
Volume 2, No. 6, Nov-Dec 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 302

ISSN No. 0976-5697

 Architectrue of Run-Time Platform Manager For Dynamic Data Management in

MPSoC(MultiProcessor-System-On-Chip)

Mr.D.S.Vyas*
Master of Computer Application

C.U.Shah College of MCA

Wadhwan City,Gujarat,India

dhaval_s_vyas@yahoo.com

Dr.N.N.Jani
Dean,Computer Science Department

KSV University

Gandhinagar,Gujarat,India

Drnnjani@csid.co.in

Abstract: This research Paper to be carried out is on the design methodology required to make intelligent decisions about the RUN-TIME

multiprocessor –systems-on chip (MP-SoC) management and mapping of dynamic embedded software. However, obtaining experimental evidence

of the soundness of the methodology by applying it on actual applications is a major requirement. This evolution, embedded processors become

ubiquitous (present every where simultaneously) and a new role for embedded software in contemporary and future Multiple-Processor systems -on-

Chip (MP-SoC) is reserved. Next to these programmable components, they contain a large number of memories organized in many different ways.

Hence there is a need for proper management of all the data and computation in these complex systems.

Keywords- MPSoC, DSP,computers, design, structures

I. INTRODAUCTION

The merging of computers, consumer and communication

disciplines gives rise to very fast growing markets for personal

communication, multi-media and broadband networks, in the

information technology (IT) area. Rapid evolution in sub-

micron process technology allows ever more complex systems

to be mapped on platforms that become integrated on one

single chip. Technology advances are however not followed

by an increase in design productivity, causing technology to

leapfrog the design of IT systems. A consistent system design

technology that can cope with such complexity and with the

ever- shortening time-to-market requirements is of crucial

importance. It should allow mapping these applications cost-

efficiently to the target architecture while meeting all real-

time, power, and other constraints. Today, a new

heterogeneous architectural design paradigm is emerging

usually called a 'platform', including one or more

programmable components, either general-purpose or DSP

processors, cores or ASIPs (application-specific instruction-set

processor), augmented with some specialized data paths or co-

processors (accelerators)[3][4]. Through this evolution,

embedded processors become ubiquitous and a new role for

embedded software in contemporary and future Multiple-

Processor Systems-on-Chip (MPSoC) is reserved[5].

II. RESEARCH

This research Paper includes both methodology and

prototype tool design aspects. The short time to market

available to realize these designs Indeed requires a very high

productivity from the part of the designer. The key solution for

this problem is writing down the specification of the system at

a higher level of abstraction and providing a methodology to

refine this specification into an implementation or components

that manage the most time consuming aspects of the

implementation through an API. The following essential

research problems need to be addressed to solve this problem:

Massive parallelism is needed in order to reach to low

power goals. This includes sub-word parallelism, instruction

parallelism and coarse multi-processor parallelism. Especially

the problem of using sub-word parallelism is not solved in both

academia and industry. It must be investigated how much of

each type of parallelism needs to be exploited for the Ambient

Intelligence application domain. Also flexible architectures that

can exchange a certain type of parallelism for another can

enable a better exploitation. But then the question is raised how

to explore the different alternatives without increasing the

design time much? Careful decisions need to be taken

concerning the dynamic data management[6]. It has to be

decided what data structures to use to implement the abstract

data types, how much memory to allocate for each data

structure and how, and how to keep track of free and used

memory for each data structure. Also transformations on these

dynamic data structures can significantly reduce

implementation cost. Higher-level models are needed to

explore and transform different data representation alternatives.

Initial research has shown the feasibility[9]. The next step

is to fit this in the global design flow. All the above can be used

to steer system-wide trade-offs between power consumption,

memory footprint and quality or throughput/latency (within the

constraints to be met). Resources are assigned to tasks such that

they can meet their (real-time) constraints while minimizing

cost (such as energy). These tradeoffs have to be partly decided

at run-time based as much as possible on design time

preparations and analysis. The current approach is mainly

based on a spatial assignment of tasks to resources in the

assumption that there are more resources than tasks[6][7]. The

run-time management and the design-time preparations will

change drastically when allowing multiple tasks sharing the

same resources over time. The challenge is how to use the

design-time information appropriately to limit the run-time

D.S.Vyas et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 302-304

© 2010, IJARCS All Rights Reserved 303

overhead. Optimized Design flows, Middleware and RTOS

components will play a major role in addressing this challenge.

III. RESEARCH METHODOLOGY

There is a need to create a run-time management glue layer

that is perfectly suited for the MPSoC environment. This

component illustrates how an MPSoC-specific run-time

management layer is able to alleviate the needs of the MPSoC

environment. The (design time) exploration and optimization

component starts out by analyzing and profiling the target

application together with a set of potential platform properties

(e.g. different memory sizes for different memory hierarchy

layers, different communication bandwidth, number of PEs,

etc.). The result of the design time exploration should be an

improved, scalable application (e.g. containing multiple code

versions) bundled with a large amount of design time

exploration information. The design time information is coded

by means of a multi-dimensional Pareto curve. The application

itself will be expanded with run-time resource management

functionality such as e.g. block transfers to manage the

(scratchpad) memory hierarchy[1][2].

Figure-1 : (Run-Time Platform Manager)

The run-time platform manager (above figure) takes the

improved application and the Pareto curve as input.

Consequently, the run-time manager selects an active Pareto

point based on the quality requirements (real-time deadlines,

energy constraints, etc.) and the available platform resources.

The exploration information allows the run-time manager to

predictably tune the application performance to the available

resources and the user requirements/constraints.

Once the resources have been assigned, the application

itself will be partly responsible for managing these resources.

For example, the application is responsible for managing the

assigned L2 memory block or to make sure data is copied in a

timely fashion from its assigned L2 memory block to its

assigned L1 memory block[5]. Although the run-time manager

is responsible for handling the application's request for a

memory block, the application itself is responsible for

managing the allocation of memory resources within that

block. This cooperation obviously requires special constructs

within the MPSoC runtime manager[1][4][10].

In addition, it should be possible to perform a Pareto point

switch at run-time in order to react to a changing environment

(e.g. when a new application is started, when user

requirements change, etc.). Here the run-time manager will be

responsible for selecting the destination Pareto point and for

guiding the Pareto switching. However, deciding when the

Pareto switch should occur needs to be decided in cooperation

with the application. Concretely, the goal of the MPSoC run-

time management research activity should be to create RTOS

extensions and algorithms that efficiently exploit the presence

of design time application exploration information in order to

manage the resources in an MPSoC environment. Hence the

research deals with the the pareto’s principal that is; the

unequal distribution of wealth in his country, observing that

twenty percent of the people owned eighty percent of the

wealth. There is a management theory floating around at the

moment that proposes to interpret Pareto's Principle in such a

way as to produce what is called Superstar Management. The

theory's supporters claim that since 20 percent of people

produce 80 percent of results We should focus limited time on

managing only that 20 percent, the superstars. The theory is

flawed, as we are discussing here because it overlooks the

fact that 80 percent of time should be spent doing what is

really important. Helping the good become better is a better

use of time than helping the great become terrific. Apply the

Pareto Principle to all we do, but use it wisely[9].

After the text edit has been completed, the paper is ready

for the template. Duplicate the template file by using the Save

As command, and use the naming convention prescribed by

your conference for the name of your paper. In this newly

created file, highlight all of the contents and import your

prepared text file. You are now ready to style your paper; use

the scroll down window on the left of the MS Word

Formatting toolbar. The goals of the run-time management

research in the MPSoC activities deals with:

A. Pareto Point Selection:

The main question here deals with how to select a Pareto

point in the Pareto hyper surface that minimizes the cost

(according to some cost function) for a certain required

performance and that considers the available platform

resources. As the above figure illustrates, run-time

management contains two major components: requirements

management, dealing with (i) Pareto point selection and Pareto

point switching according to the user requirements and (ii)

with the actual assignment of the resources. Hence, this raises

the question of how the Pareto point selection and the resource

assignment algorithm will be linked. Since selecting a Pareto

point also means having an amount of available resources, a

specific Pareto point can only be chosen if those resources are

(i) available and (ii) can be allocated[10].

B. Run-time Pareto Point Switching:

The main question in this case is how to efficiently switch

between complex Pareto points? There are a set of issues that

have to be considered when performing a Pareto switch.

D.S.Vyas et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 302-304

© 2010, IJARCS All Rights Reserved 304

Choosing a new Pareto point (also denoted as destination

Pareto point) may be dependent on the current point. Making

an assessment of the amount of work involved when switching

from one Pareto point to another can partly be done at design

time by creating a Pareto point switch cost matrix. However,

there will be some run-time issues that need to be taken into

account: it might be that due to certain run-time conditions

(e.g. platform resource allocation status), some destination

Pareto points are favored[2][4][8].

C. Resource assignment:

In this research Paper, we have to find some good resource

allocation algorithms to solve the actual resource assignment

problem after a certain Pareto point has been chosen. This

assignment problem includes assigning tasks to processing

elements, assigning the requested memory blocks to specific

memory layers/blocks and assigning the communication

resources (see above figure). The algorithms performing this

allocation need to be tightly coupled. In addition, they have to

yield good solutions in a minimum of time, since assignment

of resources happens at run-time.

IV. CONCLUSION

Proposed RPM (Run-Time Platform Manager)

Architecture System will reduce the time of the MPSoC by

implementing Run-time Application, save the memory block

area at run time for multiprocessors, Reduce the Cost, order to

reach to low power goals. The application itself will be

expanded with run-time resource management functionality

such as e.g. block transfers to manage the (scratchpad)

memory hierarchy. Proposed System will manage and follow

the new heterogeneous platforms like MPSoC, l provide the

Prototype at RUN-TIME MPSoC., Manage the real-time

deadlines, energy constraints, low power consumption, Speed,

area, Application Performance, Time to market and manage

resources Which all are challenges in Design time MPSoC.

V. REFERENCES

[1]. K. Asanovic, R. Bodik, B. Catanzaro, J. J. Gebis,P.

Husbands, K. Keutzer, D. Patterson, W. Plishker,J. Shalf, S.

W. Williams, and K. A. Yelick. Thelandscape of parallel

computing research: A view fromberkeley. Technical Report

UCB/EECS-2006-183,EECS Department, University of

California, Berkeley,Dec 2006.

[2]. P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta.CellSS: a

programming model for the cell bearchitecture. In

Proceedings of the ACM/IEEE Supercomputing 2006

Conference, November 2006

[3]. M. Bimberg, M. Tavares, E. Matus, and G. Fettweis.A high-

throughput programmable decoder for LDPCconvolutional

codes. In Proceedings of the 18th IEEEInternational

Conference on Application-speci¯cSystems, Architectures

and Processors (ASAP'07),Montreal, Canada, July 2007.

[4]. K. Flautner. The wall ahead is made of rubber. In 4thHiPEAC

Industrial Workshop on Compilers and Architectures,

Cambridge, UK, November 2007

[5]. E. A. Lee and D. G. Messerschmitt. Synchronous data°ow.

Proceedings of the IEEE, 75(9):1235{1245, 1987.

[6]. T. Limberg, M. Winter, M. Bimberg, R. Klemm, E. Matus,

M. Tavares, G. Fettweis, H. Ahlendorf, and P. Robelly. A

fully programmabel 40 gops sdr single chip baseband for

lte/wimax terminals. InProceedings of the 34th European

Solid-State Circuits Conference,ESSCIRC, Edinburgh,

Scotland, September 2008.

[7]. D. Markovic, B. Nikolic, and R. Brodersen. Power andarea

minimization for multidimensional signalprocessing. IEEE J.

Solid-State Circuits, 42(4):922{934, April 2007.

[8]. U. Ramacher. Software-de¯ned radio prospects

formultistandard mobile phones. Computer, 40(10):62{69,

2007.

[9]. H. Seidel. A Task-level Programmable Processor. PhD

Thesis, WiKu, Duisburg, October 2006.

[10]. O. Silven and K. JyrkkÄa. Observations on power-e±ciency

trends in mobile communication devices. EURASIP J.

Embedded Syst., 2007(1):17{17, 2007.

