
Volume 2, No. 6, Nov-Dec 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 88

ISSN No. 0976-5697

Deducing and Mapping the Class Path of JAR File

PM. Shanthi*
Associate Professor

Department of MCA

K.S.Rangasamy College of Technology

Tiruchengode ,India

shanthimuthumani@yahoomail.com

Dr. K. Duraiswamy
Professor

Department of MCA

K.S.Rangasamy College of Technology

Tiruchengode, India
drkduraiswamy@yahoo.co.in

Abstract: Now-a-days, to reduce the effort of human and to improve the efficiency of the process, everything in this world is being
computerized. But also the user may face some problems while executing the program. Program is software that contains a set of instructions to
perform a task. In order to make the process of developing program, an easier one, some developers develop software and implement them as a
package.
To access these packages much easier, some of them are released as an Open Source Software. An Open Source Software is a software that is
downloaded with free of cost. In this Open Source Software, there exist many packages, classes and methods. While using this Open Source
Software, to develop an application, these packages are well-connected with that application. It is necessary to generate a class file to start
executing the application. But the user doesn’t know the classes or its properties to compile them.
To overcome this situation, in this paper, we propose a method to start compiling the classes in the package automatically. Also if the path is not
set correctly, it is also done systematically through the methodology proposed in this paper.

Keywords: Classes, Compilation, Computerized, Developers, Download, Efficiency, Instructions, Methods, Open Source Software, Package,
Program, Systematically.

I. INTRODUCTION

Computer and Internet are the two essential things in this

world, to lead a life easier. Almost all the things in this

world are being computerized, to make it fast and efficient.

To do this, everything is organized as a program. Program

consists of instructions which instruct the system about the

process to be carried out. To develop these programs, some

of these instructions may be repeated for a certain number of

times, such as for either input or output. In this case, these

instructions are grouped to form packages. These packages

can have classes, methods, variables and so on.

There exist some pre-defined packages along with the

software, in which the program is to be developed. Since

these packages are in-built with the software, we can able to

use it while doing the program in that software. Some

software is released as an Open Source Software to make

more number of users accessing the software.

Open Source Software is the software that can be some

specific features and it can be downloaded with free of cost.

These open source software occupies less memory space,

since it can be downloaded and used by all kinds of users

and to enable more number of users to use it.

This Open Source Software may also contain pre-

defined packages, JAR files and so on to make the program

to be developed in an efficient manner. While choosing the

open source software, it may be possible to use all the

packages in the software. But the user may not know about

the number of classes in the packages and also about the

number of packages or JAR files.

To make this possible, as defined in the paper [1], an

automatic search engine is implemented to count the number

of packages in the software, number of classes in the

packages and so on. Also, as defined in the paper [2], an

algorithm is proposed to compile the packages automatically

and to search for the error occurrence. From the error, the

error rate is calculated automatically. And from the error

rate, the value of the software is concluded.

In some situation, there may be the necessary to use the

JAR files in the software. JAR files are the files that are

defined as the Java ARchive Files, which are the already

compiled file. The JAR File is developed by the

programmer and it is to be converted into a compiled file.

This compiled file is then become available for use. This

compiled file is of error-free. To use this compiled file, the

class path of the JAR is given in a proper manner. A Proper

setup of the class path makes the JAR file and its properties

to be implemented in the program. The JAR files can also

be implemented and use like a package.

If the class path setup becomes wrong, the JAR file does

not able to map with the program and so the program does

not able to retrieve the functionality of the JAR files. In that

case, it is necessary to correct the class path setup. But this

JAR file is a pre-defined one, the user cannot able to

identify the path of the file and so they might not able to

correct the wrong path.

In that situation, they might be in need of some help. To

help the user in this situation, this paper proposes an

efficient methodology, to detect and correct the path

automatically. This is due to the user cannot know about the

source file for the JAR programs. So the search engine

automatically searches for the class files in the package, and

then it set up the class path to proper implementation of the

methodology into the program.

The summary of the process that has to be automated to

make the process efficient are as follows:

a. Open the software and analyze it.

b. Identify the number of packages, classes and

methods in that software.

c. Identify the name of these packages, classes and

methods.

d. Identify the JAR files in the software.

e. Find the class file for the JAR.

PM. Shanthi et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 88-92

© 2010, IJARCS All Rights Reserved 89

f. Set up the path for the JAR file.
Thus in this paper, an efficient methodology is to be

implemented in our proposed work to make all the above
mentioned process automated. Thus this paper solves all the
problems faced by the users while using the open source
software.

The organization of the paper is as follows: This paper
contains the related papers that are used to develop this
research work in section II. In section III, the proposed
methodology is discussed with proper algorithm and
flowchart. In section IV, the experimental setup is described
which will explain about the real time implementation of the
methodology proposed in this paper.

II. RELATED WORK

To implement the methodology in our proposed work,
the papers we referred are given below:

As computers become an integral part of today’s society,
making them dependable becomes increasingly important.
Field studies [3] and everyday experience make it clear that
the dominant cause of failures today is software faults, both
in the application and system layers. Reducing the number
of software faults and surviving the ones that remain is
therefore an important challenge for the fault-tolerance
community.

Open source programs share a number of important
characteristics. First, they are widely used and hence form a
relevant base of software to study. For example, the Apache
web server is used by 54% of all web sites [4]. Second, their
development process is open.

In particular, we wish to test the hypothesis that generic
(i.e. not application-specific) recovery techniques, such as
process pairs, can survive a majority of application faults.
Our methodology differs from that of prior studies [5]. We
reason from bug reports and source code as to whether a
purely generic recovery system would have recovered from
application faults, while past studies examine the field
behavior of implemented, mostly generic recovery systems.

Faults may be classified into two categories: operational
and design [3]. Operational faults are caused by conditions
such as wear-out and can be handled with simple
replication. Faults caused by design bugs are much more
difficult to handle, because simply replicating a buggy
design often results in dependent failures in which all the
replicas fail. Software faults are difficult to survive because
they are all caused by design bugs.

Nair et al. [6] described a case study of combinatorial
testing for a small subsystem of a screen-based
administrative database. The system was designed to present
users with input screens, accept data, then process it and
store it in a database. Size was not given, but similar
systems normally range from a few hundred to a few
thousand lines of code. This study was extremely limited in
that only one screen of a subsystem with two known faults
was involved, but pair wise testing was sufficient to detect
both faults.

Wallace and Kuhn [7] reviewed 15 years of medical
device recall data gathered by the US Food and Drug
Administration (FDA) to characterize the types of faults that
occur in this application domain. These applications include
any devices under FDA authority, but are primarily small to
medium sized embedded systems, and would range from
roughly 104 to 105 lines of code. All of the applications in
the database were fielded systems that had been recalled
because of reported defects. A limitation of this study,
however, was that only 109 of the 342 recalls of software-

controlled devices contained enough information to
determine the number of conditions required to replicate a
given failure. Of these 109 cases, 97 percent of the reported
flaws could be detected by testing all pairs of parameter
settings, and only three of the recalls had an FTFI number
greater than 2. (The number of failures triggered by a single
condition was not given in [7], but we reviewed the data.)
The most complex of these failures required four conditions.
Kuhn and Reilly [8] analyzed reports in bug tracking
databases for open source browser and server software, the
Mozilla web browser and Apache server. Both were early
releases that were undergoing incremental development.
This study found that more than 70 percent of documented
failures were triggered by only one or two conditions, and
that no failure had an FTFI number greater than 6. Difficulty
in interpreting some of the failure reports led to conservative
assumptions regarding failure causes.

Thus, some of the failures with high FTFI numbers may
actually have been less than 6. Three other studies provided
some limited information regarding fault interactions. Dalal
et al. [9] demonstrated the effectiveness of pair wise testing
in four case studies but did not investigate higher-degree
interactions. Smith et al. [10] investigated pair wise testing
of the Remote Agent Experiment (RAX) software on
NASA’s Deep Space 1 mission. The RAX is an expert
system that generates plans to carry out spacecraft
operations without human intervention. This study found
that testing all pairs of input values detected over 80 percent
of the bugs classified as either ―correctness‖ or
―convergence‖ flaws in onboard planning software (i.e.,
successfully finding a feasible path), but only about half of
engine and interface bugs [10]. The authors did not
investigate higher-degree combinations required to trigger a
failure. Pan [11] found that testing all values triggered more
than 80 percent of detected errors in a selection of POSIX
operating system function calls from 15 fielded commercial
systems. Higher-degree combinations were not reported.

Network layer transmission errors—which have been
considered highly improbable for moderate-sized clusters—
cannot be ignored when dealing with large scale
computations [12]. Additionally, the probability that a
parallel application will encounter a process failure during
its run increases with the number of processors that it uses.
If the application is to survive a process failure without
having to restart from the beginning, it either must regularly
write checkpoint files (and restart the application from the
last consistent checkpoint [13,14]) or the application itself
must be able to adaptively handle process failures during
runtime [15]. All of these issues are current, relevant
research topics. Indeed, some have been addressed at
various levels by different projects. However, no MPI
implementation is currently capable of addressing all of
them comprehensively. This directly implies that a new MPI
implementation is necessary: one that is capable of
providing a framework to address important issues in
emerging networks and architectures. Building upon prior
research, and influenced by experience gained from the code
bases of the LAM/MPI [16], LA-MPI [12], and FT-MPI
[15] projects, Open MPI is an all-new, production-quality
MPI-2 implementation.

In the paper [15] they describe a framework called
Columbus [17] with which we are able to calculate the
object oriented metrics validated in [18], [19], [20] and [21]
for fault-proneness detection (similar results were presented
also in [22] and [23]) from the source code of the well-
known open source web and e-mail suite called Mozilla [24,

PM. Shanthi et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 88-92

© 2010, IJARCS All Rights Reserved 90

25]. We then compare our results with those presented in
[18].

Based upon these surveys, this paper is proposed with
much better simulation model.

III. METHODOLOGY

A. Proposed Method:

The aim of the proposed work is to propose a
methodology to compile the package automatically and to
set up the proper class path for implementing the methods in
JAR files.

The summary of the proposed work is as follows: First,
the user selects the software to develop their program. Upon
selecting the software, the methodology proposed in this
paper has to compile the software to identify the errors.
From the deduced errors, the error rate is to be found out.

After calculating the error rate, our work has to go
through the errors and identify the reporting statement about
the error. The error may occur due to the pre-defined
packages or due to the JAR files. If the pre-defined
packages contain error, it may be calculated as error rate. If
the JAR file connected with the program contains error, it
may be due to wrong mapping of the class file of JAR or
due to not set up the path properly. If this is the case, then
the methodology of this paper proceeds as follows:

The user might not able to identify the class files in the
JAR, since it is already a compiled program. The user cant
able to know about the properties and execution of the JAR
files. In this paper, the automatic search engine has to
search for the class files in the JAR and the class path is set
up properly. This automatic process helps the user to run
the software without any delay.

And the user may be free from knowing about the JAR
files and the class path set up.

The process of locating the JAR files is carried out as
follows:

a. Identify the Errors.
b. If the error is due to incorrect mapping of the JAR

file, then the JAR file is analyzed to identify the class
path.

c. Detect the class path and map it with the program.
d. Execute it after setting up of class path. Thus the

JAR file is implemented correctly.

B. Algorithm:

The proposed method proposes an algorithm to make the
process of compiling and mapping the JAR files
automatically with the program. The algorithm is given
below:
Start
Compile the program automatically
Detect the errors and calculate the error rate.
Identify the errors and categorize it (Either due to package
error or due to JAR file mapping error)
If error due to package error
 Add it with the error rate
Else if error due to the mapping of JAR file
 Analyze the JAR file
 Find the Class path
 Set up the correct class path
 Execute the program
End if
Stop

IV. EXPERIMENTAL RESULTS

The proposed work has to undergone for an experiment
to test for its performance. The experimental setup and the
result are discussed in this section.

The experimental setup is undertaken by taking a set of
programmers. The programmers are instructed to develop a
program by using the open source software. And their
program must inherit the properties and classes of the
packages in the software. Also the program must inherit the
JAR files in its development.

Upon developing the program, the program is compiled
by the automation search engine proposed in the paper [2]
and deduces the compilation errors. From the compilation
results, the error rate is deduced and then the errors are
categorized. From the classification, if it is found that the
error has been occurred due to the class path of the JAR file,
the algorithm is used to detect the correct class path. And
the execution is made automatically upon setting up of the
class path.

Thus the proposed method is implemented with proper
experimental setup and the mapping is done automatically.

V. COMPARISON CHART

To explain the efficiency of our work, we took some

open source software for our analysis. The performance of

the open source software before the implementation of our

algorithm and the performance of that software after the

implementation of our algorithm is shown below: Also the

comparison chart with suitable data is given.

Table -1: Execution Rate (Before Implementation)

Software Execution Rate (in %)

ActiveMQ 50

Apache 78

BeanShell 95

BlueJ 25

IBM 24

Eclipse 68

EJB Benchmark 87

Hibernate 90

Jasper 91

BEFORE IMPLEMENTATION

0

10

20

30

40

50

60

70

80

90

100

A
ct
iv
eM

Q

A
pa

ch
e

B
ea

nS
he

ll

B
lu
eJ IB

M

E
cl
ip
se

E
JB

 B
en

ch
m
ar

k

H
ib
er

na
te

Ja
sp

er

Software

E
x
e
c
u

ti
o

n
 R

a
te

(%
)

Execution

Rate(in %)

Chart -1: Execution Rate (Before Implementation)

PM. Shanthi et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 88-92

© 2010, IJARCS All Rights Reserved 91

Table -2: Execution Rate (After Implementation)

Software Execution Rate (in %)

ActiveMQ 80

Apache 82

BeanShell 84

BlueJ 75

IBM 75

Eclipse 80

EJB Benchmark 90

Hibernate 95

Jasper 95

AFTER IMPLEMENTATION

0
10
20
30
40
50
60
70
80
90

100

Acti
ve

M
Q

Apa
ch

e

Bea
nS

he
ll

Blu
eJ

IB
M

Ec
lip

se

EJ
B B

en
ch

m
ar

k

Hib
er

na
te

Ja
sp

er

Software

E
xe

cu
ti

o
n

 R
a

te
 (

in
 %

)

Execution
Rate(in %)

Chart -2: Execution Rate (After Implementation)

Thus the comparison is made as shown in the table-1 and

table-2 and the chart is shown in the chart-1 and chart-2.

VI. CONCLUSION

The aim of the paper is to develop an automation search
engine to deduce the error occur in the JAR file mapping
and correct the mapping automatically by detecting the
correct path of the JAR file.

This paper proposes an efficient methodology to achieve
the aim of the paper. This is useful in the development of
the program with the use of JAR files. JAR files are the
files that are error-free. If the proper implementation of the
class path to the JAR files, the program has to be developed
successfully.

Thus this paper contains efficient methodology to reduce
the error occurrence due to the JAR file mapping.

VII. REFERENCES

[1] ―An Empirical Validation of Software Quality Metric Suites
on Open Source Software for Fault-Proneness Prediction in
Object Oriented Systems‖, 2011 publications.

[2] ―An Adaptive Fault Tolerance in Open Source Software‖

[3] Jim Gray and Daniel P. Siewiorek. High-Availability,
Computer Systems. IEEE Computer, 24(9):39–48, September
1991.

[4] The Netcraft Web Server Survey. At http://
www.netcraft.com/survey/

[5] I. Lee and R. Iyer. Faults, Symptoms, and Software Fault
Tolerance in the Tandem GUARD IAN Operating System. In
International Symposium on Fault-Tolerant Computing
(FTCS), pages 20–29, 1993.

[6] V.N. Nair, D.A. James, W.K. Erlich, and J. Zevallos, ―A
Statistical Assessment of Some Software Testing Strategies
and Application of Experimental Design Techniques,‖
Statistica Sinica, vol. 8, no. 1, pp. 165- 184, 1998.

[7] D.R. Wallace and D.R. Kuhn, ―Failure Modes in Medical
Device Software: An Analysis of 15 Years of Recall Data,‖
Int’l J. Reliability, Quality and Safety Eng., vol. 8, no. 4,
2001.

[8] D.R. Kuhn and M.J. Reilly, ―An Investigation of the
Applicability of Design of Experiments to Software Testing,‖
Proc. 27th NASA/IEEE Software Eng. Workshop, Dec. 2002.

[9] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott,
G.C. Patton, and B.M. Horowitz, ―Model-Based Testing in
Practice,‖ Proc. Int’l Conf. Software Eng., 1999.

[10] B. Smith, M.S. Feather, and N. Muscettola, ―Challenges and
Methods in Testing the Remote Agent Planner,‖ Proc. Fifth
Int’l Conf. Artificial Intelligence Planning Systems, 2000.

[11] J. Pan, ―The Dimensionality of Failures—A Fault Model for
Characterizing Software Robustness,‖ Proc. Int’l Symp. Fault-
Tolerant Computing, June 1999.

[12] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G.
Minnich, C. E. Rasmussen, L. D. Risinger, and M. W.
Sukalksi. A network-failure-tolerant messagepassing system
for terascale clusters. International Journal of Parallel
Programming, 31(4):285–303, August 2003.

[13] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C.
Germain, T. Herault, P. Lemarinier, O. Lodygensky, F.
Magniette, V. Neri, and A. Selikhov. MPICH-V: Toward a
scalable fault tolerant MPI for volatile nodes. In SC’2002
Conference CD, Baltimore, MD, 2002. IEEE/ACM
SIGARCH. pap298,LRI.

[14] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Andrew
Lumsdaine, Jason Duell, Paul Hargrove, and Eric Roman. The
LAM/MPI checkpoint/restart framework: System-initiated
checkpointing. International Journal of High Performance
Computing Applications, To appear, 2004.

[15] G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, A.
Bukovski, and J. J. Dongarra. Fault tolerant communication
library and applications for high perofrmance. In Los Alamos
Computer Science Institute Symposium, Santa Fee, NM,
October 27-29 2003.

[16] Jeffrey M. Squyres and Andrew Lumsdaine. A Component
Architecture for LAM/MPI. In Proceedings, 10th European
PVM/MPI Users’ Group Meeting, number 2840 in Lecture
Notes in Computer Science, Venice, Italy, Sept. 2003.
Springer.

[17] R. Ferenc, A´ . Besze´des, M. Tarkiainen, and T. Gyimo´thy.
Columbus – Reverse Engineering Tool and Schema for C++.
In Proceedings of the 18th International Conference on
Software Maintenance (ICSM 2002), pages 172–181. IEEE
Computer Society, Oct. 2002.

[18] V. R. Basili, L. C. Briand, and W. L. Melo. A Validation of
Object-Oriented Design Metrics as Quality Indicators. In
IEEE Transactions on Software Engineering, volume 22,
pages 751–761, Oct. 1996.

[19] L. C. Briand, W. L. Melo, and J. W¨ust. Assessing the
Applicability of Fault-Proneness Models Across Object-
Oriented Software Projects. In IEEE Transactions on Software
Engineering, volume 28, pages 706–720, 2002.

[20] L. C. Briand and J.W¨ust. Empirical Studies of Quality
Models in Object-Oriented Systems. In Advances in
Computers, volume 56, Sept. 2002.

[21] L. C. Briand, J. W¨ust, J. W. Daly, and D. V. Porter.
Exploring the Relationships between Design Measures and
Software Quality in Object-Oriented Systems. In The Journal
of Systems and Software, volume 51, pages 245–273, 2000.

[22] F. Fioravanti and P. Nesi. A Study on Fault-Proneness
Detection of Object-Oriented Systems. In Fifth European

http://www.netcraft.com/survey/

PM. Shanthi et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 88-92

© 2010, IJARCS All Rights Reserved 92

Conference on Software Maintenance and Reengineering
(CSMR 2001), pages 121–130, 2001.

[23] P. Yu, T. Syst¨a, and H. M¨uller. Predicting Fault-Proneness
using OO Metrics: An Industrial Case Study. In Sixth
European Conference on Software Maintenance and
Reengineering (CSMR 2002), pages 99–107, 2002.

[24] The Mozilla Homepage. http://www.mozilla.org.

[25] C. R. Reis and R. P. de Mattos Fortes. An Overview of the
Software Engineering Process and Tools in the Mozilla
Project. In Proceedings of the Workshop on Open Source
Software Development, pages 155–175, Feb. 2002.

