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Abstract:Theuse of MRI segmentation is becoming more vital in diagnosing the cancer in the patients much effectively. There are 

plenty of methods available to segment the brain MR images. Among those methods, unsupervised methods are highly advised since 

they do not require any human interaction for segmenting with high precision. But, still there is a scope for improvement in the field 

of medical image segmentation. Hence,in this paper we proposed a novel approach for segmenting the MRI brain image based on 

Finite Truncated Skew Gaussian Mixture Model using Hierarchical Clustering algorithm. The obtained results are compared with 

various other techniques and the performance evaluation is performed using Image quality metrics and Segmentation metrics. 
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I. INTRODUCTION 

MRI segmentation plays a vital role in research and 

medical applications. MRI has wide range of advantages 

over other conventional imaging techniques as 

magnetization and radio waves are used instead of X-rays in 

making the detailed and cross-sectional images of the 

brain[1]. Various operations based on image processing 

were defined earlier on MR images.  Among these, 

segmentation of brain images into sub-regions has enormous 

research and medical applications.  These sub-regions are 

utilized in visualizing and analyzing the anatomical 

structures in the brain which help in neuro-surgical planning 

[2]. 

There are enormous conventional methods for MRI 

segmentation which require human interaction in terms of 

specifying the number of classes toobtain accurate and 

reliable segmentation.  Therefore, it is essential to derive 

new techniques to segment effectively. Most of the 

emphasis has been given to the segmentation algorithm 

based on finite normal mixture models in which each image 

is assumed to be a mixture of Gaussian distributions. But,in 

reality it is observed that the pixels are quantized through 

the brightness or contrast in the gray scale level (Z) at that 

point.  It has been observed that the regions have a finite 

range of pixel intensities (-∞, +∞) and may not be 

symmetric and Mesokurtic [3].  Hence, in this paper to have 

an appropriate modeling of the feature vector, we considered 

finite truncated skew Gaussian distribution by assuming 

thatthe pixel intensities in the entire image follow a Finite 

Truncated SkewGaussian distribution [4]. 

Hence, in order to segment more accurately Hierarchical 

Clustering algorithm is widely preferred because of the 

additional flexibility that allows the pixel to belong to 

multiple classes with varying degree of membership [5]. 

Thus, in this paper we propose an effective Hierarchical 

clustering algorithm to segment, the image into number of 

regions and derive the model parameters.  The obtained 

parameters are refined further using the EM algorithm. 

The rest of the paper is organized as follows: section-2 

explains about the Hierarchical Clusteringalgorithm, 

section-3 deals with the concept of Finite Truncated Skew 

Gaussian distribution and section-4 handles the initialization 

of parameters. Section-5 shows the updation of parameters 

and section-6 demonstrates the proposed segmentation 

algorithm. In section-7 the experimental results are 

discussed and finally section-8 concludes the paper. 

II. HIERARCHICAL CLUSTERING 

Clustering aims at partitioning the data without using the 

training data, hence, they are called unsupervised models. 

Clustering is defined as a technique where the objects of 

interest with similarity along the dimension of interest are 

kept close and the other objects are apart. The dimension of 

interest depends on the application [8].  
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A Hierarchical Clustering goes one step further by 

collecting similar clusters at different levels into a single 

cluster by forming a tree which gives better selection of 

clusters for further exploration and hence, in this method 

Hierarchical Clustering is utilized. 

Given a set of N items to be segmented and an M × N 

distance (or similarity) matrix, the basic process of 

hierarchical segmenting is as follows.   

a. First, assign each item to a segment, so that if we 

have N items, it implies that we have N segments, 

each containing just one item. Let the distances 

(similarities) between the segments be the same as 

those (similarities) between the items they contain.   

b. Find the closest (most similar) pair of segments and 

merge them into a single segment, i.e. we will now 

have one segment less.   

c. Compute distances (similarities) between the new 

segment and each of the old segments.   

Repeat steps 2 and 3 until all items are segmented into a 

single segment of size N. 

Step 3 can be done using single-linkage method. In 

single-linkage segmenting (also called the connectedness or 

minimum method), we consider the between one segment 

and another to be equal to the shortest distance from any 

member of one segment to any member of the other 

segment. If the data consist of similarities, we consider the 

similarity between one segment and another to be equal to 

the greatest similarity from any member of one segment to 

any member of the other segment. The M × N proximity 

matrix is D = [d(i, j)]. The segmenting is assigned sequence 

numbers 0, 1..., (n – 1) and L(k) is the level of the kth 

segmenting. A segment with sequence number m is denoted 

as (m) and the proximity between segments (r) and (s) is 

denoted as  d [(r), (s)]. The algorithm is composed of the 

following steps:  

a. Start with the disjoint segments having level L(0) = 

0 and sequence number m = 0.  

b. Find the least dissimilar pair of segments in the 

current s, say pair (r), (s), where the minimum is 

over all pairs of segments in the current 

segmenting.  

c. Increment the sequence number: m = m + 1. Merge 

segments (r) and (s) into a single segment to form 

the next segmenting m. Set the level of this 

segmenting to L(m) = d[(r), (s)].  

d. Update the proximity matrix, D, by deleting the 

rows and columns corresponding to segments (r) 

and (s) and adding a row and column 

corresponding to the newly formed segment. The 

proximity between the new segment, denoted (r, s) 

and the old segment (k) is defined as d[(k), (r, s)] = 

min (d[(k), (r)], d[(k), (s)]).  

If all objects are in one segment, stop. Else, go to step.2 

III. FINITE TRUNCATED SKEW GAUSSIAN 

DISTRIBUTION 

In any medical image, pixel is used as a measure of 

quantification and the entire medical image is assumed as a 

heterogeneous collection of pixels and each pixel is 

influenced by various factors such as brightness, contrast, 

saturation etc. Skew symmetric distributions are mainly 

used for the set of images where the shape of image regions 

are not symmetric or bell shaped distribution and these 

distributions can be well utilized for the medical images 

where the bone structure of the humans are asymmetric in 

nature. To have a more accurate analysis of the medical 

images, it is customary to consider that in any image, the 

range of the pixels is finite in nature. Hence, to have a more 

closure and deeper approximation of the medical data, 

truncated skew normal distribution are well suited. 

The probability density function of the truncated skew 

normal distribution is given by 

  (5) 

where, µ ϵ  R, σ >  0 and λ ϵ  R represents the location, 

scale and shape parameters respectively. Where  and  

denote the probability density function and the cumulative 

density function of the standard normal distribution. 

The limits and of the truncated normal distribution are Zl 

=a andZm = b. Where Zl and Zmdenotes the truncation limits. 

Truncating equation (1) between these limits, we have 

  (6)

 where, 

   (7)and 

   (8) 

where,  

fµ, σ, λ(x) is as given in equation (1)  

 

 (9) 

IV. INITIALIZATION OF PARAMETERS 

In order to initialize the parameters, it is needed to obtain 

the initial values of the model distribution. The initial 

estimates of the Mixture model µi, σi, λi and αi where i=1, 2, 

….., k are estimated using Hierarchical Clustering algorithm 

as proposed in section-2. It is assumed that the pixel 

intensities of the entire image is segmented into a K 

component model πi, i=1, 2, .., k with the assumption that πi 

= 1/k where k is the value obtained from Hierarchical 

Clustering algorithm discussed in section-2. 

V. UPDATION OF INITIAL ESTIMATES 

THROUGH EM ALGORITHM 

The initial estimates of µi, σi and αi that are obtained 

from section – 4 are to be refined to obtain the final 

estimates. For this purpose EM algorithm is utilized. The 

EM algorithm consists of 2 steps E-step and M-Step. In the 

E-Step, the initial estimates obtained in section – 4 are taken 

as input and the final updated equations are obtained in the 

M-Step. The updated equations for the model parameters µ, 

σ and α are given below. 

(10) 
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(11) 

 

(12

) 

 

VI. SEGMENTATION ALGORITHM 

After refining the estimates, the important step is 

reconstruction of image. This process is carried out by 

performing the segmentation. The image segmentation is 

done in 3 steps: 

Step-1: Obtain the initial estimates of the finite truncated 

skew Gaussian mixture model using Hierarchical 

Clustering algorithm. 

Step-2: Using the initial estimates obtained from step-1, the 

EM algorithm is iteratively carried out. 

Step-3: The image segmentation is carried out by assigning 

each pixel into a proper region (Segment) 

according to maximum likelihood estimates of the 

jth element Lj according to the following equation 

 

Lj=Maxj

 −∞a2σ φ x−μσφλx−μσdx  

 

VII. EXPERIMENTAL RESULTS & 

PERFORMANCE EVALUATION 

In order to evaluate the performance of the developed 

algorithm, we have used T1 weighted images. The input 

medical images are obtained from brain web images. It is 

assumed that the intensities of the pixels in medical images 

are asymmetric in nature. Hence, follow a skew Gaussian 

distribution and as the limits are finite and within the 

specified range of values are only necessary in medical 

image segmentation process we have considered Truncated 

Skew Gaussian distribution. The initialization of parameters 

for each segment is achieved by using Hierarchical 

Clustering algorithm and the estimates are updated using the 

EM algorithm. The experimentation is carried out by using 

the segmentation algorithm depicted in section-6 and the 

obtained results are evaluated using segmentation quality 

metrics such as Jacquard Coefficient (JC), Volumetric 

Similarity (VS), Variation of Information (VOI), 

Probabilistic Rand Index (PRI) and Global Consistency 

Error (GCE) and the formulas for calculating these metrics 

are given as follows: 

 (13) 

 

(14) 

 

Where, , ,     c ,      d  

(15) 

Where, LRE =  S and S’ are segment classes 

and xi is the pixel. 

 

VOI (X,Y)= H(X) = H (Y) – 2I(X;Y)  (16) 

 

Where, X and Y are two clusters 

PRI (St, {S}) = 

 (1− )      (17) 

Where, and the 

values range from 0 to 1. The value 1 denotes the segments 

are identical. 
 

 

Table: I Segmentation Quality Metrics 

Image 
Quality 

Metric 
GMM 

Skew 

GMM 

with K-

Means-

EM 

Truncated 

SGMM with 

K-Means 

Skew 

GMM 

with 

HC-EM 

Truncated 

SGMM with 

HC 

Standard 

Limits 

Standard 

Criteria 

B0S1 

JC 

VS 

VOI 

GCE 

PRI 

0.089 

0.432 

2.3665 

0.2802 

0.504 

0.689 

0.733 

5.3173 

0.5964 

0.6396 

0.711 

0.781 

5.2323 

0.6088 

0.6697 

0.703 

0.8799 

5.142 

0.561 

0.619 

0.736 

0.887 

5.381 

0.626 

0.663 

0 to 1 

0 to 1 

-∞ to ∞ 

0 to 1 

0 to 1 

Close to 1 

Close to 1 

Possible Big 

Close to 1 

Close to 1 
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B0S2 

JC 

VS 

VOI 

GCE 

PRI 

0.0677 

0.3212 

1.9724 

0.2443 

0.416 

0.7656 

0.8767 

3.924 

0.4741 

0.5016 

0.7921 

0.8801 

0 

0 

1 

0.7921 

0.8814 

4.35 

0.419 

0.514 

0.812 

0.892 

4.63 

0.5013 

0.542 

0 to 1 

0 to 1 

-∞ to ∞ 

0 to 1 

0 to 1 

Close to 1 

Close to 1 

Possible Big 

Close to 1 

Close to 1 

B0S3 

JC 

VS 

VOI 

GCE 

PRI 

0.0434 

0.123 

0.7684 

0.089 

0.576 

0.6567 

0.812 

0.2916 

0.031 

0.5853 

0.689 

0.849 

0 

0 

1 

0.7143 

0.916 

1.659 

0.107 

0.632 

0.722 

0.932 

2.956 

0.02 

0.661 

0 to 1 

0 to 1 

-∞ to ∞ 

0 to 1 

0 to 1 

Close to 1 

Close to 1 

Possible Big 

Close to 1 

Close to 1 

B0S4 

JC 

VS 

VOI 

GCE 

PRI 

0.0456 

0.2233 

1.268 

0.056 

0.189 

0.7878 

0.3232 

1.569 

0.091 

0.191 

0.7891 

0.465 

0 

0 

1 

0.874 

0.54 

3.354 

0.157 

0.496 

0.896 

0.621 

3.693 

0.199 

0.519 

0 to 1 

0 to 1 

-∞ to ∞ 

0 to 1 

0 to 1 

Close to 1 

Close to 1 

Possible Big 

Close to 1 

Close to 1 

B1S1 

JC 

VS 

VOI 

GCE 

PRI 

0.141 

0.313 

1.6499 

0.1874 

0.9256 

0.776 

0.397 

4.0874 

0.4487 

0.6678 

0.779 

0.452 

3.9136 

0.4651 

0.7578 

0.791 

0.784 

3.951 

0.418 

0.6258 

0.8123 

0.797 

4.13 

0.4468 

0.6692 

0 to 1 

0 to 1 

-∞ to ∞ 

0 to 1 

0 to 1 

Close to 1 

Close to 1 

Possible Big 

Close to 1 

Close to 1 

B1S2 

JC 

VS 

VOI 

GCE 

PRI 

0.098 

0.0433 

2.3215 

0.2838 

0.3807 

0.7892 

0.878 

2.8047 

0.3407 

0.369 

0.7902 

0.898 

2.921 

0.348 

0.429 

0.877 

0.881 

3.91 

0.339 

0.485 

0.908 

0.896 

5.122 

0.3695 

0.561 

0 to 1 

0 to 1 

-∞ to ∞ 

0 to 1 

0 to 1 

Close to 1 

Close to 1 

Possible Big 

Close to 1 

Close to 1 

B1S3 

JC 

VS 

VOI 

GCE 

PRI 

0.0222 

0.3223 

1.2411 

0.1466 

0.9576 

0.8926 

0.3429 

0.9988 

0.1157 

0.9662 

0.899 

0.425 

1.252 

0.227 

0.856 

0.9124 

0.3543 

2.665 

0.398 

0.652 

0.9236 

0.359 

3.6351 

0.424 

0.698 

0 to 1 

0 to 1 

-∞ to ∞ 

0 to 1 

0 to 1 

Close to 1 

Close to 1 

Possible Big 

Close to 1 

Close to 1 

B1S4 

JC 

VS 

VOI 

GCE 

PRI 

0.455 

0.329 

-8.8e-16 

0.119 

0.065 

0.762 

0.7001 

0.201 

0.112 

0.1001 

0.797 

0.779 

1.332 

0.176 

0.129 

0.815 

0.7158 

0.19 

0.212 

0.27 

0.826 

0.754 

2.35 

0.265 

0.353 

0 to 1 

0 to 1 

-∞ to ∞ 

0 to 1 

0 to 1 

Close to 1 

Close to 1 

Possible Big 

Close to 1 

Close to 1 

 

 

 
a.   Jacquard Coefficient 

 

 
b.      Volume Similarity 

 
c.    Variation of Information 

 

 
d.    Global Consistency Error 
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e.    Probabilistic Rand Index 

Graph: 1 Segmentation Quality Meterics 

 

The reconstruction process is carried out by positioning 

each pixel into its appropriate location. The performance 

evaluation of the obtained output is done using the image 

quality metrics such as Average difference, Maximum 

distance, Image Fidelity, Means Squared Error and Peak 

Signal-to-Noise ratio. The formula for computing the above 

quality metrics are as follows: 

 

 
Quality 
metric 

Formula to Evaluate 

Average 
Difference 

(AV) 

 

Where M,N are image matrix rows and columns 

Maximum 
Distance 

(MD) 
Max{|  

Image 
Fidelity (IF) 

 

Where M,N are image matrix rows and columns 

Mean 
Squared 

error (MSE) 
 

Where M,N are image matrix rows and columns 

Signal to 
noise ratio 

(SNR) 

 

Where, MAXI is maximum possible pixel value of 
image, MSE is the Mean squared error 

 

The Developed algorithm is campared with Skew Gaussian 

mixture model with K-Means, Hierarchical Clustering Fuzzy 

C-Means, Truncated Skew Gaussian Misture model with K-

Means and Hierarchical Clustering algorithms and the results 

obainted are tabulated in table-1, Table-2. Graphs-I, Graphs-II 

and Fig.-1 

 

Table: II Image Quality Metrics 

Image 
Quality 

Metric 
GMM 

Skew 

GMM 

with 

K-Means 

Truncated 

SGMM with 

K-Means 

Skew 

GMM 

with HC 

Truncated 

SGMM with 

HC 

Standard 

Limits 

Standard 

Criteria 

B0S1 

AD 

MD 

IF 

MSE 

SNR 

0.573 

0.422 

0.416 

0.04 

17.41 

0.773 

0.922 

0.875 

0.134 

29.23 

0.792 

0.941 

0.428 

2.19e-005 

72.15 

0.812 

0.9325 

0.923 

0.094 

33.89 

0.835 

0.939 

0.941 

2.92E-005 

87.39 

-1 to 1 

-1 to 1 

0 to 1 

0 to 1 

-∞  to ∞ 

Closer to 1 

Closer to 1 

Closer to 1 

Closer to 0 

Possible Big 

B0S2 

AD 

MD 

IF 

MSE 

SNR 

0.37 

0. 221 

0.336 

0.240 

14.45 

0.876 

0.897 

0.876 

0.211 

35.65 

0.887 

0.910 

0.894 

0.124 

84.23 

0.749 

0.912 

0.859 

0.2019 

39.85 

0.798 

0.926 

0.873 

0.102 

89.65 

-1  to 1 

-1 to 1 

0 to 1 

0 to 1 

-∞  to ∞ 

Closer to 1 

Closer to 1 

Closer to 1 

Closer to 0 

Possible Big 

B0S3 

AD 

MD 

IF 

MSE 

SNR 

0.456 

0.345 

0.44 

0.22 

19.88 

0.76 

0.879 

0.86 

0.23 

37.98 

0.796 

0.847 

0.883 

0.2012 

77.46 

0.81 

0.807 

0.917 

0.2123 

39.71 

0.826 

0.86 

0.919 

0.267 

82.31 

-1  to 1 

-1 to 1 

0 to 1 

0 to 1 

-∞  to ∞ 

Closer to 1 

Closer to 1 

Closer to 1 

Closer to 0 

Possible Big 

B0S4 

AD 

MD 

IF 

MSE 

SNR 

0.231 

0. 224 

0.212 

0.24 

21.42 

0.473 

0.977 

0.813 

0.121 

33.28 

0.5023 

0.954 

0.889 

0.1012 

35.6 

0.4991 

0.971 

0.892 

0.1192 

37.41 

0.612 

0.977 

0.882 

1.02E-05 

78.8 

-1  to 1 

-1 to 1 

0 to 1 

0 to 1 

-∞  to ∞ 

Closer to 1 

Closer to 1 

Closer to 1 

Closer to 0 

Possible Big 

0

0.2

0.4

0.6

0.8

1

1.2

B0S1 B0S3 B1S1 B1S3

GMM

Skew GMM with 

K-Means-EM

Truncated SGMM 

with K-Means

Skew GMM with 

HC-EM

Truncated SGMM 

with HC
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B1S1 

AD 

MD 

IF 

MSE 

SNR 

0.342 

0.317 

0.391 

0.251 

3.241 

0.764 

0.819 

0.812 

0.228 

5.514 

0.7661 

0.919 

0.856 

1.34e-005 

32.154 

0.7015 

0.854 

0.876 

0.1759 

5.68 

0.794 

0.921 

0.898 

2.64E-005 

89.31 

-1  to 1 

-1 to 1 

0 to 1 

0 to 1 

-∞  to ∞ 

Closer to 1 

Closer to 1 

Closer to 1 

Closer to 0 

Possible Big 

B1S2 

AD 

MD 

IF 

MSE 

SNR 

0.21 

0.21 

0.213 

0.06 

13.43 

0.3653 

0.892 

0.787 

0.145 

49.22 

0.654 

0.8825 

0.813 

0.096 

99 

0.232 

0.912 

0.791 

0.594 

20.39 

0.661 

0.921 

0.851 

0.024 

99 

-1  to 1 

-1 to 1 

0 to 1 

0 to 1 

-∞  to ∞ 

Closer to 1 

Closer to 1 

Closer to 1 

Closer to 0 

Possible Big 

B1S3 

AD 

MD 

IF 

MSE 

SNR 

0.323 

0.123 

0.233 

0.01 

11.11 

0.322 

0.212 

0.897 

0.4345 

27.267 

0.554 

0.413 

0.917 

0.002 

39.12 

0.4592 

0.456 

0.923 

0.119 

29.86 

0.54 

0.446 

0.926 

1.29E-005 

71.69 

-1  to 1 

-1 to 1 

0 to 1 

0 to 1 

-∞  to ∞ 

Closer to 1 

Closer to 1 

Closer to 1 

Closer to 0 

Possible Big 

B1S4 

AD 

MD 

IF 

MSE 

SNR 

0.314 

0.241 

0.293 

0.18 

21.21 

0.338 

0.249 

0.683 

0.197 

78.19 

0.635 

0.294 

0.697 

0.113 

99 

0.497 

0.317 

0.791 

0.213 

99 

0.699 

0.391 

0.781 

0.829 

99 

-1  to 1 

-1 to 1 

0 to 1 

0 to 1 

-∞  to ∞ 

Closer to 1 

Closer to 1 

Closer to 1 

Closer to 0 

Possible Big 

 

 

 

 

 
a.      Average Diffrence 

 

 
b.    Maximum Distance 

 
c.     Image Fidility 

 

 
d.     Mean Square Error 
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e.    Singal to Niise Ratio 

Graph: 2 Image Quality Metrics 

 
At the outset, from the above Table-1, Table-2, Graphs-1, 

Graphs-2 and figure-1 it can be clearly identified that the 

developed algorithm gives much better results than the 

existing methods on Medical image segmentation based on 

Gaussian mixture model and Skew Gaussian mixture models 

using K-Means, Hierarchical clustering and truncated skew 

gaussian mixture models using K-Means. 

VIII. CONCLUSION 

Segmentation has an important role to play in the field of 

medical imaging. It is necessary to accurately identify the 

diseases like acoustic neuroma, Alzheimer’s, Parkinson’s 

etc.to provide better treatment. Therefore, it is essential to 

segment the image much more appropriately to help in 

identifying the damagedtissues with higher efficiency. Hence, 

this paper suggests a new approach based on Finite Truncated 

Skew Gaussian Mixture Model. The experimental results also 

show that the suggested technique outperforms the existing 

models. 
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