
Volume 2, No. 6, Nov-Dec 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 217

ISSN No. 0976-5697

Decision Making Models for Reengineering of Object Oriented Software Systems
Bakhshish Singh Gill*

Sr. Programmer

Computer Centre, G.N.D. University

Amritsar, India

bbssgill@yahoo.com

Dr. Ashok Kumar,

Professor

Dept. Computer Science and Applications

Kurukshetra University,

Kurukshetra

Abstract: Reengineering of object-oriented software is not much grown area. It is difficult for the software managers when to decide for

Reengineering software system. Software is delivered, it is corrected, and maintenance starts from the very beginning. Maintenance cost

increases with time as requirements, technology and environment changes. The accumulated effects of maintenance make the system complex

and quality of software decreases. As a result, maintenance cost increases rapidly. A situation comes when maintenance cost is too much high

and it is difficult to maintain the system at such a high cost. This is a good time for reengineering the software system. If we do not reengineer

the software system at this optimal time and go for high maintenance cost then complexity increases and system quality is worsen. It will be

difficult to reengineer the system or reengineering cost is not justified as compared to the cost of new system. Software managers have no

options except for having costly new software. Little efforts are done in this piece of work to escape this situation.

Models of Decisive Point (right time for reengineering) are presented and it will help the software managers to reengineer the software system at

most favorable time.

Keywords: Object, reengineering zone, maintenance zone, decisive point, fine object, faulty object

I. INTRODUCTION

The ability to accurately estimate the time and cost of

reengineering software is the key factor for successful of

reengineering project. And more important is the right time

decision for reengineering software system. Right time

decision affects not only the cost of reengineering but also

possibility for reengineering. If we cross this crucial point,

reengineering is costly.

We can come across at a stage when there is no option

other than purchasing new software. But when is the right

time? What is that crucial point? It is that stage when

software is best fit to reengineering. As we go past this

stage, reengineering will be costly. Accumulated affects of

maintenance makes the system complex and deteriorate the

system‟s architecture. Software system goes on aging with

time and maintenance cost increases. When maintenance

cost is too much high or difficult to maintain, it means

system is to retire. Then reengineering is solution at this

point. With reengineering software starts working and has

another life span. Reengineering should be done at right

time. If we overlook this occasion, reengineering will be

costly or not possible and then we have to throw the costly

legacy software underutilized.

But when is the right time? How it is to be determined?

These issues are addressed in this piece of work. This is

very useful for Software managers and they will be aware of

this point after going through this piece of work.

II. SIGNIFICANCE OF DECISIVE POINT

„Decisive point‟ is the new term coined in the field of

software reengineering. It is the best fit time for

reengineering software system. If we go past this point

(stage) reengineering will be costly and even difficult.

Software managers must focus on this point for

reengineering the software to increase the life span of

software. The best fit time for reengineering is called the

Decisive point. At this time reengineering cost will be

approximately 25% of the cost of new system. We can

otherwise say that if cost of reengineering is 25% of the cost

of new system then it is the most suitable time for

reengineering. According to research paper “Cost Model for

Reengineering an Object Oriented Software System‟ by the

same authors is 25% of the cost of the new system.

Software maintenance starts after delivery of the

software to correct faults, to improve performance and other

attributes of the software. Maintenance plays an important

role in the life cycle of a software system. Maintenance is

the last stage of the software life cycle. After the product has

been released, the maintenance phase keeps the software up

to date with environment changes and user requirements

changes. With recurring maintenance, complexity increases

and software quality decreases. As the software is

maintained, errors are introduced. Many studies have shown

that each time an attempt is made to decrease the failure rate

of a system, the failure rate got worse. On average, more

than one error is introduced for every patch up error. In this

way maintenance cost goes on increasing with time.

Software maintenance can account for 60 to 80 percent of

the total life cycle of software product. More than 90 % of

the total cost of software goes to maintenance and evolution

of the software product [1].

After a certain period, a stage comes when it is difficult

to maintain the system or maintenance cost is too much

high. Maintenance problems are a driving force behind re-

engineering. Reengineering is the only way to avoid new

development cost. But what is the right time for

reengineering software? If software managers do not know

the right time, how can they go for reengineering?

III. MODELS FOR DECISIVE POINT

I present the following three models

A. Thoroughfare decisive point:

Bakhshish Singh Gill et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 217-220

© 2010, IJARCS All Rights Reserved 218

After the software product is delivered, the maintenance

phase keeps the software up to date with environment

changes and changing user requirements. Maintenance starts

at the beginning (when the software is delivered) at the point

A in figure 1. As system ages, maintenance cost goes on

increasing. Maintenance cost is maximum at the point D in

the figure 1. In this model, life span of software is divided

into two zones.

a. Maintenance zone.

b. Reengineering zone.

Software system is candidate for maintenance in the first

zone from the point A to D. Maintenance cost at the first end

(point A) is lowest and highest at point D with red color

which is the end of maintenance zone. Beyond this point

maintenance cost is not justified. We can maintain the

software in the reengineering zone but with unjustified cost.

Reengineering cost is lowest at the point D and highest at

the point B (end point of the Reengineering Zone). After this

point, reengineering can be with unjustified cost.

Figure. 1

As in figure 1 above, red point D in the middle is vital

point, best fit time for reengineering; we call it Decisive

point, a new term coined and added to the field of

reengineering. In the maintenance zone, reengineering is

not feasible because maintenance cost is ordinary.

Reengineering cost and maintenance cost are equal at point

D. After this point on the line maintenance cost increases

rapidly and reengineering cost increases slowly as it is

reengineering zone. Managers must reengineer the system at

the red point to have another life span of the software with

low (Normal) maintenance cost. If software managers do not

reengineer the system and maintenance zone goes

overlapping the reengineering zone with high maintenance

cost, they will struck at a situation when maintenance is not

possible and reengineering cost is also not rational and there

is no alternative except to retire the software system.

Reengineering cost will be optimum at the red point

therefore software managers must stick to this point for

financial benefits on the software.

B. Decisive Point based on:

Maintenance/reengineering cost

Following figure Fig. 2 depicts the graph of maintenance

cost and reengineering cost of Software system.

Reengineering cost starts from the point D and maintenance

cost starts from the point O (Origin). Reengineering cost and

maintenance cost at point D are equal. If both the costs are

equal then we must go for reengineer. Reengineering will

make the system new on the new platform with new design.

After this maintenance cost increases with high rate and

reengineering of the system is needed to bring down the

maintenance cost. At this point we think of reengineering or

retiring the software. If we retire the system then we have to

bear the cost of new software. Cost of new software is much

high than the cost of reengineering.

Figure. 2

If we do not reengineering the software system at point

D maintenance cost will increase sharply (as shown in the

figure 2), it will be difficult to maintain the system at such a

high cost. Maintenance after the point D increases the

complexity of the system and decreases the quality of

software where as reengineering improves the quality of the

software, controls the maintenance cost and increases the

life span of the software system.

Why maintenance cost is high beyond red point? The

age of the software is near about 7 years for the structured

software systems where as the age for object oriented

software system is 10 years. And at the red point the age of

the software is 10 years and software is to retire or

reengineer. The software system is old at this point and high

maintenance cost is required. It is difficult to maintain the

system with such a high Maintenance cost. At this point

system should be reengineered or retired. If we reengineer

the software at this point, Reengineering cost will be lowest

(optimal). The point D in the fig. 2 is significant, the cost of

Reengineering and Maintenance are equal so we must go for

reengineering. Reengineered Software will be new one

with another life span and Maintenance cost will be

ordinary.

C. Decisive Point based on faulty objects:

This is object based model for decision making about

reengineering of the software system. It is to be determined

on the basis of the faulty objects. In this work, object is

seen at a higher level of abstraction and is taken as

conceptual module that can be plugged in and plugged out

from the software system. Reengineering identifies reusable

components (objects) and analyzes the changes that would

be needed to regenerate them for reuse within new software

architecture. The use of a repeatable, clearly defined and

well understood software objects, has make reengineering

more effective and reduced the cost of reengineering.

Decisive Point will also be determined on the basis of

objects.

a. What is an Object?

I thought of an object in the context of object-oriented

technology as independent component that can be pulled out

and put in the software system. If we pull out an object from

a software system, it is working system without much

affecting the whole system except the job done by that

particular object. As in the other physical systems, a

component is plugged out, repaired and plugged in the

system again. Additional screws, nuts and bolts are required

for this purpose. We must develop a universal language of

Bakhshish Singh Gill et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011,

© 2010, IJARCS All Rights Reserved 219

such type. We must have a set of additional instructions as

nuts and bolts to plug-out and plug-in the objects in the

system. An object with data and instructions is depicted in

the following figure 3.

Figure. 3 An Object

Data and operations are bundled and kept private from

rest of the software as in Fig. 3

The object oriented approach attempts to manage the

complexity inherent in the real world problems by

abstracting out knowledge and encapsulating it [2]. Object is

an instance of a class and has an identity and stores attribute

values [3].

Here in this piece of work, Object is seen at a higher

level of abstraction and is taken as independent module or

unit that can be plugged in or plugged out of the software

system. All objects of the candidate software system are

untied (Reverse engineering). Faulty objects are indentified

and modified. Then redesigning of the structure

(transformation of the architecture) of the system

according to new modern design is done. Then according

to new design objects are integrated (Forward

Engineering).

b. Object-Oriented software system:

Following is the example of object oriented software

system with eight objects like real world objects. Circles are

objects and lines represent communications to send

messages between objects. The object in the system is

characterized with three properties Identity, State and

Behavior. Identity distinguishes it from others, state is the

data stored in it and behavior describes the methods by

which the objects can be used.

Figure. 4 8 objects software system

Abstraction is good tool for reengineering object

oriented design as it helps in reducing complexity. Large

systems are complex having more objects as each additional

object increases the complexity of the system [4].

Object-oriented paradigm has changed the scene for

reengineering. In object oriented paradigm data and

procedures are combined. In object oriented approach the

role of UML is supreme. It was designed to provide a

standard for software modeling languages. It is a graphical

notation for object-oriented analysis and design. UML

provides a framework for describing a set of models that

capture the functional and structural semantics of any

complex information system. An object is small piece of

source code that can be reengineered independently. Object-

oriented software system is all about objects. Object-

Oriented software system is being more reusable and hence

more suitable for reengineering. Reengineering of software

system is accomplished by reengineering the faulty objects

in the system. Software system is untied, objects are

identified for reengineering. Identified objects for

reengineering are called faulty objects. Faulty objects are

reengineered independently and made Fine objects, software

architecture is changed, and all the objects (now all objects

are fine) are integrated according to the new architecture.

c. Reengineering Decision Model:

Let our candidate system be an object oriented system

with N fine objects. Fine object is an object which conforms

to our requirements and functions well in the system. As

software ages some objects becomes faulty. Faulty object is

an object which does not conform to our requirements and

does not function well with in the system. We go on

maintaining the faulty objects to maintain the software

system. With maintenance of the faulty objects again and

again, architecture of the software deteriorates. Maintenance

cost also goes on increasing. We reach at a point where

reengineering of the system is needed. These faulty objects

can be reengineered and can be plugged again to get the

system reengineered. Let us suppose there are N objects in

system which is our candidate system. Let it be O1, O2,

O3,……………..ON. As the system ages the faulty objects

goes on increasing. With maintenance the system gets

evolved, correction of one error gives birth to another. Go

on maintaining the software till half of the objects are not

faulty. When half of the objects (N/2) are faulty in your

application go for reengineering the software. The

reengineering cost of the candidate system with N/2 faulty

objects will be one forth (25%) of the new development cost

[5]. This is the optimal cost according to the research paper

„Cost of Reengineering (Object-Oriented Software Systems)

versus Developing new One- A Comparison‟ by the same

author. Hence you reach the Decisive point when N/2

objects are faulty in the software with N objects.

Decisive point (the right time) is when N/2 or more

objects are faulty (System with N objects). When N/2

objects become faulty; Reengineering Zone starts. This is

vital time in the software life cycle for reengineering. If the

software managers pay no heed to this time they have to

retire the legacy software and go for new one.

Reengineering will not be feasible after this crucial time. It

will be financial loss to the organization as the recourses are

underutilized.

Software managers should not ignore Decisive Point

otherwise they have to retire the underutilized software

system.

IV. RESULTS AND CONCLUSIONS

In this piece of work three decision making models are

presented as under

a. Thoroughfare decisive point

b. Decisive Point based on Maint. / Reeng. Cost

c. Decisive Point based on objects

These models are valuable to software managers for

reengineering the software systems at the right time. The

right time is red point on the life span of software.

Reengineering is not feasible before and after the red point.

These models will help to reengineering the software and

Bakhshish Singh Gill et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 217-220

© 2010, IJARCS All Rights Reserved 220

escape the burden of purchasing costly new software.

Software investment expenditure curve will fall in the

organizations. There will be full utilization of the software

and software backlog will be decreased.

In this work three new terms „Decisive point‟,

„Reengineering Zone‟ and „Maintenance Zone‟ are coined

and added to reengineering subject matter.

V. FUTURE WORK TO BE DONE

These given Models are new in the field of

Reengineering. The future work is to test these models for

suitability to fit on the basis of analysis of current and past

data. Near about 50-80 projects can be judged to fit these

models. These models are to be tested and accepted or

improved or rejected. Once fit and fine these models will

help in reengineering the legacy software with optimal cost.

 This work will be beneficial to the both communities, the

software managers and the software engineers. Software

managers will save the software expenditure and engineers

will get the much work on software reengineering.

VI. REFERENCES
[1]. Erlikh, L., “Leveraging legacy system dollars for E-

business”. (IEEE) IT Pro, May/June 2000, PP. 17-23. Down

loaded on 24-02-2011 from the site:

http://users.jyu.fi/~koskinen/smcosts.htm

[2]. Brock R.W.,Wilkerson B., Wiener L. , “Designing Object-

Oriented Software”, 2007, Prentice-Hall of India, New

Delhi pp. 5

[3]. Bernd Bruegge, Dutoit Allen H. , “Object-Oriented

Software Engineering Using UML, Patterns, and Java”,

2004, Pearson Education (Singapore), pp.724

[4]. Halladay S., Wiebel M., “Object Oriented Software

Engineering”, BPB Publications, New Delhi. pp. 35

[5]. Bakhshish Singh Gill, „Cost of Reengineering (Object-

Oriented Software Systems) versus Developing new One- A

Comparison‟ Research paper, Serials Publication, New

Delhi, 1-04-2011

