
Volume 2, No. 6, Nov-Dec 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 224

ISSN No. 0976-5697

Towards the Framework of the File Systems Performance Evaluation Techniques and

the Taxonomy of Replay Traces

Brijender Kahanwal*
Department of Computer Sc. & Engg.,

Shri Jagdishprasad Jhabarmal Tibrewala University

(SJJTU), Jhunjhunu, Raj. (INDIA).

imkahanwal@gmail.com

Tejinder Pal Singh
Department of Physics,

 Shri Jagdishprasad Jhabarmal Tiberwala University

(SJJTU), Jhunjhunu, Raj. (INDIA).

tps5675@gmail.com

Dr. R. K. Tuteja
Director Academic,

N. C. Institute of Computer Science,

Israna, Panipat, Haryana (INDIA).

rk_tuteja2006@yahoo.co.in

Abstract: This is the era of High Performance Computing (HPC). There is a great demand of the best performance evaluation techniques for the

file and storage systems. The task of evaluation is both necessary and hard. It gives in depth analysis of the target system and that becomes the

decision points for the users. That is also helpful for the inventors or developers to find out the bottleneck in their systems.

In this paper many performance evaluation techniques are described for file and storage system evaluation and the main stress is given on

the important one that is replay traces. A survey has been done for the performance evaluation techniques used by the researchers and on the

replay traces. And the taxonomy of the replay traces is described. The some of the popular replay traces are just like, Tracefs [1], //Trace [2],

Replayfs [3] and VFS Interceptor [12]. At last we have concluded all the features that must be considered when we are going to develop the new

tool for the replay traces. The complete work of this paper shows that the storage system developers must care about all the techniques which

can be used for the performance evaluation of the file systems. So they can develop highly efficient future file and storage systems.

Keyboards: Performance Evaluation Framework; File Systems; Replay Traces Taxonomy; Evaluation Techniques.

I. INTRODUCTION

File and storage system designs are being proposed in a

little span of time because there is no robust file system is

available which can perform all the functionalities according

to the always changing user needs. Every user has their

specific needs or demands which are not common at all. One

user may ask for the secure file system because he/she has

important information that must be protected from the others

which are not authorized. Some are demanding for highly

portable file systems. Considering all these we have also

developed Java File Security System (JFSS) [6]. One user

demands for the energy efficient file systems because he/she

is using portable devices. Because of such diverse

requirements by the users it is very typical to develop a

robust file system. There are so many different types of file

systems available. The user has to choose one of them which

are suitable for them. Here the question is which one is

better for the selection? To make this judgment we require

the evaluation tools. These tools are to be applied by the

researchers on the file systems under study for the

performance evaluation.

There are so many performance evaluation techniques

have been used by the researchers. These are benchmarking,

tracing, profile, indirect and ad hoc and energy efficiency

measuring techniques. Every technique has an extra

overhead on the system performance but with the help of

these we can find out the bottlenecks in our file systems and

make the regarding performance improvements. The user

can also easily find the good product which is a suitable

match for his needs. In this paper we have also shown the

taxonomy of replay traces according to their features.

The rest of the paper is organized as follows. Section 2

considers the related work. Section 3 provides the

hierarchical diagram of the performance evaluation

techniques. Section 4 is about the benchmarking, its types,

and taxonomy of replay traces are described in more detail.

The comparison of the tracing tools is done on the basis of

their features. Section 5 contains the descriptions about the

profile evaluation technique. Section 6 is about the energy

efficient technique for the file systems. Section 7 describes

the indirect and ad hoc techniques for the performance

evaluation. At last but not least the section 8 about the

conclusion and future scope.

II. RELATED WORK

In this section we give related work in the file system

performance evaluation.

Avishay Traeger et al. [7] has done the study near about

nine years on the file system benchmarking and they have

told so many pros and corns about the benchmarking

techniques. According to them it is critical to benchmark

when we are evaluating performance and a typical task

especially for file and storage systems. In this paper many

benchmark tools are discussed. Kester Li [9] has given ideas

about the low power file systems. S. Jhou et al. [5] has

developed the tracing package for the Berkeley UNIX

operating system. D. J. Lilja [10] has discussed so many

computer performance evaluation techniques in his book.

mailto:tps5675@gmail.com
mailto:rk_tuteja2006@yahoo.co.in

Brijender Kahanwal et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 224-229

© 2010, IJARCS All Rights Reserved 225

The more work is done on especially the tracing tools for

the better understanding of the application behavior. So

many tracing tools have been studied like Replayfs, Tracefs,

//Trace, VFS Interceptor etc. for the taxonomy of replay

traces. In all these there is no analysis tool for the processing

of the traced records.

III. PERFORMANCE EVALUATION TECHNIQUES

File System evaluation is most significant part of the

research study in file and storage system. It is heavily

dependent on the nature of the application generating the

load. To achieve optimal performance, the underlying file

system configuration must be balanced to match the

application characteristics. There are four techniques that

are used to evaluate the file systems. These are

benchmarking, profiles, energy efficiency techniques and

Indirect & ad hoc techniques. The benchmarking is further

classified as microbenchmarking, macrobenchmarking and

replay traces. All the classification is represented with the

help of the figure 3.1. In the next sections they are explained

one by one.

Figure. 3.1 A hierarchical relationship of performance evaluation

techniques for file and storage systems.

IV. BENCHMARKING

Benchmarking is simply the process of measuring the

performance. It is critical when we evaluate the

performance. Because every system has different features

and optimizations, so a single benchmark is not always

suitable. There are so many complexities which make

benchmarking the systems a challenging task. So many

factors which are contributing to the complexity are as

follows:

i) Storage variety: It is not a single local hard drive

on your desktop machine. It is much more like

Network-Attached Storage (NAS), Storage Area

Network (SAN), flash, RAID etc.

ii) Various types of File Systems: There are many

types of file systems available. Some are operating

on the local machine and using different data

structures, logging infrastructures, cryptographic,

compression etc. Distributed file system and

Network File System behaves differently than the

local ones.

iii) Operating System Variety: There are so many

operating systems with different behaviors. So

many operating systems are running on a single

machine through virtual machines. Even a single

operating system behaves differently on the

different configurations.

iv) The workload: The user activities and access

patterns are difficult to correctly characterize and

recreate.

v) Asynchronous activities: Other user processes and

kernel processes may interact with the storage stack

and change the behavior of the system.

vi) Caches: Operating system caches are spread at

various levels like hard disk cache, buffer cache in

between RAM and processor. The disk caches

contain the currently accessed data and metadata

which can change the system behavior.

Benchmarks are mostly used to provide an idea of how

fast some piece of software or hardware is. This is used by

the consumers to take purchasing decisions and is used by

the researchers to determine their system. Ideally, the users

can test the performance in their own settings or according

to their needs using real workloads. All this is impractical

and time consuming task to test many systems.

Benchmarking the file and storage systems requires

complete care which exacerbates the situation.

A. The Benchmarking Environment:

The system state can have a significant effect on results

at the time of benchmark execution. We should determine

the state. It should be reported with the results correctly.

There are few major factors as follows:

a. The cache state:

The cache state of the system may affect the code path

which is tested. That will affect the results. The cache has

two states either warm or cold. In the real environment the

cache is warm and the benchmark that accesses the cached

data may be unrealistic. The requests are serviced from the

memory and the file system is not exercised properly. The

caches should be cleared before benchmarking. It is possible

by freeing large amounts of memory, remounting the file

system, reloads the storage driver or with the help of

rebooting which is effective one.

b. The zoned constant angular velocity of disks:

The disks are using zoned constant angular velocity

(ZCAV) for storing the data. The cylinders are divided into

zones where the numbers of sectors in a cylinder are

increasing with the distance from the center of the disk. So

the transfer rate always varies from zone to zone. This

ZCAV effect must be minimized by creating smaller size

partitions on the outer part of the disks.

c. The file system aging:

The benchmarks run on the empty system may produce

results differently than the real environment. So it should be

aged with the synthetic workloads. We may run long term

workloads by copying an existing raw image or to replay a

trace before benchmarking.

d. The unnecessary processes during benchmarking:

All unnecessary processes or services should be stopped

before benchmarking. These can affect results of the

benchmarking. We should use multithreaded workloads

because they correctly show a real system which has many

active processes normally.

B. Types of Benchmarks

There are three types of benchmarks. These are as

follows:

a. Macro benchmarks:

It measures the performance of the file system under

some pre-determined workload. It may use either a real

application to generate a workload (e.g., compiling and

linking a large piece of software), or it may itself be a

custom application that drives the file system with a

synthetic workload. The goal of macrobenchmark programs

to understand how real workloads perform on a file system.

File System Evaluation Techniques

Indirect & Ad-hoc Techniques

AA

Energy Efficiency Techniques

Micro-benchmarking Macro-benchmarking Replay Traces

Profiles Benchmarking

Brijender Kahanwal et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 224-229

© 2010, IJARCS All Rights Reserved 226

Thus, many macrobenchmarks consist of executing some

application with carefully specified parameters. While any

program that exercises the file system may be suitable for

use as a macrobenchmark, the most common such program

is the compiler. Not only does the compiler read and write

many files, it is also a tool that researchers frequently use. A

typical compilation-based macrobenchmark consists of

building and linking the operating system kernel for the

system being benchmarked.

b. Micro benchmarks:

It measure one specific characteristic of file system

behavior, such as the time to create or delete a file. With the

help of these few operations are exercised. These are used

for the better understanding of the macrobenchmark results.

These are helpful in isolating the effects of specific parts of

the systems and to show the worst case behavior.

c. Replaying Traces:

These are alternative to benchmarks. They are

representative of real applications and are easy to use. File

system traces are used for years to analyze user behavior,

system software behavior that leads to advances in file

system and storage technologies. These are used for user

behavior analysis; file system debugging, security &

auditing, stress testing, intrusion detection and more recently

forensic analysis [7, 14] – to rollback and replay the traced

operations or to revert a file system to a state prior to an

attack. These have long been used for file system evaluation

and optimization. The researchers can replay a file system

trace to evaluate a newly designed file system or to find out

the bottleneck or special access patterns.

Traces may be collected from a real environment or a

synthetic environment. Traces from real environments are

most representative and helpful. Trace records are gathered

for the file system operations like open, create, close, reads

and writes, renames, deletes, executes, forks and exit system

calls. We know that the I/O activities are very bursty. The

lot of data gathered using the packages and that is important

for the studies of disk caches, file migration algorithms, file

system performance and load balancing strategies. In the

complex system, it is difficult to understand the complete

behavior and identify the performance shortcomings and

debugging it. A trace driven study or analysis of I/O

activities can not reveal the complete behavior of the file

system.

i. Design Issues for Tracing File Systems (Tracing

Tools): It is the first step of designing. File systems tracing

may be done at different logical levels: block level, the

driver level, the Virtual File System (VFS), the network

level for Network File System (NFS) or system call level. A

tracer can collect records at various degree of granularity

like users, groups, processes, files and file names, file

operations (open, create, close, reads and writes, renames,

deletes, executes, forks, etc.) and more.

We trace the file operations which are performed by the

user processes and system processes. It can be done on the

top of the Operating System kernel. The user can perform

the file operation through system call directly or through the

system utility routines. So there are so many places where

file operations can be captured. There is always a risk of

missing some of them.

Disadvantages of tracing at the Kernel level:

a) The package can’t tell from where the file operation

comes. That may be through the system call or through

the system utility routine. For this we have to trace the

command that caused the file operation in parallel and

then matching these two records later.

b) The kernel has been changed and debugging it is much

tough task as compared to the user program. Any fault in

the tracing package may crash the system. For this make

minimum changes to the kernel and do the carful

implementations.

ii. Tracing Process:

Figure. 4.1 The complete tracing process

The complete tracing process is shown in the above

figure. The tracing system has two fundamental

components: the application program on which the tracing is

done and the trace simulator it processes the trace record

data directly or indirectly. Indirectly in the sense the trace

records are stored on the large disks and further processed

later. The trace records are huge data and they acquire large

space and because of that they are compressed to acquire

less storage space. The record file of traced data may

transformed into aggregate counters, compressed, check

summed, encrypted streams. The tracer can buffer and direct

the resulting data to various destinations (sockets, disks,

etc.). With the help of tracers the research community can

devise better software and hardware to accommodate ever-

changing computing needs.

iii. Taxonomy of Replay Traces: We have constructed

a simple taxonomy that captures main features of I/O tracing

frameworks which can be utilized by the developers and

potential users to formalize their tracing requirements.

 Basic requirements for the trace package:

a) Comprehensiveness: (able to collect all important

information): It should provide the clear and detailed snap of

the file system activities. We must trace all the relevant file

operations, and collect the important information. It must

generate complete and accurate information in order to

avoid any guessing work. The data should be of wide range

to analyze or simulate the studies.

b) Flexibility: It should be flexible according to the

changing trace needs. Tracing may be done for the single

user, single process, a group of users or a group of

processes. We may be able to activate or deactivate the trace

dynamically according to the needs without any disruption

in the services of the system. The behavior may be study for

the long time or for the short time of a file system.

c) Minimum Performance Consequences: The

tracing overhead penalty must be kept low. When the trace

is not activated, there should not be any extra burden on the

system which is caused by the tracing package. And when it

is activated, it should not degrade the overall system

performance.

i) No extra amount of computing for extracting data by

a trace package.

ii) The amount of data generated should not be large.

iii) Both aspects are important if the trace is run for

several days.

d) Minimum Changes to the System: It is important

to keep minimum tracer code required and that will

Compression Decompression Disk
Application

Program

Trace

Simulator

Direct Working on the traced records

Brijender Kahanwal et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 224-229

© 2010, IJARCS All Rights Reserved 227

minimize the degree of maintenance. It will tend to reduce

the performance penalty on the system.

e) Convenience for Analysis: The final format of the

trace data should be easily and simply analyzable with only

simple computations for generating simple outputs.

f) High availability: For example, in supercomputing

environments, tasks may last for months and if stopped, they

must restart from the beginning and this in not affordable.

g) Security: Traces are used to monitor malicious

activities on the system. So, it is important that the

generated traces should be protected from attacks or

subversion. The encryption and keyed checksums can

provide strong security.

h) Portability: The tracing tool can be stacked above

the underlying file system and then that can easily trace.

They must be highly portable.

i) Privacy: Traces can raise concern about user’s

privacy because they may contain personal information

when they are publically distributed. Such type of

information can’t simply be removed from traces since it

required for correlation.

j) Anonymization: Traces are always collected for

the distribution. It is desirable to anonymize personal or

sensitive data. It must specify which parts of the trace must

be anonymized.

k) Parallel file system compatibility: The tool must

work with other applications in parallel and easily

augmented to add parallel functionalities.

l) Control of trace granularity: The person who is

using the trace data must collect the data as much is needed

because there is a performance overhead.

m) Trace data format: It may be binary format that is

usable or analyzable by the computer only that saves

memory space and facilitate automated parsing. Sometimes

it is convenient to view by the humans that format is the

visually inspected trace formats. They may be compressed,

encrypted, or checksumming.

n) Elapsed time overhead: There should have

accountability of the time taken by the trace tool that is

completely performance overhead.

o) Analysis tools: It is most important part of any

tracing package that the analysis tool should manipulate the

traced records and does analysis on that to produce the

important results on which decisions can be made.

p) Ease of installation &use: The installation of the

tracer package should be painless. The traced records should

be simple to use for further interpretations.

q) Traced event types: Various types of events like

I/O function calls, system calls and file system operations

might be traced.

r) Compression of traces: The traced records are

recorded in the compressed form on the disks.

The above mentioned requirements often conflicts with

each other, but these can be reduced by careful design and

implementations.

Table 4.1 Comparison of various traces according to some specified features

Sr.

No.
Features

Tracefs

(A Stackable File System)
//TRACE Replayfs VFS Interceptor

1 Traced event types File System Operations I/O system calls File System Operations File System Operations

2 Ease of installation & use Typical Easy Typical Easy

3 Trace data format Binary Human-readable Binary Binary

4 Analysis Tool No No No No

5 Anonymization No No No No

6 Compression of Traces Yes No No No

7
Parallel file system

compatibility
No Yes No No

8 Control of trace granularity Yes No No No

In conclusion, a file system benchmark should highlight

the high-level as well as low-level performance. For the

high-level view of performance measure, we may use at

least one macrobenchmark and for the low-level view of

performance measure, we may use many microbenchmarks.

We should consider the following benchmark properties:

i) The benchmarks may be CPU bound or I/O bound.

For the file systems they should be I/O bound.

ii) It should record accurate measurements for

timings.

iii) It should be scalable means exercise every

machine.

iv) It should be independent of hardware or software

speeds.

v) It should record multithreaded workloads which

provide more realistic views.

vi) The outputs generated by them should be well

understood.

vii) They should be portable.

V. PROFILING

It gives the overall view of the execution behavior of the

software under study. It measures about how much time or

the fraction of total time, the software is spending on

assured states. It also shows the subroutine-oriented

execution time for identifying the portions of the software

which are consuming largest amount of time fraction from

the total time. The system-level performance bottlenecks are

identified. So the developers can enhance the performance

of the system. It is a periodic sampling of a program’s

execution. It obtains average program performance for

cache misses, clocks per instruction etc. We can create

profiles with the help of two different techniques – program

counter (PC) sampling and block-based counting.

A very few or less number of developed tools are

available to profile file system performance. They are highly

dependent on the workloads. Disk operations include

mechanical latencies to position the head. The longest

Brijender Kahanwal et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 224-229

© 2010, IJARCS All Rights Reserved 228

operation is seeking, or moving the head from one track to

another. Therefore, file systems are designed to avoid seeks.

Unfortunately, modern hard drives expose little information

about the drive’s internal data placement. The OS generally

assumes that blocks with close logical block numbers are

also physically close to each other on the disk. Only the disk

drive itself can schedule the requests in an optimal way and

only the disk drive has statistical information about its

internal operations.

A. Program Counter (PC) based Profiles:

It relies on periodic interrupts during a program’s

execution to sample the PC. It is a statistical measurement

technique in which a subset of the members of a population

is being examined randomly. The profiled program does not

know when to be interrupted in random sampling. The

sampling is done for the long period, because it can

accurately reflect the program activity. This type of profiling

systems takes a snapshot of kernel structures to provide an

average profile.

B. Block-based Counting Profiles:

It is an alternative approach to produce an exact

execution profile by counting the number of times each

basic block is executed. The structure of the basic block can

be changed to generate a profile by inserting additional

instructions. These are used for counting the time for the

executed block. After the termination of the program

execution, a histogram is formed with the help of these

values for each block’s frequency of execution. This

histogram shows which portion of the program is executed

most.

The main difference between these two is that the block-

based profiles show the exact picture of the execution

frequencies. But the PC counter based profile is only a

statistical technique which estimates the frequencies of the

software. The block-based profiles provide a much more run

time overhead for the evaluation.

VI. ENERGY EFFICIENCY TECHNIQUES

Power efficiency has become a major concern for

computing systems. The performance of the file systems

may be measured in the terms of power consumption. The

fundamental goal of the energy efficient file system design

is saving energy without sacrificing performance. The

energy consumed by the hard disk drive is shown with the

help of the following equation:

 EHDD = ES + EH (1)

Where EHDD refers to the total energy consumed by the

hard disk drive, ES refers to the energy consumed by the

spinning of the platter, and EH refers to the energy consumed

by the head movement.

These are the necessary parts for a low power

consumption file systems [10] for the portable devices:

i) Fine-grained disk spindown

ii) Whole file pre-fetching cache

iii) 8-16 MB of low power, low read latency memory

If the system will miss any one of these three

requirements then there will be a tradeoff between power

and performance of it. Without fine-grained disk spindown,

file system power consumption will be high with good

performance. Without a whole file pre-fetching cache, the

choice is between coarse-grained disk spindown with high

power consumption and good performance or fine-grained

disk spindown with low power consumption and poor

performance. Without a low power memory, the cache may

consume same power as much by disk spinning. So they

collectively make low power file system.

The energy efficient file systems must follow these basic

guidelines: delayed updates, aggressive prefetching, and

urgency based scheduling, compression and device

awareness.

VII. INDIRECT & AD HOC BENCHMARKS

At many times, we have no direct performance metric

for the evaluation. So we develop or go for the indirect ways

to measure just like the Ad Hoc technique. We drive the

results indirectly. We have no direct measurement tool for

the energy consumption of file systems, and then we drive

the results taken by other methods. For example, suppose we

are not able to measure the desired quantity directly, but we

may be able to measure another related value directly. Then

we deduce the desired values from the other measured

values. These are the benchmarks which are written by the

authors for in house use. These are not widely used. These

are not tested as much as the widely used benchmarks, so

these are very prone to errors. One good thing about these is

that they are well understood by the researchers who have

developed them. The early use of these is helpful for the

optimization.

VIII. CONCLUSIONS AND FUTURE SCOPE

The goal of this work is to provide an insight into the

performance evaluation techniques which may be helpful for

the researchers and the users of file and storage systems.

The more stress is given on basically on the benchmarking

techniques especially replay traces. We have also provided

the guidelines for the researchers to develop a good tracing

tool which has the good features. After that we have also

compared three traces on the basis of features. Any one of

them has not provided the analysis tools for the gathered

information. The replay traces explains the complete

behavior of the application program or system software. But

that is a time consuming process to reach to any

conclusions.

We intend to develop a tracing file system which will

include all the basic functionalities and analysis tool with it.

IX. REFERENCES

[1]. A. Aranya, C. P. Wright, E. Zadok, “ Tracefs: A File
System to Trace Them All”, In proceedings of the third
USENIX Conference on File and Storage Technologies, PP
129-145, 2004.

[2]. M. Mesnier, M. Wachs, R. Sambasivan, J. Lopez, J.
Hendricks, G. Ganger, D. O’Hallaron, “ //TRACE Parallel
Trace Replay with Approximate Causal Events”, In
proceedings Fifth USENIX Conference on File and Storage
Technologies, pp 153-167, 2007.

[3]. Nikolai Joukov, TimothyWong, and Erez Zadok,
“Accurate and Efficient Replaying of File System Traces”,
In proceedings of the third USENIX Conference on File
and Storage Technologies, pp 336-350, FAST 2005.

[4]. Ariel N. Burton and Paul H. J. Kelly, “Workload
Characterization Using Lightweight System Call Tracing
and Re-execution”,

Brijender Kahanwal et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 224-229

© 2010, IJARCS All Rights Reserved 229

[5]. Songnian Zhou, Herve Da Costa, and Alan Jay Smith, “ A
File System Tracing Package for Berkeley UNIX”, in the
proceedings of USENIX summer conference at Portland,
June 12-14, 1985.

[6]. Brijender Kahanwal, T. P. Singh, and R. K. Tuteja. “A
Windows Based Java File Security System (JFSS).
International Journal of Computer Science & Technology,
Vol. 2, Issue 3, pages 25-29, September 2011.

[7]. Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles
P. Wright, “ A Nine Year Study of File System and Storage
Benchmarking”, ACM Transactions on Storage (TOS),
Vol. 4, Issue 2, May 2008.

[8]. Andy Konwinski, John Bent, James Nunez, and Meghan
Quist, “Towards an I/O Tracing Framework Taxonomy”,
In the Proceedings of Supercomputing’07 ACM
Conference, November 10-16, 2007.

[9]. Kester Li, “Towards A Low Power File System”,
Technical Report,
http://www.eecs.berkeley.edu/Pubs/TechRpts/1994/CSD-
94-814.pdf, 1994.

[10]. David J. Lilja, “Measuring Computer Performance – A
Practitioner’s Guide”, Cambridge University Press, 2004.

[11]. Athanasios E. Papathanasiou and Michael L. Scott,
“Increasing Disk Burstiness for Energy Efficiency”,
Technical Report, University of Rochester, Rochester, NY,
2002.

[12]. Yang Wang, Jiwu Shu, Wei Xue, Mao Xue, “VFS
Interceptor: Dynamically Tracing File System Operations
in real environments”, First International Workshop on
Storage and I/O Virtualization, Performance, Energy,
Evaluation and Dependability (SPEED2008). Held in
conjunction with HPCA'08.

[13]. Avishay Traeger, Erez Zadok, Ethan L. Miller, and Darrell
D. E. Long, “Findings from the First Annual Storage and
File Systems Benchmarking Workshop”, ;login: 33(5),
USENIX Association, October 2008, pages 113–117.

 [14] Brijender Kahanwal, T. P. Singh and R. K. Tuteja,

“Performance Evaluation of Java File Security System

(JFSS)”, Pelagia Research Library-Advances in Applied

Science Research, 2011, 2 (6): pages 254-260.

http://www.eecs.berkeley.edu/Pubs/TechRpts/1994/CSD-94-814.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/1994/CSD-94-814.pdf

