
��������	�
����	�
�������������

������������������������������������ ����!����"��������
�������

�#
#��"$�%�%#��

������&�������������'''��(��� ������

© 2010, IJARCS All Rights Reserved 173

�����������	
��
�	�

A Simplified Network manager for Grid and Presenting the Grid as a Computation

Providing Cloud

M.Sudha*

Assistant Professor (Senior)

School of Information Technology and Engineering, VIT

University INDIA

msudha@vit.ac.in

M.Monica

 Assistant Professor,

School of Computer Science and Engineering,

VIT University INDIA

monica.m@vit.ac.in

Abstract: One of the common forms of distributed computing is grid computing. A grid uses the resources of many separate computers, loosely

connected by a network, to solve large-scale computation problems. Our approach was as follows first computationally large data is split into a

number of smaller, more manageable, working units secondly each work-unit is then sent to one member of the grid ,That member completes

processing of that work-unit in its own and sends back the result. In this architecture, there needs to be at least one host that performs the task of

assigning work-units, and then sending them, to a remote processor, as well as receive the results from remote processors. We call this unit as the

Network Manager. In addition to this assigning, sending and receiving the work-units and results, there also is the need for a host that splits tasks

into work-units and assimilates the received work units. We call this unit as the Task Broker, which we propose to design. On the server end,

there is a program for processing module, splitter and assimilator (broker). Each client has an agent running in it. Once a client is online and in

communication with server, the server sends the processing module to the client. The splitter splits data into smaller work units. Scheduler then

sends this individual work unit to client. After that, the agent in client starts up its local processing module to start processing the work unit.

Once processing of work unit is complete, it returns the result back to server. The server send received result to assimilator which combines

results from all clients for further processing.

Key words: Network manager, Task broker, scheduler, computational cloud

I. INTRODUCTION

Grid computing simply stated as distributed

computing taken to the next evolutionary level. The goal is to

create the illusion of a simple yet large and powerful self-

managing virtual computer out of a large collection of

connected heterogeneous systems sharing various

combinations of resources. The standardization of

communications between heterogeneous systems created the

Internet explosion. The emerging standardization for

sharingresources, along with the availability of higher

bandwidth, is driving a possiblyequally large evolutionary

step in grid computing.

Following the grid, the next new evolving

computation trend is cloud computing. It is a significant trend

with the potential to increase agility and lower costs [7].

Today, however, security risks, immature technology, and

other concerns prevent widespread enterprise adoption of

external clouds. Intel IT is developing a strategy based on

growing the cloud from the inside out. We take advantage of

software as a service (SaaS) and niche infrastructure as a

service (IaaS) implementations whenever possible, and we are

building an internal cloud-computing environment [8]. The

proposed internal environment delivers many of the benefits

of grid and enables us to use as clouds. Section II describes

problem definition of the computing environments. Section

III states the various related works.

Section IV describes the modules and the architecture. In

Section V the implementation details is described followed by

our future work in Section VI.

II. PROBLEM DEFINITION

Grid computing is the combination of computer resources

from multiple administrative domains applied to a common

task, usually to a scientific, technical or business problem that

requires a great number of processing cycles or the need to

process large amount of data. One of the main strategies of

grid computing is using software to divide and apportion

pieces of a program among several computers, sometimes up

to many thousands. Grid computing is distributed, large-scale

cluster computing, as well as a form of network-distributed

parallel processing. The size of grid computing may vary

from being small confined to a network of computer

workstations within a corporation.

III. RELATED WORKS

The grid discipline involves the actual networking

services and connection of a potentially unlimited number of

ubiquitous computing devices within a “GRID”. This new

innovative approach to compute can be most simply out of as

a massively large power “UTILITY” grid, such as what

provides power to our homes and business each and every

day. The delivery of utility based power has become second

in nature to many of us, world-wide. We know that by simply

walking into the room and turning on the lights, the power

will be directed to the proper devices of our choice for that

moment in time.

In the same utility fashion, grid computing openly seeks

and is capable of adding an infinite number of computing

devices into any grid environment, adding to the computing

capability and problem resolution task within the operational

grid environment. Grids offer a way to solve Grand Challenge

M.Sudha et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 173-176

© 2010, IJARCS All Rights Reserved 174

problems such as protein folding, financial modelling,

earthquake simulation, and climate/weather modelling.They

also provide a means for offering information technology as a

utility for commercial and non-commercial clients, with those

clients paying only for what they use, as with electricity or

water.

Grid computing is being applied by the National Science

Foundation's National Technology Grid, NASA's Information

Power Grid, Pratt & Whitney, Bristol-Myers Squibb Co., and

American Express.one of the most famous cycle-scavenging

networks is SETI@home, which was using more than 3

million computers to achieve 23.37 sustained teraflops (979

lifetime teraflops) as of September 2001.The European Union

has been a major proponent of grid computing. Many projects

have been funded through the framework programme of the

European Commission. Many of the projects are highlighted

below, but two deserve special mention BEinGRID and

Enabling Grids for E-science.

BEinGRID (Business Experiments in Grid) is a research

project partly funded by the European commissionas an

Integrated Project under the Sixth Framework Programme

(FP6) sponsorship program. The project is coordinated by

Atos Origin. According to the project fact sheet, their mission

is “to establish effective routes to foster the adoption of Grid

Computing across the EU and to stimulate research into

innovative business models using Grid technologies”. To

extract best practice and common themes from the

experimental implementations, two groups of consultants are

analysing a series of pilots, one technical, one business.

The Enabling Grids for E-sciencE project, which is

based in the European Union and includes sites in Asia and

the United States, is a follow-up project to the European Data

Grid (EDG) and is arguably the largest computing grid on

the planet. This, along with the LHC Computing Grid

(LCG), has been developed to support the experiments using

the CERNLarge Hadron Collider. The LCG project is driven

by CERN's need to handle huge amounts of data, where

storage rates of several gigabytes per second (10 petabytes per

year) are required.

The NASA Advanced Supercomputing facility (NAS)

has run genetic algorithms using the Condor cycle scavenger

running on about 350 Sun and SGIworkstations. United

operated the United Devices Cancer Research Project based

on its Grid MP product, which cycle-scavenges on volunteer

PCs connected to the Internet.

Another well-known project is the World Community

Grid. The World Community Grid's mission is to create the

largest public computing grid that benefits humanity. This

work is built on the belief that technological innovation

combined with visionary scientific research and large-scale

volunteerism can change our world for the better. IBM

Corporation has donated the hardware, software, technical

services, and expertise to build the infrastructure for World

Community Grid and provides free hosting, maintenance, and

support.

IV. MODULES INVOLVED

A grid application will usually consist of several different

components. For example, a typical grid application could

have:

A. VO Management Service

This determines the nodes to be managed and the users of

each Virtual Organization.

B. Resource Discovery and Management Service

This will enable the applications on the grid to discover

resources that suit their needs, and then manage them.

C. Job Management Service

So users can submit tasks (in the form of "jobs") to the

Grid

All these services are interacting constantly. For

example, the Job Management Service might consult the

Resource Discovery Service to find computational resources

that match the job’s requirements. With so many services, and

so many interactions between them, there exists the potential

for chaos. The solution is Standardization: define a common

interface for each type of service. For example, take a look at

the World Wide Web. One of the reasons why the Web is

such a popular Internet application is because it is based on

standards (HTML, HTTP, etc.) agreed upon by all the

different major players (Microsoft, Netscape, etc.).The Open

Grid Services Architecture (OGSA), developed by The

Global Grid Forum (http://www.ggf.org), aims to define a

common, standard, and open architecture for grid-

basedapplications. The goal of OGSA is to standardize

practically all the services one commonly finds in a grid

application (job management services, resource management

services, security services, etc.) by specifying a set of

standard interfaces for these services. On developing the

OGSA Architecture, the developers felt the need of

introducing stateful Web Services Resource Framework

(WSRF), as they needed to choose some sort of distributed

middleware on which to base the architecture. In other words,

if OGSA (for example) defines that the

JobSubmissionInterface has a submitJob method, there has to

be a common and standard way to invoke that method if we

want the architecture to be adopted as an industry-wide

standard. Therefore, WSRF provides the stateful services that

OGSA needs.

Figure 1 WSRF -Stateful Service

In the diagram WSRF specifies stateful services (as

opposed to those services simply ’being required’ by OGSA).

Another way of expressing this relation is that, while OGSA

is the architecture, WSRF is the infrastructure on which that

architecture is built on. Most of these services are

implemented on top of WSRF.

M.Sudha et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 173-176

© 2010, IJARCS All Rights Reserved 175

Figure 2. OGSA Architecture

The clients (programs that want to access the

weather information) would then contact the Web Service (in

the server), and send a service request asking for the weather

information. The server would return the forecast through a

service response. Of course, this is a very sketchy example of

how a Web Service works.

Figure 3 Simple Web Service Interaction

Web Services are platform-independent and language-

independent, since they use standard XMLlanguages. This

means that my client program can be programmed in C++ and

running underWindows, while the Web Service is

programmed in Java and running under Linux. Most Web

Services use HTTP for transmitting messages (such as the

service request and response).This is a major advantage if you

want to build an Internet-scale application, since most of

theInternet’s proxies and firewalls won’t mess with HTTP

traffic (unlike CORBA, which usually has trouble with

firewalls).Web Services programmers usually only have to

concentrate on writing code in their favourite programming

language and, in some cases, in writing WSDL. SOAP code,

on the other hand, is always generated and interpreted

automatically for us. Once we’ve reached a point where our

client application needs to invoke a Web Service, we delegate

that task on a piece of software called a stub. Using stubs

simplifies our applications considerably. We don’t have to

write a complex client program that dynamically generates

SOAP requests and interprets SOAP responses (and similarly

for the server side of our application).

D. Web Service Invocation

1. Whenever the client application needs to invoke the Web

Service, it will really call the client stub. The client stub will

turn this ’local invocation’ into a proper SOAP request. This

is often called the marshaling or serializing process.

2. The SOAP request is sent over a network using the HTTP

protocol. The server receives the SOAP requests and hands it

to the server stub. The server stub will convert the SOAP

request into something the service implementation can

understand (this is usually called unmarshaling

ordeserializing).

3. Once the SOAP request has been deserialized, the server

stub invokes the service implementation, which then carries

out the work it has been asked to do.

4. The result of the requested operation is handed to the server

stub, which will turn it into a SOAP response.

5. The SOAP response is sent over a network using the HTTP

protocol. The client stub receives the SOAP response and

turns it into something the client application can understand.

6. Finally the application receives the result of the Web

Service invocation and uses it.

E. Server side Web service

Figure 5

 As we have seen, this is basically a piece of software

that exposes a set of operations. For example, if we are

implementing our Web service in Java, our service will be a

Java class (and the operations will be implemented as Java

methods).Obviously, we want a set of clients to be able to

invoke those operations. However, our Web service

implementation knows nothing about how to interpret SOAP

requests and how to create SOAP responses.

F. SOAP engine

This is a piece of software that knows how to handle

SOAP requests and responses. Inpractice, it is more common

to use a generic SOAP engine than to actually generate server

stubs foreach individual Web service (note, however, that we

still need client stubs for the client). One goodexample of a

SOAP engine is Apache Axis (http://ws.apache.org/ axis/)

(the SOAP engine used by the Globus Toolkit). However, the

functionality of the SOAP engine is usually limited to

manipulating SOAP. To actually function as a server that can

receive requests from different clients, the SOAP engine

usually runs within an application server.

M.Sudha et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 173-176

© 2010, IJARCS All Rights Reserved 176

Application server is a piece of software that provides a

’living space’ for applications thatmust be accessed by

different clients. The SOAP engine runs as an application

inside the applicationserver. A good example is the Jakarta

Tomcat (http://jakarta.apache.org/tomcat/) server, a Java

Servletand Java ServerPages container that is frequently used

with Apache Axis and the Globus Toolkit. Many application

servers already include some HTTP functionality, so we can

have Web services upand running by installing a SOAP

engine and an application server. However, when an

application server lacks HTTP functionality.

HTTP Server -This is more commonly called a ’Web

server’. It is a piece of software that knows howto handle

HTTP messages. A good example is the Apache HTTP Server

(http://httpd.apace.org/), oneof the most popular web servers

in the Internet.

Therefore the steps involved are

a) Identifying the task and resources for a particular process

or operation.

b) Splitting the process such that to be executed at different

nodes.

c) Discovering the nodes available.

d) Applying resource broker to provide resource to the

particular operation.

e) Converting the request in a common platform/language to

be identified by the node.

f) Using standard protocols to transmit the request.

g) Handling the particular request.

h) Converting the request into common language to be

transmitted via standard protocols to provide the obtained

results to the host node.

V. IMPLEMENTATION

A. Define the service’s Interface
This is done with WSDL. We need to specify what our

service is going to provide to the outer world. At this point

we’re not concerned with the inner workings of that service

(what algorithms it uses, other systems.it interacts with, etc.).

We just need to know what operations will be available to our

users. In Web Services lingo, the service interface is usually

called the port type (usually written port Type).

B. Implementing the Service

This is done with Java. After defining the service

interface ("what the service does"), the next step is

implementing that interface. The implementation is "how the

service does what it says it does".

C. Configuring the Deployment Parameters

This is performed using WSDD (Web Service Deployment

Descriptor).The two most important parts of our stateful Web

service: the service interface (WSDL) and the service

implementation (Java). However, we still seem miss our web

service available to client connections, Java Class doesn’t

simply float around, thus the next step will actually take all

the loose pieces we have written up to this point and make

them available through a Web services container. This step is

called the deployment of the web service.

D. Compile and generating a GAR file

This is done with APACHE ANT. This GAR file is a

single file which contains all the files and information the

Web services container needs to deploy our service and make

it available to the whole world. Creating a GAR file is a pretty

complex task which involves the following:

• Processing the WSDL file to add missing pieces (such as

bindings)

• Creating the stub classes from the WSDL

• Compiling the stubs classes

• Compiling the service implementation

• Organize all the files into a very specific directory structure

E. Deploying service into a Web Services container

The GAR file, as mentioned in the previous point,

contains all the files and information the web server needs to

deploy the web service. Deployment is done with a GT4 tool

that, using Ant, unpacks the GAR file and copies the files

within (WSDL, compiled stubs, compiled implementation,

WSDD) into key locations in the GT4 directory tree.

VI. FUTURE WORK

1. Implementing the client side program using the java for

addition and subtraction.

2. Introducing complex operations to be executed over the

Grid (2 nodes).

3. Providing a dynamic architecture, for a node to act as host

and client itself.

4. Discovering other nodes available.

VII. REFERENCES

[1] K.Czajkowski, S.Fitzgerald, Ian Foster and Carl

Kesselman. “Grid Information Services for Distributed
Resource Sharing”, Proceedings ofthe Tenth IEEE
International Symposium on High-Performance
Distributed Computing (HPDC-10), IEEE Press, August
2001.

[2] DreamTech Press and Vladimir Silva, “Grid Computing
For Developers”.

[3] Pearson, Joshy Joseph and Craig Fellenstein,”Grid
Computing”.

[4] Referred Tutorial: http://gdp.globus.org/gt4-tutorial/

[5] Referred Website: http://www.globus.org/toolkit/.

[6] Srikumar Venugopal1, Rajkumar Buyya1 and Lyle
Winton2”A Grid Service Broker for Scheduling
Distributed Data-Oriented Applications on Global
Grids”.

[7] Ian Foster, Yong Zhao,Ioan Raicu and Shiyong Lu,
“Cloud Computing and Grid Computing 360-Degree
Compared”.

[8] Takahiro Miyamoto, Michiaki Hayashi and Hideaki
Tanaka “Customizing Network Functions for High
Performance Cloud Computing”, 2009 Eighth IEEE
International Symposium on Network Computing and
Applications.

