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Abstract: Bloom Filters (BF) are space-efficient data structures that allow membership queries from a set. The Bloom Filters and its variants just 

focus on how to represent a static set and decrease the false probability to a sufficiently low level. By look into the applications based on the 

Bloom Filters, we reveal that dynamic datasets are more common and important than static sets. But the existing variants of the Bloom Filters 

cannot support dynamic data sets well. To address this issue Dynamic Bloom Filters (DBF) has been proposed as a method to implement Bloom 

Filters in a scalable environment, i.e. where the final size of a dataset is not known in advance. DBF seems to be a logical addition to BF for a 

scalable environment - just before the false positive (FP) rate of a particular BF starts growing fast, we simply switch to a new filter and store the 

old one.DBF handles inserts and lookups. We present multi-dimension dynamic bloom filters (MDDBF) to support concise representation and 

approximate membership queries of dynamic sets in multiple attribute dimensions, and study the false positive probability and union algebra 

operations. We also explore the optimization approach and three network applications of bloom filters, namely bloom joins, informed search, 

and global index implementation. 
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I. INTRODUCTION 

Bloom Filters were suggested in 1970 but have recently 

gained increased momentum. The major variations of bloom 

filters include compressed bloom filters [1], counting bloom 

filters [2], distance-sensitive bloom filters [3], bloom filters 

with two hash functions [4], space-code bloom filters [5], 

and spectral bloom filters [6]. Compressed bloom filters can 

improve performance in terms of bandwidth saving when 

bloom filters are passed on as messages. Counter bloom 

filters deal mainly with the element deletion operation of 

bloom filters. Distance-sensitive bloom filters, using 

locality-sensitive hash functions, try to answer queries of the 

form, “Is x close to an element of S?”. Bloom filters with 

two hash functions use a standard technique in hashing to 

simplify the implementation of bloom filters significantly.  

Space-code bloom filters and spectral bloom filters are 

approximate representation of a multi set, which allows for 

querying, “How many occurrences of x are there in set M?”. 

Both bloom filters and their variations are suitable for 

representing static sets whose size can be estimated before 

design and deployment. 

 Although the SBF and its variations have found 

suitable applications in different fields, the following three 

obstacles still lack suitable and practical solutions: 

a. As the actual size of a data set increases, its 

corresponding bloom filter should scale well in order 

to avoid too much deviation between the actual false 

positive probability and the predefined threshold. In 

order to solve this problem, we introduce dynamic 

bloom filters (DBF) to support concise representation 

and approximate membership queries of dynamic sets. 

b. How to represent dynamic sets to support queries 

based on multiple attributes? We propose multi-

dimension dynamic bloom filters (MDDBF) to support 

concise representation and approximate membership 

queries of dynamic set in multiple attribute 

dimensions.  

 

c. How to implement an efficient and scalable informed 

search protocol in unstructured P2P networks? We 

propose a framework of informed search based on 

bloom filters, and evaluate the positive impact of 

bloom filter through simulation. 

The basic idea of dynamic bloom filters is to represent a 

dynamic set with a dynamic s×m bit matrix that consists of s 

standard bloom filters. We prove that DBF can control the 

false positive probability at a low level if DBF dynamically 

adjusts the number of standard bloom filters used according 

to the actual number of elements that belong to the given 

set. Furthermore, the space complexity is also acceptable if 

the estimation of the maximum size of the dynamic set does 

not deviate too much from the actual one. The most related 

work is split bloom filters [7] which use a constant s×m bit 

matrix to represent a set, where s is a constant and must be 

pre-defined according to the estimation of the maximum 

value of set size. However, split bloom filters waste too 

much storage space and bandwidth before the actual size of 

the given set reaches (m × ln 2)/k. Furthermore, a split 

bloom filter needs to be reconstructed when the actual size 

of the given set exceeds the estimation value. On the 

contrary, DBF naturally overcomes these disadvantages. 

II. CONCISE REPRESENTATION AND 

MEMBERSHIP QUERIES OF STATIC SETS 

A. Standard Bloom Filters: 

A Bloom filter for representing a set X={x1, . . . ,xn} of 

n items is described by a vector of m bits, initially all set to 

0. A Bloom filter uses k independent hash functions h1, . . . 

,hk to map each item of X to a random number over a range 

{1, . . .,m} [8],[9] uniformly. For each item x of X, we 
define its Bloom filter address as Bfaddress(x), consisting of 

hi(x) for 1≤ i ≤k, and the bits belonging to Bfaddress(x) are 

set to 1 when inserting x. Once the set X is represented as a 

Bloom filter, to judge whether an element x belongs to X, 

one just needs to check whether all hi(x) bits are set to 1. If 
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so, then x is a member of X. Otherwise, we assume that x is 

not a member of X. It is clear that a Bloom filter may yield a 

false positive due to hash collisions, for which it suggests 

that an element x is in X even though it is not. The reason is 

that all indexed bits were previously set to 1 by other items 

[8].  

The probability of a false positive for an element not in 

the set can be calculated in a straightforward fashion, given 

our assumption that hash functions are perfectly random. Let 

p be the probability that a random bit of the Bloom filter is 

0, and let n be the number of items that have been added to 

the Bloom filters. Then, p = (1-1/m) n*k ≈ e –n*k/m as n*k bits 

are randomly selected, with probability 1/m in the process of 

adding each item. We use fBF
m,k,n to denote the false positive 

probability caused by the (n+1)th insertion, and we have the 

expression:  

fBF
m,k,n = (1-p)k ≈ (1- e –n*k/m)k  (1) 

In the remainder of this paper, the false positive 

probability is also called the false match probability. We can 

calculate the filter size and number of hash functions given 

the false match probability and the set cardinality according 

to (1) from [8].  We know that the minimum value of fBF
m,k,n 

is 0:6185m/n when k=(m/n) ln 2. In practice, of course, k 

must be an integer, and smaller k might be preferred since 

that would reduce the amount of computation required.  

For a static set, it is possible to know the whole set in 

advance and design a perfect hash function to avoid hash 

collisions. In reality, an SBF is usually used to represent 

dynamic sets as well as static sets. Therefore, it is 

impossible to know the whole set and design k perfect hash 

functions in advance. On the other hand, different perfect 

hash functions used by an SBF may cause hash collisions. 

Thus, the perfect hash functions are not suitable for 

overcoming hash collisions in SBFs in theory, as well as 

practice. 

On the other hand, a static set is typically not allowed to 

perform data addition and deletion operations once it is 

represented by an SBF. Thus, the bit vectors of the SBF will 

stay the same over time, and then, the SBF can correctly 

reflect the set. Therefore, the membership queries based on 

the SBF will not yield a false negative in this scenario. 

However, the SBF must commonly handle a dynamic set 

that is changing over time, with items being added and 

deleted. 

In order to support the data deletion operation, an SBF 

hashes the item to be deleted and resets the corresponding 

bits to 0. It may, however, set a location to 0, which is also 

mapped by other items. In such a case, the SBF no longer 

correctly reflects the set and will produce false negative 

judgments with high probability. To address this problem, 

Fan et al. introduced counting Bloom filters (CBFs) [2]. 

Each entry in the CBF is not a single bit but rather a small 

counter that consists of several bits. When an item is added, 

the corresponding counters are incremented; when an item is 

deleted, the respective counters are decremented. The 

experimental results and mathematical analysis show that 

four bits for each counter is large enough to avoid overflows 

[2]. 

 

 

III. CONCISE REPRESENTATION AND 

MEMBERSHIP QUERIES OF DYNAMIC SET 

DBF focuses on addressing dynamic sets with changing 

cardinality rather than static sets, which were addressed by 

the previous version. It should be noted that DBFs can 

support static sets. Throughout this paper, an SBF is called 

active only if its false match probability does not reach a 

designed upper bound; otherwise, it is called full. Let nr be 

the number of items accommodated by an SBF. The nr is 

equal to the capacity c for a full SBF and less than c for an 

active SBF. In the rest of this paper, we use SBF to imply 

counting Bloom filters for the sake of supporting the item 

deletion operation. 

A. Overview of Dynamic Bloom Filters: 

A DBF consists of s homogeneous SBFs. The initial 

value of s is 1, and the initial SBF is active. The DBF only 

inserts items of a set into the active SBF, and appends a new 

SBF as an active SBF when the previous active SBF 

becomes full. The first step to implement a DBF is 

initializing the following parameters: the upper bound on 

false match probability of the DBF, the largest value of s, 

the upper bound on false match probability of the SBF, the 

filter size m of the SBF, the capacity c of the SBF, and 

number of hash functions k of the SBF. As we will discuss 

further on in this paper, the approaches used to initialize 

these parameters re not identical in different scenarios. 

Alg 1. Insert (x) 

Require: x is not null 

1: ActiveBF← GetActiveStandardBF() 

2: if ActiveBF is null then 

3:  ActiveBF← CreateStandardBF(m, k) 

4:  Add ActiveBF to this dynamic Bloom filter. 

5:  s ←s+1 

6: for i = 1 to k do 

7: ActiveBF[hashi(x)] ←ActiveBF[hashi(x)]+1 

8: ActiveBF.nr← ActiveBF.nr+1 

GetActiveStandardBF() 

1: for j = 1 to s do 

2:  if StandardBFj.nr < c then 

3:   Return StandardBFj 

4: Return null 

Given a dynamic set X with n items, we will first show 

how a DBF is represented through a series of item insertion 

operations. Algorithm 1 contains the details regarding the 

process of the item insertion operation. It is clear that the 

DBF should first discover an active SBF when inserting an 

item x of X. If there are no active SBFs, the DBF creates a 

new SBF as an active SBF and increments s by one. The 

DBF inserts x into the active SBF and increments nr by one 

for the active SBF. If X does not decrease after deployment, 

only the last SBF of the DBF will be active, whereas the 

other SBFs are full. Otherwise, these full SBFs may become 

active if some items are removed from the set X.  

It is convenient to represent X as a DBF by invoking Alg 

1 repeatedly. After achieving the DBF, we can answer any 

set membership queries based on the DBF instead of X. The 

detailed process is illustrated in Alg 2, which uses an item x 

as input. If all the hashj(x) counters are set to a nonzero 

value for 1≤ j ≤k in the first SBF, then the item x is a 

member of X. Otherwise, the DBF checks its second SBF, 

and so on. In summary, x is not a member of X if it is not 
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found in all SBFs, and is a member of X if it is found in any 

SBF of the DBF.  

Alg 2. Query (x) 

Require: x is not null 

1: for i = 1 to s do 

2:  counter ← 0 

3:  for j = 1 to k do 

4:   if StandardBFi[hashj(x)]= 0 then 

5:    break 

6:   else 

7:    counter← counter + 1 

8:  if counter = k then 

9:   Return true 

10: Return false 

If an item x is removed from X, the corresponding DBF 

must execute Algorithm 3 with x as the input in order to 

reflect X as consistently as possible. First of all, the DBF 

must identify the SBF in which all the hashj(x) counters are 

set to a nonzero for 1≤i ≤k. If no SBF exists that satisfies the 

constraint in the DBF, the item deletion operation will be 

rejected since x does not belong to X. If there is only one 

SBF satisfying the constraint, the counters hashj(x) for 1≤ j 

≤k are decremented by one. If there are multiple SBFs 

satisfying the constraint, then x may appear to be in multiple 

SBFs of the DBF. Thus, it is impossible for the DBF to 

know which the right one is. If the DBF persists in removing 

membership information of x from it, the wrong SBF may 

perform the item deletion operation with given probability. 

The wrong item deletion operation destroys the DBF and 

leads to, at most, k potential false negatives. To avoid 

producing false negatives, the membership information of 

such items is kept by the DBF, but removed from X. 

Alg 3. Delete (x) 

Require: x is not null 

1: index ←null 

2: counter← 0 

3: for i = 1 to s do 

4:  if BF[i].Query(x) then 

5:   index← i 

6:   counter ←counter + 1 

7:  if counter > 1 then 

8:   break 

9: if counter = 1 then 

10:  for i = 1 to k do 

11:      BF[index][hashi(x)]←BF[index][hashi(x)]-1 

12:      BF[index].nr ←BF[index].nr-1 

13:      Merge() 

14:      Return true 

15: else 

16:      Return false 

Merge() 

1: for j = 1 to s do 

2:   if StandardBFj:n < c then 

3:     for k = j+1 to s do 

4:       if StandardBFj.nr + StandardBFk.nr < c 

then 

5:  StandardBFj← StandardBFj U StandardBFk 

6:  StandardBFj.nr+← StandardBFk.nr 

7:  Clear StandardBFk from the dynamic 

Bloom filter. 

8: Break 

Furthermore, two active SBFs should be replaced by the 

union of them if the addition of their nr is not greater than 

the capacity c of one SBF. The union operation of counting 

Bloom filters is similar to that of standard Bloom filters, 

which performs the addition operation between counter 

vectors instead of the logical or operation between bit 

vectors. Note that there is at most one pair of SBFs which 

satisfy the constraint of union operation after an item is 

removed from the DBF.   

The average time complexity of adding an item x to an 

SBF and a DBF is the same: O(k), where k is the number of 

hash functions used by them. The average time complexities 

of membership queries for SBF and DBF are O(k) and 

O(k+s), respectively. The average time complexities of a 

member deletion for SBF and DBF are O(k) and O(k+s), 

respectively. 

IV. CONCISE REPRESENTATION AND 

MEMBERSHIP QUERIES OF MULTI-ATTRIBUTE 

DYNAMIC SET 

A. Multi-Dimension Dynamic Bloom Filters: 

Standard and dynamic bloom filters just focus on 

representing sets consisted of single attribute objects, and 

supporting approximate membership queries based on a 

single attribute. In reality, it is common to describe and 

represent a given object using multiple attributes in many 

applications. In order to deal with this situation, we propose 

multi-dimension standard bloom filters (MDBF) and multi-

dimension dynamic bloom filters (MDDBF). The basic idea 

is to represent sets consisted of multi-attribute objects from 

each attribute dimension using standard and dynamic bloom 

filters. In the following discussion, we first explain the 

details of adding objects with multi attribute to a MDDBF in 

Alg 4. Then add all the objects of a dynamic set A to the 

MDDBF according to Alg 4.  

In order to represent multi-dimension information of a 

given object, we first obtain the DBF for each attribute 

dimension according to the attribute name from current 

MDDBF. Then, add the value of each attribute to the 

corresponding DBF by 

Alg 4. Insert (element) 

Require: element with multi-attribute is not null 

1: Get all attribute names of the element, and store them to a 

string array attributes 

2: for i = 0 to attributes.length do 

3: DynamicDBF ← GetDynamicDBF(attributes[i]) 

4: if DynamicDBF is null then 

5:  DynamicDBF ← CreateDynamicDBF(m, k) 

6:  SetDynamicBF(attribute[i], DynamicDBF) 

7: DynamicDBF.Insert(element.GetValue(attribute[i])) 

calling Alg 1. It is necessary to initialize every DBF for 

each attribute dimension before processing the first addition.  

Once dynamic set A has been represented as an 

MDDBF, we check whether an element is a member of set 

A according to the MDDBF instead of the set A itself. We 

present the details of the algorithm of supporting 

membership queries based on the value of multi-attribute in 

Alg 4. 
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Alg 2. Query (element) 

Require: element with multi-attribute is not null 

1: Get all attribute names of element, and store them to a 

string array attributes 

2: for i = 0 to attributes.length do 

3: DynamicDBF← GetDynamicDBF(attributes[i]) 

4: if DynamicDBF.Query (element.GetValue(attributes[i])) 

is false then 

5:  Return false 

6: Return true 

The major process of Algorithm 4 is as follows. First, 

find the corresponding DBF for each attribute dimension of 

an element. Second, check whether the value of element for 

each attribute dimension is presented by corresponding DBF 

by invoking Alg 2. If the responses for all attribute 

dimensions are true, one can assume that element ∈ A with 

some false positive probability. Otherwise, one can be sure 

that element     A.  

The time complexity of adding an element to MDDBF is 

O(l×k), where l denotes the number of attribute dimensions 

used to describe the full information of a given object, and k 

denotes the number of hash functions used by dynamic 

bloom filters. The average time complexity of querying an 

object from a given MDDBF based on multi-attribute is O(l 

× k × (s + 1)/2), where s is the number of standard bloom 

filters used by the DBF for each attribute dimension. 

Algorithms of multi-attribute set representation and 

membership queries are similar between MDBF and 

MDDBF, so these algorithms for MDBF are omitted here. 

V. APPLICATIONS OF DYNAMIC BLOOM 

FILTERS 

Bloom filters have a great potential for distributed 

protocols where systems need to share information about 

what data they have. A survey of network applications of 

bloom filters has been presented in [9]. Moreover, bloom 

filters as a better data structure has great potential for 

representing objects in memory [10], [11]. DBF is also 

suitable for various applications mentioned in those papers, 

and has some better characteristics than standard bloom 

filters.  

In distributed applications, some peers own large amount 

of data while most of the nodes own a small amount of data. 

If we set relevant parameters of standard bloom filters 

according to the largest amount of data, it would result in 

huge waste of space and bandwidth. By adjusting the 

number of standard bloom filters used according to the 

actual number of data at each node, DBF can overcome this 

problem. Furthermore, DBF can tolerate the data increase 

without reconstructing a new bloom filter at each node. If a 

distributed application desires to distribute DBF of each 

peer among part of or all other peers, it also needs to keep 

the consistency among replications for each DBF. In reality, 

the data insertion just affects the active BF of DBF, and for 

keeping consistency it is enough to gossip the active BF 

instead of the whole DBF.  

a. Bloom joins: Bloom joins [12], [13] is a method for 

performing a fast join between two distributed data sets 

R1 and R2 based on a attribute a: R1 in site 1 and R2 in 

site 2. The bloom joins includes the following steps. 

First, site 1 represents R1 as a BF(Ra) in the attribute 

dimension a and sends it to site 2. Second, site 2 sends 

tuples of R2 with a match in BF(Ra)  to site 1, noted as 

R12. Third, site 1 performs a join operation between R1 

and R12, and produces the final result. The first 

transmission only sends a summarization of a 

projection of the tuples, and the second transmission 

usually contains a small fraction of the tuples. So this 

method is economical in network usage.  

DBF is also suitable to perform single attribute 

distributed bloom joins between data sets as the number of 

tuples increases. Furthermore, MDDBF can be used to 

perform multi attribute distributed bloom joins between data 

sets as the number of tuples increases. In the following, we 

will give an example. 

SELECT R.a, R.b, R.c, S.d, S.e FROM R, S 

WHERE R.a = S.a and R.b=S.b 

First, Site 1 represents data sets R as a BF(Ra,b) in the 

attribute dimensions a and b, and sends it to site 2. Second, 

site 2 sends tuples of data set S with a match in BF(Ra,b) to 

site 1, denoted as Rr,s. Third, at site 1, performs a join 

operation between R and Rr,s, and produces the final result.  

b. Informed Routing: The searching strategy in 

unstructured P2P systems is either blind search or 

informed search [14]. In a blind search such as iterative 

deepening [15] and random walker [16], no node has 

information about the location of the desired data. In 

an informed search [17], [18], each node keeps some 

information about the data location. 

Bloom filters are an alternative method to implement 

informed resource routing for distributed applications, and 

many literatures have recently presented different 

approaches to utilize bloom filters for different scenarios 

[19], [20], [21], [22], [23]. The common assumption in those 

literatures is to represent local resource using bloom filters 

and gossip it to other peers according to different control 

mechanisms. Thus, each peer can possess individual bloom 

filters coming from related peers, then re-construct them 

according to the distance and/or direction between the local 

peer and other peers, and obtain a set of union results of 

individual bloom filters at each relative distance and/or 

relative direction.  

A dynamic bloom filter is still suitable to support 

informed routing, and has more advantages than the 

standard one as the resource at each peer increases. 

Furthermore, a dynamic bloom filter is more suitable to 

support the necessary union operation than the standard one 

according to Theorem 5. As mentioned above, dynamic 

bloom filters, standard bloom filters, and their variations just 

represent objects and support approximate membership 

queries in a single attribute dimension. On the other hand, it 

often requires to route multi-attribute queries in reality. Both 

MDDBF and MDBF can satisfy this need. The former has 

the advantage over the latter as the resource at each peer 

increases, and supports the union operation better than the 

latter according to Theorem 7. Thus, DBF and its variations 

are better alternatives than standard bloom filters to 

implement informed routing in some scenarios.  

c. Implementation of global index: We will refer to the 

globally replicated index as the global index, while the 

more detailed index that describes only the resources 

hosted locally by a peer will be denoted as the local 

index. Global index can be implemented in a number 

of ways. We define bloom filters in such a way that 

each peer summarizes the set of terms in its local index 
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as a bloom filter. The cost of replicating the global 

index can be reduced by simply decreasing the 

gossiping rate; updating the global index with a new 

bloom filter requires constant time, regardless of the 

number of changes introduced. Furthermore, bloom 

filters can be compressed to achieve a single bit per 

word average ratio. Memory-constrained peers can 

also independently trade accuracy for storage by 

combining several filters into one. 

When the global index has been established and 

propagated to the whole network, each peer uses a copy of 

global index hosted at local storage to find the desired peers 

and appropriate resources within one hop. In order to 

support queries that contain a set of queries based on 

different attribute dimensions, we can adopt MDDBF to 

summarize local content index and construct global content 

index by a periodic gossiping update operation. 

VI. CONCLUSIONS 

A bloom filter is a simple, space-efficient, randomized 

data structure for concisely representing a static data set in 

order to support approximate membership queries. As the 

actual size of the set increases continuously after 

deployment, a bloom filter should scale well in order to 

avoid too much deviation between the actual false positive 

probability and the predefined threshold. In order to deal 

with this problem, we present dynamic bloom filters to 

support concise representation and approximate membership 

queries of dynamic sets. It has been proved that dynamic 

bloom filters not only possess the advantage of standard 

bloom filters, but also have better features than standard 

bloom filters when dealing with dynamic sets. False positive 

probability of dynamic bloom filters can be controlled at a 

low level, and space complexity is also acceptable if the 

estimation of the threshold of the dynamic set does not 

deviate too much. In addition, we present multi-dimension 

dynamic bloom filters to support concise representation and 

approximate membership queries of dynamic sets from 

multiple attribute dimensions.  

We have explored three kinds of representative 

applications of dynamic bloom filters: bloom joins, 

informed search, and implementation of global index. These 

applications also illustrate that dynamic bloom filters and 

their variations scale well and are practical for representing 

dynamic sets. Finally, we have simulated the informed 

search protocol based on bloom filters in unstructured P2P 

networks. Our simulation shows that informed search based 

on bloom filters can obtain high recall and success rate of 

query than the blind search protocol. 

In future work, we will further enhance dynamic bloom 

filters in order to support the removal operation, and 

compare the space/time trade-off of both dynamic and 

standard bloom filters. 
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