli “A Survey - Object
Oriented Quality Metrics” global jourbal of computer
science and technology, pp. 183-186, 2009

[13]. http://www.joyofprogramming.com

