
Volume 2, No. 6, Nov-Dec 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 181

ISSN No. 0976-5697

Metric Dependent Performance Optimization of Virtual Machine Using Hyper

Threading Concept

K.Phaneendra*
Assistant Professor,

Department of MCA,

Lakkireddy Balireddy College of Engineering,

Mylavaram, India.

phanikanakamedala@gmail.com

DR.M.Babureddy
Head Department of MCA,

Lakkireddy Balireddy College of Engineering,

Mylavaram, India

m_babureddy@yahoo.com

G.Rajendra ,
Assistant Professor,

Department of MCA,

Lakkireddy Balireddy College of Engineering

Mylavaram, India.

rajendra.raju@gmail.com

Abstract: Accurate estimate of resource demands is crucial for managing and planning resources in various computer systems. Any work done

by computer system considered as a path in the potential field of resources. Metrics provide a quantitative basis for the development and

validation of models in the development process. Virtual systems and virtualization technology are taking the momentum nowadays in data

centers and IT infrastructure models. Performance analysis of such systems is very invaluable for enterprises but yet is not a deterministic

process.

n this paper we will present an overview of the key requirements and characteristics of virtual systems performance metrics and workload

characterization which can be considered one step further in implementing virtual systems benchmark and performance. The benchmark tests are

taken to describe the type of system scalability feature being tested, and describe observed behaviour based on the workload. In particular we

explore how Hyper-Threading affects the throughput.

Keywords: Metric, Virtualization, Hyper-thread, Throughput, Virtual Machine

I. INTRODUCTION

Efficiency of many computing systems heavily depends

on the efficiency of their resource management. One wide

class of computing systems rely on the resource

management as their key element. Resource management

must be done to satisfy the user requirements.User

satisfaction can be measured in eight dimensions for quality

as well as overall user satisfaction: capability or

functionality, usability, performance, reliability, installs

ability, maintainability, documentation, and availability.

Abstractly, system architecture involves the description

of elements from which systems are built, interactions

among those elements, patterns that guide their composition,

and constraints on those patterns. In general, a particular

system is defined in terms of a collection of components,

and interactions among those components. By considering

all these metrics plays an important role to make the system

function effectively by managing its recourses. In this

process an overview of the key requirements and

characteristics of virtual systems performance metrics and

workload characterization which can be considered one step

further in implementing virtual systems benchmark and

performance model that describe the effect of the

applications, host operating system and the hypervisor layer

on the performance metrics of virtual workloads. The

benchmark tests are taken to describe the typical CPU-

intensive workloads that saturate a single CPU, the overall

system throughput should increase as the number of virtual

machines increases until the number of virtual machines

exceeds the number of physical CPUs (or, when hyper-

threading is enabled, exceeds twice the number of hyper

threaded (CPU packages). Past this point, the overall system

throughput should plateau while the run time of each

individual virtual machine increases, due to each virtual

machine's diminished share of the fixed physical resources.

To demonstrate this behaviour, the GZIP benchmark was

run with 1, 2, 4, 6, 8, 10, 12, 14, and 16 virtual machines. To

demonstrate the potential performance impact of hyper-

threading, benchmark tests were run with hyper-threading

both disabled and enabled.

A. Metrics Methodology:

In 1993 the IEEE published a standard for software

quality metrics methodology that has since defined and led

development in the field. Here we begin by summarizing

this standard. It was intended as a more systematic approach

for establishing quality requirements. They are identifying,

implementing, analyzing and validating software quality

metrics for software system development. The IEEE Metric

set consists of Name, Metric, Cost, and Benefit, Impact,

Target value, Factors and Tools, Application, Data Items,

Computation, Interpretation, Considerations, Training,

Example, History and references.

[1]To implement the metrics in the metric set chosen for

the project under design, the data to be collected must be

determined and assumptions about the flow of data must be

clarified. Any tools to be employed are defined, and any

organizations to be involved are described, as are any

K. Phaneendra et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 181-186

© 2010, IJARCS All Rights Reserved 182

necessary training. It is also wise at this point to test the

metrics on some known software to refine their use,

sensitivity, accuracy, and the cost of employing

them.[2].This situation has often been referred to as the

Good metrics should facilitate the development of ―software

crisis‖ models that are capable of predicting process or

product parameters, not just describing them.

[3]Thus, accurate and effective estimating, planning is

needed for maximum utility in analytic studies and control

are nearly impossible to achieve and statistical analyses,

metrics should have data values that belong to appropriate

measurement.[4] Improvement of the process depends upon

improved ability to identify, measure, scales and control

essential parameters of the development. It has been

observed that the fundamental qualities process. This is the

goal of software metrics—the required of any technical

system are identification and measurement of the essential

parameters that affect software development.

a. Functionality—correctness, reliability, etc.

b. Performance—response time, throughput, so that

 Software metrics and models can been proposed.

We are taking the metrics and applying on the

virtualized environment to describe the model of the system

which gives best performance.

II. VIRTUALIZATION

When computer systems were first invented was large

and expensive to operate. Due to their size, expense, and

demand for their usage, computer systems quickly evolved

to become timesharing systems so that multiple users (and

applications) could use them simultaneously. As computers

became more prevalent however, it became apparent that

simply time-sharing a single computer was not always ideal.

For example, misuse of the system, intentional or

unintentional, could easily bring the entire computer to a

halt for all users. For organizations that could afford it, they

simply purchased multiple computer systems to mitigate

these pitfalls.

Having multiple computer systems proved beneficial for

the following reasons: Isolation. In many situations it is

beneficial to have certain activities running on separate

systems. For instance an application may be known to

contain bugs, and it might be possible for the bugs to

interfere with other applications on the same system. Placing

the application on a separate system guarantees it will not

affect the stability of other applications.

a. Performance: Placing an application on its own

system allows it to have exclusive access to the

system‘s resources, and thus have better performance

than if it had to share that system with other

applications. [5].User level separation of applications

on the same machine does not effectively performance

isolate applications–scheduling priority, memory

demand, network, I/O and disk I/O of one process can

affect the performance of others. (For example, one

application thrashing the hard disk can slow all other

applications on the same system).

Most organizations at the time weren‘t so fortunate to be

able to purchase multiple computer systems. It was also

recognized that purchasing multiple computer systems was

often wasteful, as having more computers made it even

harder to keep them busy all the time. However having

multiple computers obviously had its benefits, so taking cost

and waste into consideration IBM in 1960‘s began

developing the first virtual machines that allowed one

computer to be shared as if it were several.

The Virtualization technology is taking the momentum

these days in data centers and IT infrastructure models.

Virtualization is very similar conceptually to emulation.

With emulation, a system pretends to be another system.

A. Concepts of Virtualization:

Virtualization decouples users and applications from the

specific hardware characteristics of the systems they use to

perform computational tasks. With virtualization, a system

pretends to be two or more of the same system. As shown in

figure 1,

Figure: 1

The virtualization layer will partition the physical

resource of the underlying physical system into multiple

virtual machines with different loads.

The fascinating thing about this virtualization layer is that

it schedules and allocates the physical resource and makes

each virtual machine think that it totally owns all the

underlying hardware physical resource (processor, disks,

rams etc.). Most modern operating systems contain a

simplified system of virtualization. Each running process is

able to act as if it is the only thing running. The CPUs and

memory are virtualized. If a process tries to consume all of

the CPU, a modern operating system will preempt it and

allow others their fair share. Similarly, a running process

typically has its own virtual address space that the operating

system maps to physical memory to give the process the

illusion that it is the only user of RAM [6] shown in Figure 2

Figure: 2

Virtualization allows a number of virtual servers to be

consolidated into a single physical machine, without losing

the security gained by having completely isolated

environments. Several Web hosting providers are using

K. Phaneendra et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 181-186

© 2010, IJARCS All Rights Reserved 183

virtualization intensively, because it let them offer each

client his own virtual machine without requiring a physical

machine taking up rack space in the data centre.

B. Types of Virtualization:

The Virtual Resources can be shared across multiple

virtual machines sitting atop the layer of abstraction. There

are varied approaches towards achieving virtualization, the

three most widely used ones being, Full virtualization, Para-

virtualization and Hardware Virtualization

a. Full Virtualization: Full virtualization allows running

unmodified guest operating systems on top of the

existing native operating systems.

b. Para-Virtualization: Para-Virtualization requires

modifications to the guest operating systems to avoid

binary translation. This is generally suitable for open

source operating systems like Linux. This might not be

a suitable option for ‗closed‘ operating systems like

windows and vista.

c. Hardware Virtualization: Virtualization layer below

the operating system called the virtual Machine

Monitor (VMM), sits atop the hardware providing

flexibility to run multiple operating systems. Earlier,

x86 processor architecture did not support

virtualization requirements but these days hardware

vendors have made changes to their underlying

architectures to support for virtualization.

C. Requirements for Virtual Machines:

In 1974 Popek and Goldberg defined what they believed

where the formal requirements for a virtualizable computer

architecture. [7]For any computer a virtual machine monitor

may be constructed if the set of sensitive instructions for

that computer is a subset of the set of privileged instructions.

In other words, the most essential requirement a computer

architecture must exhibit in order to be virtualizable is that

privileged instructions must trap, meaning when a guest

virtual machine (while running directly on the real

processor) attempts to execute a privileged instruction, the

processor stops and returns control to the VMM so it can

either decide whether or not to execute the instruction, or

simulate the instruction by some other means. Popek and

Goldberg also stated that virtual machine architecture has

three essential characteristics:

a. Any program run under the VMM should exhibit an

effect identical with that demonstrated if the program

had been run on the original machine directly. They

offered one exception to this rule, timing. The software

(or hardware) aiding the virtual machine needs to

manage the resources used by the virtual machine(s),

and this requires it to intervene occasionally, thus

altering the timing characteristics of the running virtual

machine(s).

b. A statistically dominant subset of the virtual

processor‘s instructions is executed directly by the real

processor. Popek and Goldberg say that a virtual

machine is different from an emulator. An emulator

intervenes and analyzes every instruction performed by

the virtual processor, whereas a virtual machine

occasionally relinquishes the real processor to the

virtual processor. For efficiencies sake, this

relinquishment must make up the majority of the real

processor‘s workload.

c. The VMM is in complete control of system resources.

A virtual machine running on the system does not have

direct access to any of the system‘s real resources; it

must go through the VMM.

These characteristics, although interesting on the surface,

prove to be difficult or undesirable to meet. Virtualization

software was adopted faster than anyone imagined,

including the experts. There are three areas of IT where

virtualization is making head roads, network virtualization,

storage virtualization and server virtualization.

a. [8]Network virtualization is a method of combining the

available resources in a network by splitting up the

available bandwidth into channels, each of which is

independent from the others, and each of which can be

assigned (or reassigned) to a particular server or device

in real time. The idea is that virtualization disguises the

true complexity of the network by separating it into

manageable parts; much like your partitioned hard

drive makes it easier to manage your files.

b. [9]Storage virtualization is the pooling of physical

storage from multiple network storage devices into

what appears to be a single storage device that is

managed from a central console. Storage virtualization

is commonly used in storage area networks (SANs).

c. Server virtualization is the masking of server resources

(including the number and identity of individual

physical servers, processors, and operating systems)

from server users. The intention is to spare the user

from having to understand and manage complicated

details of server resources while increasing resource

sharing, utilization and maintaining the capacity to

expand later.

III. MONITORING PERFORMANCE METRICS:

The current virtualization technologies do not allow

monitoring performance counters from the guest operating

systems as they are not visible. So performance metrics can

be collected from only the host operating system.

Performance metrics can be collected only at virtual

machine level and metrics like CPU, disk, memory, NIC

utilization of the virtual machines can be collected from the

host operating system.

In the absence of sophisticated performance analysis

tools for monitoring multiple virtual machines performance,

coupled with the non-availability of SPEC performance

benchmarks for running multiple virtual machines, it

becomes imperative for enterprises IT departments to have a

plausibly structured and analytical approach. This enables

the adoption of virtualization and thus quantifies the risks to

the best possible extent before making an informed decision

about it.

A. Metrics for Resource Utilization:

Know which resource is consuming more CPU. Find out

if CPUs are running at full capacity or are they being

underutilized. Metrics shown include Total CPU utilization,

Guest CPU utilization, Hypervisor CPU utilization, idle

CPU utilization, etc.

B. Memory Usage:

Avoid the problem of your Hyper-V servers running out

of memory. Get notified when the memory usage is high or

memory becomes critically low. Metrics tracked include

http://searchservervirtualization.techtarget.com/sDefinition/0,,sid94_gci1035141,00.html
http://searchstorage.techtarget.com/sDefinition/0,,sid5_gci991633,00.html
http://searchservervirtualization.techtarget.com/sDefinition/0,,sid94_gci1032820,00.html
http://searchenterprisewan.techtarget.com/sDefinition/0,,sid200_gci211634,00.html
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci211770,00.html
http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci214344,00.html
http://searchstorage.techtarget.com/sDefinition/0,,sid5_gci212937,00.html

K. Phaneendra et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 181-186

© 2010, IJARCS All Rights Reserved 184

swap memory, physical memory, free physical memory,

deposited pages, virtual TLB pages, total remote physical

pages, etc.

C. Networking and Virtual Network Statistics:

Monitor the health and status of the network interfaces,

virtual network adapters, legacy virtual network adapters

and virtual switch. The performance can be monitored

through attributes such as input/output traffic utilization,

offloaded connections, outbound packets errors, data receive

rate, data transfer rate, packets received/transmitted, health

of interface, etc.

D. Storage and Virtual Storage Metrics:

Get an idea of the overall disk performance of the

Hyper-V system as well as for each VM. Find out how busy

the drives are or if the disks are saturated. Metrics include

Current Disk Queue Length, Disk bytes per second, Disk

transfers per second, etc.

E. Top Hyper-V Servers:

Get an overview of the servers that are consuming your

resources and take necessary action. Metrics provided

include top total CPU utilization consumers, top guest CPU

utilization consumers, top idle CPU utilization consumers

and top memory consumers.

IV. INTRODUCTION TO HYPER-THREADING

Hyper-Threading is Intel‘s implementation of

simultaneous multithreading technology and was first

introduced with Intel‘s Xeon processor. Hyper-Threading

allows the processor to use execution units that are normally

unused (such was when the processor is waiting because of

a cache miss). The actual performance improvement is

application dependent (Intel).

ESX Server is a native VM system. A native VM system

is one where the VMM is the only software on the machine

that runs in the highest privilege level of the host machine.

In contrast a VMM that is installed on a host that runs an

operating system independent of the VMM is called a hosted

VM system.[6] [10]If the VMM on a hosted system runs in

a privilege level below the host‘s operating system it is

called a user-mode hosted VM system. VMware Server and

Microsoft Virtual PC are two examples of user-mode hosted

VM systems. VMware claims that since ESX Server runs

directly on the hardware I/O performance is significantly

higher on ESX Server than on user-mode hosted VM

systems. VMware runs unmodified guest operating systems.

Paravirtulization achieves higher performance than

traditional VM systems by presenting an interface that is

similar, but not identical to the underlying hardware. The

changes are intended to make virtualization more efficient,

but they also require that guest operating systems be

rewritten to only use the new interface. Xen and Denali are

two well-known paravirtaulization systems

A. Benchmark Test Cases:

This paper provides benchmark test results illustrating

the behaviour of virtual machine performance as you scale

the number of virtual machines Table 1 provides a summary

of the benchmark test cases included in this paper.

Table 1 Summary of Benchmark Test Cases

Test Cases Description

Virtual Machine

Scalability

System throughput measured as the number of

virtual machines is increase; tests were

performed with hyper-threading enabled and

disabled.

The following sections detail each of the benchmark

tests, describe the type of system scalability feature being

tested, and describe what behaviour might be observed

based on the workload. Analysis of the results following

execution of each benchmark test show and explain the

behaviour of the resource allocation method and its effect on

system throughput and performance.

B. Virtual Machine Scalability:

For many typical CPU-intensive workloads that saturate

a single CPU, the overall system throughput should increase

as the number of virtual machines increases until the number

of virtual machines exceeds the number of physical CPUs

(or, when hyper-threading is enabled, exceeds twice the

number of hyper threaded CPU packages). Past this point,

the overall system throughput should plateau while the run

time of each individual virtual machine increases, due to

each virtual machine's diminished share of the fixed

physical resources. To demonstrate this behaviour, the GZIP

benchmark was run with 1, 2, 4, 6, 8, 10, 12, 14, and 16

virtual machines. To demonstrate the potential performance

impact of hyper-threading, benchmark tests were run with

hyper-threading both disabled and enabled.

C. Hyper-Threading Disabled:

With hyper-threading disabled, the physical system

behaves like a traditional four-CPU server. [10]The results

are shown in Figure 1. The average run times remain almost

constant for the one, two, and four virtual machine tests,

since each additional virtual machine simply consumes

another unused CPU. However, there is approximately a two

percent increase in run time as the number of virtual

machines increases from two to four. This increase can be

attributed to ESX Server‘s service console, which provides

services required by the virtual machines and consumes a

small amount of resources. (Service console resource usage

is proportional to the number of active virtual machines and

grows as the number of virtual machines on the system

increases.) At this point, the four active virtual machines

must share the fully committed resources with the service

console. As additional virtual machines are added, the run

times increase almost linearly. For example, average run

time for four virtual machines is 1151 seconds. For 16

virtual machines, the run time is 4846 seconds, or 4.21 times

longer. In other words, adding four times the load to the

server incurs five percent additional overhead due to

virtualization. This result should be expected, since ESX

Server must do additional work for each virtual machine

added. However, that cost is relatively low, even for 16

virtual machines. Table 2 lists the average run times of the

GZIP benchmark test as the number of virtual machines

K. Phaneendra et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 181-186

© 2010, IJARCS All Rights Reserved 185

increases, as well as the maximum and minimum run times

observed for each number of virtual machines tested.

The range of run times recorded for individual virtual

machines should be narrow if the ESX Server scheduler is

dividing the resources equally among all virtual machines.

ESX Server exhibits this characteristic narrow range for the

GZIP benchmark, which verifies its consistent behaviour

under both lightly and heavily loaded conditions.

Figure 1 Performance vs. Number of Virtual Machines (Hyper-Threading

Disabled)

Figure 1 also shows the equally important gauge of

overall throughput as measured in benchmark iterations per

hour. If the load is increased from one to four virtual

machines, the throughput increases almost linearly from 16

iterations per hour to 62.6 iterations per hour. Once all

processors are fully utilized, the overall throughput does not

increase, but remains relatively flat, dropping slightly as

each additional virtual machine is added. This gauge more

clearly illustrates the overhead of managing additional

virtual machines.

Table 2 Benchmark Run Times with Increasing Number of Virtual

Machines (Hyper- Threading Disabled)

Average

Number

of

Virtual

Machines

Average

Run

Time

(In

Seconds)

Maximum

Run Time

(In

Seconds)

Minimum

Run Time

(In

Seconds)

Percent (%)

Difference

Between

Max and

Min

1 1124 1127 1119 0.7

2 1130 1138 1126 1.1

4 1151 1156 1144 1.0

8 2357 2367 2342 1.1

16 4846 4877 4785 1.9

D. Hyper-Threading Enabled:

The same virtual machine scaling tests were run with

hyper-threading enabled. Figure 2 plots the GZIP

benchmark test results. While the number of virtual

machines does not exceed the number of physical processors

(four), hyper-threading provides no additional benefit. As

expected, the results with one to four virtual machines are

similar to those without hyper threading. Hyper-threading

begins to demonstrate benefits when the number of virtual

machines increases past the number of physical processors.

The throughput does not begin to peak until eight virtual

machines are used, providing two threads of execution for

each physical processor. As the number of virtual machines

continues to increase, the throughput increases marginally

until reaching a peak at 14 virtual machines, and then

beginning to drop when 16 virtual machines are deployed.

Figure 2 Performances vs. Number of Virtual Machines (Hyper-Threading

Enabled)

Table 3 lists the average, maximum, and minimum run times

for benchmark tests as the number of virtual machines

increases (with hyper-threading enabled). As in the hyper-

threading disabled case, ESX Server allocates resources

equally among the virtual machines, as shown by the narrow

range between the maximum and minimum run times.

Table 3 Benchmark Run Times with Increasing Number of Virtual

Machines (Hyper-Threading Enabled)

 Figure 3 shows the relative performance benefit of

enabling hyper-threading for CPU-intensive workloads. As

expected, no benefit is gained until the number of virtual

machines exceeds the number of physical processors. When

the system is saturated, hyper-threading increases

throughput by about 20 percent over the non-hyper-

threading case by utilizing each processor more effectively.

However, the benefit of hyper-threading technology varies

significantly with workload and cannot be easily generalized

to other workloads. In particular, applications with more

networking, disk I/O, or operating system calls will likely

achieve less dramatic results.

Figure 3 Comparison of Run Time Performance with and Without Hyper-

Threading

Average No

of Virtual

Machines

Average

Run Time

(In

Seconds)

Maximum

Run Time

(in

Seconds)

Minimum

Run Time

(In

Seconds)

Precent(%)

Difference

Between

Max and

Min

1 1127 1129 1126 0.3

2 1135 1139 1129 0.9

4 1159 1166 1149 1.5

8 2036 2048 2020 1.4

16 4032 4099 3984 2.8

K. Phaneendra et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 181-186

© 2010, IJARCS All Rights Reserved 186

V. CONCLUSION

Hyper-Threading significantly increases throughput for

CPU intensive workloads. When twelve virtual CPUs were

benchmarked and Hyper-Threading was enabled the

throughput of single CPU virtual machines increased 21%

and the throughput of two CPU virtual machines increased

23% compared to when Hyper-Threading was disabled.

Since Hyper-Threading is most effective with large numbers

of virtual machines a host that is Hyper-Threading enabled

should have at least two virtual CPUs in aggregate for every

physical CPU. Using fewer virtual CPUs reduces the

benefits of Hyper-Threading.

In summary:

a. Single CPU guest machines scale better than guest

machines using virtual SMP.

b. Hyper-Threading increases throughput if there are

a large number of virtual CPUs, but makes no

difference if the number of virtual CPUs is less

than or equal to the number of physical CPUs.

c. Do not allocate excessive resources to virtual

machines. The additional resources may hurt

performance.

Assessing the impact of virtualization on applications

performance is one of the key factors in devising the right

strategy for virtualization. The usual goal of virtualization is

to centralize administrative tasks while improving

scalability and workloads.

VI. REFERENCES

[1]. Tu Honglei; Sun Wei; Zhang Yanan, Zhuhai, ―The Research

on Software Metrics and Software Complexity

Metrics‖volume-1,Dec-2009, presented at International

Forum on Computer Science-Technology and Applications,

IFCSTA '09. PP.131-136.

[2]. Norman E. Fenton ―Software Metrics, ―A Rigorous

Approach‖, 2nd Edition Revised Ed, 1997, Boston: PWS

Publishing.

[3]. R. K. Jain., Art of Computer Systems Performance Analysis -

Techniques for Experimental Design Measurements

Simulation and Modeling, Ed-1, 1991, John Wiley & Sons

[4]. Conte, S. D., H. E. Dunsmore, and V. Y. Shen, Software

Engineering Metrics and Models, Ed-1,1986,

Benjamin/Cummings Publishing Company.

[5]. VMware ESX Server 2, ESX Server Performance and

Resource Management for CPU-Intensive Workloads, 2008,

a VMware white paper , pp. 4-11.

[6]. Mohamed A. El-Refaey, Mohamed Abu Rizkaa, "Virtual

Systems Workload Characterization: An Overview,"

wetice‘09, 2009, 18th IEEE International Workshops on

Enabling Technologies: Infrastructures for Collaborative

Enterprises, pp.72-77

[7]. G.J. Popek, and R.P. Goldberg, ―Formal Requirements for

Virtualizable Third Generation Architectures,‖ vol. 17 no. 7,

1974, Commun. ACM, pp. 412-421

[8]. N. M. M. K. Chowdhury and R. Boutaba, ―Network

virtualization: state of the art and research challenges‖,

Volume 47 Issue 7, July 2009, IEEE Communications

Magazine, pp.20-26.

[9]. Waldspurger, ―Memory Resource Management in VMware

ESX Server‖, vol. 36, no. SI, ACM SIGOPS Operating

Systems Rev., winter 2002, pp. 181-194.

[10]. Hyper Threading Support in VMware ESX Server 2, 2004 a

VMware white paper,pp-3

http://www.vmware.com/pdf/esx21_hyperthreading.pdf

http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci212940,00.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5384535
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5384535

