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Abstract: This paper put forward a new method of co-occurrence matrix to describe image features. This method can express the spatial 

correlation of textons. During the course of feature extracting, we have quantized the original images into 256 colors and computed color 

gradient from the RGB vector space, and then calculated the statistical information of textons to describe image features. Image identification 

experimental results have shown that our proposed method has the discrimination power of color, texture and shape features, the performances 

are better than that of Grey Level Co-occurrence Matrix (GLCM) and Color Correlograms (CCG). 
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I. INTRODUCTION 

Object identification is one of the main topics in the field 

of computer vision and pattern recognition. In the early 

1990s, researchers have built many objects identification 

systems, such as QIBC, MARS, and FIDS and so on. They 

are different from the traditional retrieval systems. These 

systems are based on image features such as color, texture, 

shape of objects and so on.  

Nowadays, the main research work of image retrieval 

consists of feature extracting techniques, image similarly 

match and image identification methods.  

Many researchers have put forward various algorithms to 

extract color, texture and shape features.  

Color is the [1] most dominant and distinguishing visual 

feature. Color histogram-based techniques remain popular 

due to their simplicity, but it lacks spatial information. 

Several color descriptors try to incorporate spatial 

information to varying degrees, it include the compact color 

moments, color coherence vector and color correlograms. 

Texture is used to specify the roughness or coarseness of 

object surface and described as a pattern with some kind of 

regularity. Many researchers have put forward various 

algorithms for texture analysis, such as the gray co-

occurrence matrixes, Markov random field (MRF) model, 

simultaneous auto- regressive (SAR) model, World 

decomposition model, Gabor filtering and wavelet 

decomposition and so on.  

Shape features are widely used in various areas such as 

object identification and content-based image retrieval. The 

classic method of describing shape features are moment 

invariants, Fourier transform Coefficients, edge curvature 

and arc length.  

In order to integrate color, texture and shape features, 

this paper put forward a new method of co-occurrence 

matrix to describe image features. This method can express 

the spatial correlation of textons.  

During the course of feature extracting, we have 

quantized the original images into 256 colors and computed 

color gradient from the RGB vector space, and then 

calculated the statistical information of textons to describe 

image features.  

Object identification experimental results have shown 

that our proposed method has the discrimination power of 

color, texture and shape features, the performances are 

better than that of GLCM and CCG. The paper is contained 

the gray co-occurrence matrix, the texton [2,7] co-

occurrence matrix (TCM) and techniques of color edge 

extracting. The object identification performance resulted 

from GLCM, CCG. And our proposed method is compared 

by conducting two experiments over the Vistex texture 

database of MIT, Corel images and those images which 

come from web and concludes the paper. 

II. METHODOLOGY 

A. Description of co-occurrence matrix: 

Suppose an image to be analyzed is rectangular and has 

Nx. resolution cells in the horizontal direction and Ny 

resolution cells in the vertical direction. Suppose that the 

gray tone appearing in each resolution cell is quantized to 

Ng levels.  

Let Lx = {1,2,……,Nx} be the horizontal spatial 

domain, Ly = {1,2,…….,Ny} be the vertical spatial domain, 

and G = {1,2, …,Ng } be the set of Ng quantized gray tones. 

The set Ly X Lx is the set of resolution cells of the image 

ordered by their row-column designations.  

The image I can be represented as a function which 

assigns some gray tone in G to each resolution cell or pair of 

coordinates in Ly X Lx; I: Ly X Lx =>G.  

An essential component of our conceptual framework of 

texture is a measure, or more precisely, four closely related 

measures from which all of our texture features are derived. 

These measures are arrays termed angular nearest-neighbor 

gray-tone spatial-dependence matrices, and to describe these 

arrays we must emphasize our notion of adjacent or nearest-

neighbor resolution cells themselves. We consider a 

resolution cell-excluding those on the periphery of an image, 

etc.to have eight nearest-neighbor resolution cells.  

We assume that the texture-context information in an 

image I is contained in the overall or "average" spatial 
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relationship which the gray tones in image I have to one 

another. More specifically, we shall assume that this texture 

context information is adequately specified by the matrix of 

relative frequencies Pij with which two neighboring 

resolution cells separated by distance „d‟  occur on the 

image, one with gray tone i and the other with gray tone j. 

Such matrices of gray-tone spatial-dependence frequencies 

are a function of the angular relationship between the 

neighboring resolution cells as well as a function of the 

distance between them. The set of all horizontal neighboring 

resolution cells separated by distance 1. This set, along with 

the image gray tones, would be used to calculate a distance 

1 horizontal gray-tone spatial-dependence matrix. Formally, 

for angles quantized to 450 intervals the un normalized 

frequencies are defined as follows 

P(i,j,d,00) = #{((k ,l),(m,n)) € (Ly x Lx)  

                    x (Ly x Lx) |k-m|= 0,|1 –n| =d,  

                    I(k,l) = i, I(m,n) = il  

P(i,j,d,450) = #{((k ,l),(m,n)) € (Ly x Lx)  

                      x (Ly x Lx)I( k-m = d, l -n =-d)  

                     Or (k - m = -d, l - n =d),  

                       I (k, l) = i, I (m, n) = j  

P(i,j,d,900) = #{((k,l),(m,n)) € (Ly x Lx)  

                      x (Ly x Lx) | k- m| = d,|l-n|=0  

                      I(k,l)=i,I(m,n)=j}  

P(i,j,d,1350) = #{((k,l),(m,n)) e (Ly x Lx)  

                        x (Ly x Lx) (k - m = d, l- n = d)  

                        Or (k-m = -d, l-n= -d),  

                        I (k, l) = i, I(m,n) = j} (1)  

Where # denotes the number of elements in the set.  

Note that these matrices are symmetric;  

P (i, j; d, a) = P (j, i; d, a). The distance metric p implicit in 

the preceding equations can be explicitly defined by  

 P ((k, l), (m, n)) = max {|k – m|, |1- n|}. 

 

B. Grey-level co-occurrence matrix texture: 

Grey-Level Co-occurrence Matrix texture measurements 

have been the workhorse of image texture since they were 

proposed by Haralick in the 1970s. To many image analysts, 

they are a button you push in the software that yields a band 

whose use improves classification – or not.  

The original works are necessarily condensed and 

mathematical, making the process difficult to understand for 

the student or front-line image analyst. 

Calculate the selected Feature. This calculation uses only 

the values in the GLCM. See: 

i) Contrast 

ii) Correlation 

iii) Energy 

iv) Homogeneity 

These features are calculated with distance 1 and angle 

0, 45 and 90 degrees. 2.3 K-Means Clustering 

A cluster is a collection of data objects that are similar to 

one another with in the same cluster and are dissimilar to the 

objects in the other clusters. It is the best suited for data 

mining because of its efficiency in processing large data 

sets. It is defined as follows: 

The k-means algorithm is built upon four basic 

operations: 

a. Selection of the initial k-means for k-clusters. 

b. Calculation of the dissimilarity between an object     

and the mean of a cluster. 

c. Allocation of an object of the cluster whose mean     is 

nearest to the object. 

d. Re-calculation of the mean of a cluster from the     

object allocated to it so that the intra cluster    

dissimilarity is minimized. 

The advantage of K-means algorithm is that it works 

well when clusters are not well separated from each other, 

which is frequently encountered in images. 

C. Textural Features extracted from co-occurrence 

matrices: 

Our initial assumption in characterizing image texture is 

that all the texture information is contained in the gray-tone 

spatial-dependence matrices. Hence all the textural features 

we suggest are extracted from these gray-tone spatial-

dependence matrices. Some of these measures relate to 

specific textural characteristics of the image such as 

homogeneity, contrast, and the presence of organized 

structure within the image. Other measures characterize the 

complexity and nature of gray tone transitions which occur 

in the image. Even though these features contain 

information about the textural characteristics of the image, it 

is hard to identify which specific textural characteristic is 

represented by each of these features. For illustrative 

purposes, we will define 3 of the 14 textural features in this 

section and explain the significance of these features in 

terms of the kind of values they take on for two images of 

distinctly different textural characteristics the features we 

consider are as follows 

D. Textural Features: 

a. Angular Second Moment:  

b. Contrast:  

c. Correlation:  

d. Sum of Squares: Variance:  

e. Inverse Difference Moment:  

f. Sum Average:  

g. Sum Variance:  

h. Sum Entropy:  

i. Entropy:  

j. Difference Variance:  

k. Difference Entropy:  

l. Information Measures of Correlation: 

Fig.1 Set of all distance 1 horizontal resolution cell on 4X4 image 



 

© 2010, IJARCS All Rights Reserved    201 

Usually the neighboring pixels in an image are not very 

distinct (i.e. they are highly correlated). Quite often in an 

image there are large regions of pixels with nearly the same 

color, such as the sky, or with uniform texture, such as 

walls, cloth, or sand. For typical pixel-level texture feature 

extraction, the texture values for each pixel are computed 

with the sliding window positioned such that the pixel is the 

center of the window. Clearly, for images of the type 

mentioned above, the neighboring pixels have the same (or 

nearly the same) texture features. In such cases, nearly 

identical results are generated by performing nearly identical 

computations. If we can determine beforehand which 

computations will result in nearly identical results, we can 

avoid these calculations, trading off decreased 

computational complexity with a small amount of distortion 

in the texture extraction results. 

We propose a new hierarchical method to reduce the 

computation complexity and expedite texture feature 

extraction according to this principle. In our method, an 

image is divided into blocks of pixels of different 

granularities at the various levels of the hierarchy. The 

texture feature extraction hierarchy is represented by a quad-

tree structure, in which a block at a higher level is divided 

into 4 sub-blocks at the next lower level. Starting from the 

highest level, we examine each block to see if unnecessary 

computations can be avoided. If a block at a given level of 

the hierarchy has solid color or uniform texture, we assign 

each pixel in this block the same texture feature values, 

which are equivalent to the texture. 

Features for the representative pixel‡ of the block. 

Otherwise, we examine its sub-blocks in a similar way. 

Hence, each pixel will get its texture features in one of these 

blocks at a certain hierarchical level, either by copying the 

corresponding representative pixel’ s texture features, or by 

computing its own texture features if it is a representative 

pixel itself. 

 

Figure 2: Backbone blocks and key pixels (out-of-block pixels are not 

included), when a = 2, b= 4 

The whole image can be divided into many non-

overlapping b*b pixel blocks (b = 2a, aÎN). We call these 

blocks 1st level backbone blocks, denoted B1. Each B1 can 

be divided into 4 b/2*b/2-sized 2nd level backbone blocks, 

B2. Similarly, each B2 can be divided into 4 b/4*b/4-sized 

3rd level backbone blocks, and so on. Each block can be 

divided further and further until each backbone block 

contains only one pixel. These single-pixel backbone blocks 

are (a+1)th level backbone blocks. 

For each backbone block Bs, where 1 <= s <= (a+1), the 

pixel at its upper-left corner is called its key pixel, denoted 

Pkey(Bs). If p(i,j) is a key pixel of a sth level backbone 

block, we call this backbone block Bs(i, j), i.e. Pkey(Bs(i, j)) 

= p(i,j). Backbone blocks and key pixels are shown in 

Figure 2. Notice that the key pixels of larger backbone 

blocks are always the key pixels of smaller backbone 

blocks. 

If the image dimensions, M and N, are not multiples of 

b, the size of the 1st level backbone block, there will be 

some pixels that do not reside in 1st level backbone blocks. 

We call these pixels out-of-block pixels, which we will 

examine a little later. Except for out-of-block pixels, each 

pixelA resides in one of the 1st level backbone blocks. Since 

each higher level backbone block is generated by dividing 

the next lower level block into 4 equal-sized sub-blocks, 

each pixel must also be in one backbone block at each level. 

For example, for a pixel p(i,j), at the sth level, where 1 <= s 

<= (a+1), it is in backbone block Bs( _i / 2s+a-1 _ *2s+a-1, 

_ _ j / 2s+a-1 *2s+a-1), and the corresponding key pixel for 

this backbone block is p( _ _ i / 2s+a-1 *2s+a-1, _ _ j / 2s+a-

1 *2s+a-1).    

Then, each pixel will get its texture features in one of 

these backbone blocks, either by copying the corresponding 

key pixel’ s texture features, or by computing its own 

texture features if it is a key pixel itself. If we let key pixel 

p(i,j) be the upper-left pixel of a k*k sliding window to 

which the wavelet transform is applied, we can associate the 

texture feature extracted by this transform window to p(i,j). 

We use VTK h(p(i,j)), VTK v(p(i,j)), and VTK o(p(i,j)) to 

denote the texture features for key pixel p(i,j), namely, the 

key pixel texture features, in the horizontal, vertical and 

oblique directions, respectively. Observe that this sliding 

window is the same as the sliding window for extracting 

texture feature for pixel p(i+k/2, j+k/2) which is described in 

section 1, and shown in Figure 3, i.e. 

VTK h(p(i,j))= Vt h(p(i+k/2, j+k/2)) ,  

VTKv(p(i,j))= Vt v(p(i+k/2, j+k/2)),  

VTK o(p(i,j))= Vto(p(i+k/2, j+k/2)).  

In this paper, we let k = b = 2a. So,  

VTK h(p(i,j))= Vt h(p(i+2a-1, j+2a-1)) , 

VTK  v(p(i,j))= Vt v(p(i+2a-1, j+2a-1)),  

VTKo(p(i,j))= Vt o(p(i+2a-1, j+2a-1)). 

Note, this assignment causes a misalignment between the 

texture values and their associated pixels, so our algorithm 

realigns them after assigning all texture values, as discussed 

below. 

For a backbone block Bs, if we let its key pixel Pkey(Bs) 

be the upper-left pixel of the sliding window for the wavelet 

transform, and let the size of the sliding window be 2s+a-1, 

i.e. the sliding window covers the backbone block exactly, 

we can associate the texture feature extracted by this 

transform window to Bs. We use VTB h(Bs), VTB v(Bs), 

VTB o(Bs) to denote those texture features, namely, the 

backbone block texture features, in the horizontal, vertical 

and oblique directions, respectively. Observe that this 

sliding window is the same as the sliding window for 

extracting key pixel texture feature 

III. THE TEXTON CO-OCCURRENCE MATRIX 

A. Measurements of color gradients and edge 

detection : 
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The image edge has a [3] close relationship with contour 

and texture pattern. It can provide abundance of texture 

information and shape information. The gradient 

information of image can detect the saltation of color, such 

as color image edge, stripe and acuity and so on. For a 

function f (x, y), the gradient of f at coordinates (x, y) is 

defined as the two-dimensional column vector The 

magnitude of this vector is given by It is a common practice 

to approximate the magnitude of the gradient by using 

absolute value instead of square and square root. A color 

image is considered as a two-dimensional vector field f (x, 

y) with three components, R, G and B. Let r, g and b be unit 

vectors along the R-, G- and B- axes of RGB color space, 

and define the vectors. 

IV.   APPLICATION 

A. Textural Features extracted from co-

occurrencematrices:  

 

Figure. 5. The flow chart of textons detecting: (a) original image, (b) five 

special types of textons, (c) textons detection (d) five components of texton 

images and (e) the final texton image. 

Our initial assumption in characterizing image texture is 

that all the texture information is contained in the gray-tone 

spatial-dependence matrices. Hence all the textural features 

we suggest are extracted from these gray-tone spatial-

dependence matrices. Some of these measures relate to 

specific textural characteristics of the image such as 

homogeneity, contrast, and the presence of organized 

structure within the image. Other measures characterize the 

complexity and nature of gray tone transitions which occur 

in the image. Even though these features contain 

information about the textural characteristics of the image, it 

is hard to identify which specific textural characteristic is 

represented by each of these features.  

B. Calculation of texton co-occurrence matrix: 

Julesz proposed the term “texton” conceptually more than 

20 years ago.[4,5] Texton is a very useful concept in texture 

analysis. As a general rule, texton defined as a set of blobs or 

emergent patterns  sharing  a  common  property  all  over  

the  image;  however,  defining  textons  remains a challenge. 

The image features have a close relationship with textons 

and color diversification. The difference of textons may form 

various image Features. If the textons in image are small and 

the tonal differences between neighboring textons are large, a 

fine texture may result. If the textons are larger and consist of 

several pixels, a coarse texture may result. At the same time, 

the fine or coarse texture characteristic depends on scale. If 

the textons in image are large and consist of a coarse texture 

characteristic depends on scale. If the textons in image are 

large and consist of a few texton categories, an obvious 

shape may result few texton categories, an obvious shape 

may result. 

There are many types of textons in images [6,9]. In this 

paper, we only define five special types of textons for image 

analysis. Let there is a 2×2 grid in image. Its pixels are 

V1,V2,V3and V4 if three  or  four  pixel  values  special 

types of textons are denoted as are  same,  thus those  pixels  

formed a texton. Those  five T1,T2,T3,T4,and T5 It is shown 

in Fig. 4, the shadow of 2×2 grid  denotes  those  pixel  

values  are  same.  Different  shadow  structure  formed  

various textons is  an image,  if  it  is shifted by one pixel  in 

every direction,  a 2×2  grid may appear. 

 

Figure. 4 Five special types of texto ns: (a) 2  ×2 grid; (b)  T1; (c) T2;(d) 

T3;(e)T4;(f) and T5 

We use those  five  special  types of  textons to detect 

every grid, respectively, and then find  out  whether  one  of  

them  may  appear  in  those  grids.  A  type  of  texton  may  

detect  out  a component of texton image, thus there are five 

components of texton images. It is shown in Fig5(c). In those 

five components of texton images, the pixels of textons are 

kept in original values, others are replaced with the value of 

0. It is shown in Fig. 5(d). Finally, we will combine those 

five components of texton images together to form a final 

textons image. Let the pixel position is P = (X,Y) ), at the 

same position Pi = (x,y), every component of texton image 

has a pixel value, thus five components of texton images 

have five pixel values. They are denoted as W1,W2,W3,W4 

and W5 If  those five pixel values are same, the final texton 

image will be kept in  original, values in corresponding 

positions. If the values of 0 and nonzero appear in those five 

pixels, the final textons image will be kept in the values of 

nonzero. It is shown in Fig. 5(e). 

V.     CONCLUSION 

In this paper, we have put forward a new method of co 

occurrence matrix to describe image features.  It  is  different  

from  the  gray  co-occurrence  matrix  and  color  

correlograms because this method has the discrimination 

power of shape features. Image retrieval experiments were  

conducted  over  two  image  database  sets  using  the  gray  

co-occurrence  matrix,  color correlograms  and  the texton  

co-occurrence  matrix.  The two image database sets mainly 

come from VisTex texture database of MIT, Corel images 

and web. Experimental results have shown that our proposed 

method has the discrimination power of color, texture and 

shape features, the performances are better than that of 

GLCM and CCG. 
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