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Abstract: Computed tomography image enhancement is the processing of medical images to improve their appearance to human viewers, in 

terms of better contrast and visibility of features of interest, or to enhance their performance in subsequent computer-aided analysis and 

diagnosis. In this paper, various frequency domain filtering techniques are applied on the computed tomographic image for improve their 

performance. These techniques are mathematical techniques that are aimed at realizing improvement in the quality of a given image. The result 

is another image that demonstrates certain features in a manner that is better in some sense as compared to their appearance in the original 

image. Basic aim of paper is to improve the image quality of the CT image. Various image quality measures have been applied to find the 

performance of the image enhancement.     
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I. INTRODUCTION 

Medical imaging [1, 6, 7] deals with the interaction of all 

forms of radiation with tissue and the design of technical 

systems to extract clinically relevant information, which is 

then represented in image format. Medical images range 

from the simplest such as a chest X-ray to sophisticated 

images displaying temporal phenomena such as the 

functional magnetic resonance imaging (fMRI) [1, 6]. 

Medical imaging systems detect different physical 

signals arising from a patient and produce images. An 

imaging modality is an imaging system which uses a 

particular technique. Some of these modalities use ionizing 

radiation, radiation with sufficient energy to ionize atoms 

and molecules within the body and others use non-ionizing 

radiation. Ionizing radiation in medical imaging comprises 

x-rays and γ-rays, both of which need to be used prudently 

to avoid causing serious damage to the body and to its 

genetic material. Non-ionizing radiation, on the other hand, 

does not have the potential to damage the body directly and 

the risks associated with its use are considered to be very 

low. Examples of such radiation are ultrasound, i.e. high-

frequency sound, and radio frequency waves.  

Medical imaging involves a good understanding of 

imaging medium and object, physics of imaging, 

instrumentation, and often computerized reconstruction and 

visual display methods. Though there are a number of 

medical imaging modalities available today involving 

ionized radiation, nuclear medicine, magnetic resonance, 

ultrasound, and optical methods, each modality offers a 

characteristic response to structural or metabolic parameters 

of tissues and organs of human body. 

Medical imaging is a process of collecting information 

about a specific physiological structure (an organ or tissue) 

using a predefined characteristic property that is displayed 

in the form of an image. For example, in X-ray radiography, 

mammography and computed tomography (CT), tissue 

density is the characteristic property that is displayed in 

images to show anatomical structures. The information 

about tissue density of anatomical structures is obtained by 

measuring attenuation to X-ray energy when it is transmitted 

through the body. On the other hand, a nuclear medicine 

positron emission tomography (PET) [1, 6, 7] image may 

show glucose metabolism information in the tissue or organ. 

A PET image is obtained by measuring gamma-ray emission 

from the body when a radioactive pharmaceutical material, 

such as flurodeoxyglucose (FDG) [1, 6] is injected in the 

body. FDG metabolizes with the tissue through blood 

circulation eventually making it a source of emission of 

gamma-ray photons. Thus, medical images may provide 

anatomical, metabolic or functional information related to 

an organ or tissue.  

The basic process of image formation requires an energy 

source to obtain information about the object that is 

displayed in the form of an image. Some form of radiation 

such as optical light, X-ray, gamma-ray, RF or acoustic 

waves, interacts with the object tissue or organ to provide 

information about its characteristic property. The energy 

source can be external (X-ray radiography, mammography, 

CT, ultrasound), internal [nuclear medicine: single photon 

emission computed tomography (SPECT); positron emission 

tomography (PET)], or a combination of both internal and 

external such as in magnetic resonance imaging where 

proton nuclei that are available in the tissue in the body 

provides electromagnetic RF energy based signals in the 

presence of an external magnetic field and a resonating RF 

energy source. As described above, image formation 

requires an energy source, a mechanism of interaction of 

energy with the object, an instrumentation to collect the data 

with the measurement of energy after the interaction, and a 

method of reconstructing images of information about the 

characteristic property of the object from the collected data. 

The following imaging modalities are commonly used for 

medical applications today. 

Tomographic imaging, of which x-ray computed 

tomography (CT) is an example, is a technique that was 

developed for producing transverse images, by scanning a 
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slice of tissue from multiple directions using a narrow fan-

shaped beam. The data from each direction comprise a one-

dimensional projection of the object, and a transverse image 

can be retrospectively reconstructed from multiple 

projections. The body can be compared to a loaf of sliced 

bread, and a transverse image can be produced as if it were a 

selected slice viewed face-on . The slice thickness can be 

reduced to 1mm or so, so that very little super positioning 

occurs. Indeed, if many transverse images are obtained, the 

data can be presented as an image in any plane, or even as a 

three-dimensional composite image. 

CT imaging is the primary digital technique for imaging 

the chest, lungs, abdomen and bones due to its ability to 

combine fast data acquisition and high resolution, and is 

ideally suited to three-dimensional reconstruction. It is 

particularly useful in the detection of pulmonary (i.e. lung) 

disease, because the lungs are difficult to image using 

ultrasound and MRI. It is often used to diagnose diffuse 

diseases of the lung such as emphysema, which involves a 

sticky build-up of mucus in the lungs, and cystic fibrosis, 

which leads to irreversible dilation of the airways (Fig. 1). 
 

         
(i)                                      (ii) 

Figure-1 .CT image of a patient with (i) emphysema, showing damage to 

both lungs, and (ii) cystic fibrosis, showing dilated airways and the 

presence of small, opaque areas filled with mucus (arrows). 

II. FREQUENCY DOMAIN FILTERING 

A. Laplacian Filters: 

The directional sensitivity of the filters means it is 

necessary to apply rotated variants of the kernels several 

times and combine the outputs to get a direction insensitive 

output. Often it is more convenient to use a more isotropic 

single kernel. The simplest and commonest of these is the 

Laplacian, the 3 X 3 kernel of which is shown in Fig. 2 

together with its corresponding Fourier spectrum. The 

Laplacian is formally a second derivative filter[1, 5] – it 

measures, effectively, the gradient of the gradient. The 

advantage of a second derivative filter for edge detection is 

that it will usually define edges more precisely than a first 

derivative filter. 
 

 

Figure. 2 A Laplacian kernel calculates the second derivative of the image 

intensity. The 3 X 3 Laplacian kernel and its Fourier spectrum are shown 

here. Note that the sum of the kernel elements is zero, so the output is not 

scaled. The Fourier spectrum confirms that convolution with this kernel 

acts as a high pass filter 

How can tell that the Laplacian calculates the second 

derivative of pixel intensities? This is not immediately 

obvious looking at the kernel, but it makes sense if we think 

about what is happening in any single line through the 

center of the kernel: The sequence of kernel elements is  -

1,8,-1. In other words, the kernel is the sum of four 3 X 1 

kernels (one vertical, one horizontal, and two diagonal) 

whose elements are [-1 2 -1]. Any one of these 3 X 1 kernels 

is the sum of two 2 X 1 difference kernels with elements [-1 

1] and [1 -1], or the difference between two identical 

difference kernels with elements [-1 1] where the second 

kernel is displaced one pixel from the first. The 2 X 1 

kernels calculate the intensity differences between one 

particular pixel and those on either side of it. Subtracting 

one offset kernel from the other gives the 3 X 1 kernel [-1 2 

-1] that calculates the difference between the differences – 

in other words, the second derivative! In contrast to the 

Roberts Cross filter [5] we now have a single central kernel 

element so there is no confusion about where to put the 

output.  

The sum of the elements of the Laplacian is zero. If it is 

applied to a neighborhood in which all the gray scale 

intensities are identical the output will be zero. Thus any 

region of constant intensity will become black in the filtered 

image. When the intensity of the central pixel differs 

substantially from its neighbors, as may be the case for 

noise, the output of the Laplacian is very high because it 

sums all differences between a pixel and its eight neighbors. 

Although the Laplacian filter [1, 5] is good for edge 

detection it has a tendency to exaggerate lines and noise 

even more than edges. For this reason it is sometimes used 

as a point defect detector. This effect is demonstrated in Fig. 

3 where we see a test pattern comprised of mid-gray 

features: a rectangle, a narrow line, and a series of very 

small (almost invisible) points comprised of single pixels. 

When a 3 X 3 Laplacian kernel is applied to this image the 

edges of the rectangle are isolated as expected. However, the 

line feature is enhanced more than the edges of the 

rectangle, and the previously very faint points become quite 

distinct. 
 

 

Figure. 3 Demonstration of edge selection and point and line exaggeration 

of Laplacian kernel. (a) Test image. (b) Effect of convolution with 3X 3 

Laplacian. Note that the originally inconspicuous point features (single 

pixels of same intensity as large rectangle) are strongly enhanced, the line 

feature less so, and the edge of the gray rectangle less again. This is a 

notable characteristic of Laplacian filters 
 

 

Figure. 4   3x3 ‗High Boost‘ kernel and its corresponding Fourier spectrum. 

Note that the sum of the kernel elements is one so the image intensity in 

homogeneous regions will be unchanged. The gray center of the Fourier 

spectrum indicates that low frequencies are only partially attenuated so 

tonal detail is retained 
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Figure. 5 High Boost filter demonstration. (a) Original image. (b) Laplacian 

only. (c) High boost. Note that the high boost filter retains tonal 

information (the center of the rectangle) 

Often the aim is not to isolate the edges in an image but 

to enhance them. This can be achieved by adding the output 

of a Laplacian high pass filter to the original image. This is 

equivalent to adding a one to the central element of the 

Laplacian convolution kernel (Fig. 4). The resulting filter is 

referred to as a High Boost filter because its effect is to 

increase the relative intensity of high spatial frequencies    

(Fig. 5). 

B. LoG Filters: 

One way to get around the propensity of the Laplacian 

filter to exaggerate noise is to smooth the image before 

application of a high pass or high boost filter. In Fig. 6 we 

can see that smoothing prior to application of the high boost 

filter reduces the final intensity of the point features 

(representative of noise) and, to a lesser extent, the line 

feature [5]. Note also that the degree of enhancement of the 

edge of the rectangle is reduced. 

Instead of performing two convolution operations, the 

smoothing and then the high boost, the separate smoothing 

and high boost kernels can be combined into one kernel. 

Closely related to this combined filter is the Laplacian of 

Gaussian or LoG filter which combines a Laplacian high 

pass filter with a Gaussian low pass filter. The Fourier 

spectrum of the LoG filter should look familiar. It is very 

similar to the frequency domain band pass filter created by 

multiplication of a high pass filter mask with a low pass 

filter mask[5]. 
 

 

Figure. 6 Application of a smoothing filter prior to the high boost filter. (a) 

Original image. (b) Smoothed original. (c) High boost applied to image b. 

In comparison with Fig. 3.34 the point features, which simulate noise, are 

much less strongly enhanced 

C. High-Pass Filtering: 

High-pass filtering [7, 8] is used for image sharpening 

and extraction of high-frequency information such as edges. 

The low-frequency information is attenuated or blocked 

depending on the design of the filter. An ideal high-pass 

filter has a rectangular window function for the high-

frequency pass-band. Since the noise in the image usually 

carries high-frequency components, high-pass filtering also 

shows the noise along with edge information. An ideal 2D 

high-pass filter with a cut-off frequency at a distance D0 

from the origin in the frequency domain is defined as: 

H(u, v) =   1       if  D(u, v) ≥ D0 

                   0        otherwise     

As described above for an ideal low-pass filter[1, 5, 8], 

the sharp cut-off characteristic of the rectangular window 

function in the frequency domain causes the ringing artifacts 

in the filtered image in the spatial domain. To avoid ringing 

artifacts filter functions with smoother fall-off 

characteristics such as Butterworth and Gaussian are used. A 

Butterworth high-pass filter of n-th order is defined in the 

frequency domain as: 

            H(u, v) =                                       

III. EXPERIMENT RESULT 

Table 1 reports the performance of the filters upon the 

computed tomography image. Figure 7(a) shows the original 

image. The other images in figure 7 shows the results for the 

(a) unsharp filter, (b) laplacian filter with and without 

Gaussian, (c) high boost filtering, (d) average filter and 

adaptive filter.  

With regard to Table 1, consider the unsharp filter with 

the standard function and parameter value and the proposed 

unsharp filter with the scale factor 0.58. It has been clearly 

observed that root mean square value(RMSE) is low and 

peak signal to noise ratio(PSNR) value is high for unsharp 

filter. However, from the visual observation as well as from 

the quality measurement value, the performance of the 

unsharp filter in Sr.no. 1 is better than the unsharp scale 

factor performance. 

For the filtering method as mentioned in the Sr.no 3 to 9 

which are the laplacian methods with the various mask as 

mentioned in the fig 7(d to j). These filters are popularly 

used for detecting and enhancing the edges of the medical 

images. From the table 1, it is clearly observed that mean 

square error(MSE) of the proposed laplacian 4 with mask[-

1-1-1;0  0  0;1 1 1] performs better result as compared to the 

other laplacian filters. However, from the figure 7(g) the 

corresponding figure for the said mask detects the edges 

efficiently compared to the other laplacian filters. Hence, it 

is conclude that the performance of the proposed laplacian 

filter 4 is highly enhanced as compared to the other 

laplacian filters.  

Now coming towards the high boost filters as mentioned 

there result are grouped into two parts i.e. group1 &2.  

Group1 is a serial no 10, 11, 12, and 13 with z values 12, 11, 

10 and 9 respectively and group2 is serial no 14 and 15 with 

A=5/6 and 3/5. From the visual perception and from the 

analysed values it is clearly indicated that the high boost 

filter with z=11 has achieve the higher significant outcome 

as compared to the other high boost filters with any other z 

value. The other high boost filters with A=5/6 and 3/5 are 

used for the quality improvement of the medical images. 

The high boost filter with A = 5/6 having the PSNR value 

(24.95), AD (0.50), MEAN(161.88) and STD(93.61) 

whereas the high boost filter  with A=3/5 has PSNR(21.32), 

RMSE(21.88), AD(0.83), MEAN(161.55) and STD(96.30). 

Hence from the above values as well as from the visual 

quality, it has been clearly proved that the performance of 

the high boost filter having A=5/6 is not only better than the 

high boost filter with a=3/5 but also the any other filter as 

defined in our experiment. 
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Table 1: Performance of the filters upon the CT image 

Sr. No Filtering method MSE RMSE PSNR AVG DIFF MEAN STD 

1 ct_unsharp_std_func 769 27.73 19.27 1.61 160.77 97.68 

2 ct_unsharp_filt_scle_factor58pt 1518 38.97 16.31 -20.76 183.15 91.70 

3 ct_laplacian_log 9658 98.27 8.28 39.86 122.52 115.50 

4 ct_laplacian 9318 96.53 8.43 49.43 112.92 116.11 

5 ct_laplace5 9130 95.55 8.52 53.23 109.15 117.70 

6 ct_laplace4 9051 95.14 8.56 55.45 106.93 117.36 

7 ct_laplace3 9855 99.27 8.19 59.02 103.36 118.01 

8 ct_laplace2 9357 96.73 8.41 48.45 113.93 115.93 

9 ct_laplace1 7391 85.97 9.44 50.43 111.95 116.48 

10 ct_high_boost_filter_z12 1312 36.22 16.95 -16.92 179.31 93.54 

11 ct_high_boost_filter_z11 750 27.38 19.38 -2.18 164.57 97.61 

12 ct_high_boost_filter_z10 1505 38.80 16.35 19.17 143.21 101.06 

13 ct_high_boost_filter_z9 4503 67.10 11.59 41.41 120.97 108.87 

14 ct_high_boost_filter_56 208 14.42 24.95 0.50 161.88 93.61 

15 ct_high_boost_filter_35 479 21.88 21.32 0.83 161.55 96.30 

16 ct_avg99 610 24.71 20.27 1.09 161.29 90.02 

17 ct_adpt_filter 1183 34.40 17.39 -0.18 162.57 77.70 
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Figure 7:  Output images of the filtering methods for the CT image. 



Govind N. Sarage et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 50-54 

© 2010, IJARCS All Rights Reserved    54 

 

 

 
Figure 8: Graphical Analysis for RMSE, PSNR and STD 

 

Figure 9: Graphical Analysis for MEAN, STD and Avgas Difference 

VI. CONCLUSION 

This research has been devoted to the medical image 

enhancement based upon the frequency domain filtering that 

can be applied to enhance the noisy computed tomography 

medical image. The trade-off between noise elimination and 

detail preservation was analyzed using the MSE, RMSE, 

PSNR, AD, MEAN and STD and visual criteria. Thus a 

comparison between the qualities and performance of various 

filtering techniques were deduced using these criteria. 

Effectiveness of each filter is dependent on the type of 

image, the error criterion used, the nature and amount of 

contaminating noise. It was seen that the high boost filtering 

with z=11 and A=5/6 and the proposed laplacian filter 4 is 

highly enhanced as compared to the other  filters. These 

fillters performed well for the image enhancement; this can 

be clearly seen with its considerable improvement in PSNR 

and producing visually more pleasing images. 
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