
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 650

ISSN No. 0976-5697

Optimization and Applications of Dynamic Bloom Filters

M.M.Siva Krishna*,V.Bala Sankar
1MCA (M.Tech (cse), 2Asst. Professor in Dept. of CSE

Sri Sai Aditya Institute of Science and Technology, Surampalem

East Godavari (dt), Andhra Pradesh,India

*1sivakrishna.munaga@gmail.com, 2balasankar.v@gmail.com

Abstract: Bloom Filters (BF) are space-efficient data structures that allow membership queries from a set. The Bloom Filters and its variants just

focus on how to represent a static set and decrease the false probability to a sufficiently low level. By look into the applications based on the

Bloom Filters, we reveal that dynamic datasets are more common and important than static sets. But the existing variants of the Bloom Filters

cannot support dynamic data sets well. To address this issue Dynamic Bloom Filters (DBF) has been proposed as a method to implement Bloom

Filters in a scalable environment, i.e. where the final size of a dataset is not known in advance. DBF seems to be a logical addition to BF for a

scalable environment - just before the false positive (FP) rate of a particular BF starts growing fast, we simply switch to a new filter and store the

old one.DBF handles inserts and lookups. We present multi-dimension dynamic bloom filters (MDDBF) to support concise representation and

approximate membership queries of dynamic sets in multiple attribute dimensions, and study the false positive probability and union algebra

operations. We also explore the optimization approach and three network applications of bloom filters, namely bloom joins, informed search,

and global index implementation.

Key words: BF, FP, DBF, MDDBF

I. INTRODUCTION

Bloom Filters were suggested in 1970 but have recently

gained increased momentum. The major variations of bloom

filters include compressed bloom filters [1], counting bloom

filters [2], distance-sensitive bloom filters [3], bloom filters

with two hash functions [4], space-code bloom filters [5],

and spectral bloom filters [6]. Compressed bloom filters can

improve performance in terms of bandwidth saving when

bloom filters are passed on as messages. Counter bloom

filters deal mainly with the element deletion operation of

bloom filters. Distance-sensitive bloom filters, using

locality-sensitive hash functions, try to answer queries of the

form, “Is x close to an element of S?”. Bloom filters with

two hash functions use a standard technique in hashing to

simplify the implementation of bloom filters significantly.

Space-code bloom filters and spectral bloom filters are

approximate representation of a multi set, which allows for

querying, “How many occurrences of x are there in set M?”.

Both bloom filters and their variations are suitable for

representing static sets whose size can be estimated before

design and deployment.

 Although the SBF and its variations have found

suitable applications in different fields, the following three

obstacles still lack suitable and practical solutions:

a. As the actual size of a data set increases, its

corresponding bloom filter should scale well in order

to avoid too much deviation between the actual false

positive probability and the predefined threshold. In

order to solve this problem, we introduce dynamic

bloom filters (DBF) to support concise representation

and approximate membership queries of dynamic sets.

b. How to represent dynamic sets to support queries

based on multiple attributes? We propose multi-

dimension dynamic bloom filters (MDDBF) to support

concise representation and approximate membership

queries of dynamic set in multiple attribute

dimensions.

c. How to implement an efficient and scalable informed

search protocol in unstructured P2P networks? We

propose a framework of informed search based on

bloom filters, and evaluate the positive impact of

bloom filter through simulation.

The basic idea of dynamic bloom filters is to represent a

dynamic set with a dynamic s×m bit matrix that consists of s

standard bloom filters. We prove that DBF can control the

false positive probability at a low level if DBF dynamically

adjusts the number of standard bloom filters used according

to the actual number of elements that belong to the given

set. Furthermore, the space complexity is also acceptable if

the estimation of the maximum size of the dynamic set does

not deviate too much from the actual one. The most related

work is split bloom filters [7] which use a constant s×m bit

matrix to represent a set, where s is a constant and must be

pre-defined according to the estimation of the maximum

value of set size. However, split bloom filters waste too

much storage space and bandwidth before the actual size of

the given set reaches (m × ln 2)/k. Furthermore, a split

bloom filter needs to be reconstructed when the actual size

of the given set exceeds the estimation value. On the

contrary, DBF naturally overcomes these disadvantages.

II. CONCISE REPRESENTATION AND

MEMBERSHIP QUERIES OF STATIC SETS

A. Standard Bloom Filters:

A Bloom filter for representing a set X={x1, . . . ,xn} of

n items is described by a vector of m bits, initially all set to

0. A Bloom filter uses k independent hash functions h1, . . .

,hk to map each item of X to a random number over a range

{1, . . .,m} [8],[9] uniformly. For each item x of X, we
define its Bloom filter address as Bfaddress(x), consisting of

hi(x) for 1≤ i ≤k, and the bits belonging to Bfaddress(x) are

set to 1 when inserting x. Once the set X is represented as a

Bloom filter, to judge whether an element x belongs to X,

one just needs to check whether all hi(x) bits are set to 1. If

M. M. Siva Krishna et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,650-655

© 2010, IJARCS All Rights Reserved 651

so, then x is a member of X. Otherwise, we assume that x is

not a member of X. It is clear that a Bloom filter may yield a

false positive due to hash collisions, for which it suggests

that an element x is in X even though it is not. The reason is

that all indexed bits were previously set to 1 by other items

[8].

The probability of a false positive for an element not in

the set can be calculated in a straightforward fashion, given

our assumption that hash functions are perfectly random. Let

p be the probability that a random bit of the Bloom filter is

0, and let n be the number of items that have been added to

the Bloom filters. Then, p = (1-1/m) n*k ≈ e –n*k/m as n*k bits

are randomly selected, with probability 1/m in the process of

adding each item. We use fBF
m,k,n to denote the false positive

probability caused by the (n+1)th insertion, and we have the

expression:

fBF
m,k,n = (1-p)k ≈ (1- e –n*k/m)k (1)

In the remainder of this paper, the false positive

probability is also called the false match probability. We can

calculate the filter size and number of hash functions given

the false match probability and the set cardinality according

to (1) from [8]. We know that the minimum value of fBF
m,k,n

is 0:6185m/n when k=(m/n) ln 2. In practice, of course, k

must be an integer, and smaller k might be preferred since

that would reduce the amount of computation required.

For a static set, it is possible to know the whole set in

advance and design a perfect hash function to avoid hash

collisions. In reality, an SBF is usually used to represent

dynamic sets as well as static sets. Therefore, it is

impossible to know the whole set and design k perfect hash

functions in advance. On the other hand, different perfect

hash functions used by an SBF may cause hash collisions.

Thus, the perfect hash functions are not suitable for

overcoming hash collisions in SBFs in theory, as well as

practice.

On the other hand, a static set is typically not allowed to

perform data addition and deletion operations once it is

represented by an SBF. Thus, the bit vectors of the SBF will

stay the same over time, and then, the SBF can correctly

reflect the set. Therefore, the membership queries based on

the SBF will not yield a false negative in this scenario.

However, the SBF must commonly handle a dynamic set

that is changing over time, with items being added and

deleted.

In order to support the data deletion operation, an SBF

hashes the item to be deleted and resets the corresponding

bits to 0. It may, however, set a location to 0, which is also

mapped by other items. In such a case, the SBF no longer

correctly reflects the set and will produce false negative

judgments with high probability. To address this problem,

Fan et al. introduced counting Bloom filters (CBFs) [2].

Each entry in the CBF is not a single bit but rather a small

counter that consists of several bits. When an item is added,

the corresponding counters are incremented; when an item is

deleted, the respective counters are decremented. The

experimental results and mathematical analysis show that

four bits for each counter is large enough to avoid overflows

[2].

III. CONCISE REPRESENTATION AND

MEMBERSHIP QUERIES OF DYNAMIC SET

DBF focuses on addressing dynamic sets with changing

cardinality rather than static sets, which were addressed by

the previous version. It should be noted that DBFs can

support static sets. Throughout this paper, an SBF is called

active only if its false match probability does not reach a

designed upper bound; otherwise, it is called full. Let nr be

the number of items accommodated by an SBF. The nr is

equal to the capacity c for a full SBF and less than c for an

active SBF. In the rest of this paper, we use SBF to imply

counting Bloom filters for the sake of supporting the item

deletion operation.

A. Overview of Dynamic Bloom Filters:

A DBF consists of s homogeneous SBFs. The initial

value of s is 1, and the initial SBF is active. The DBF only

inserts items of a set into the active SBF, and appends a new

SBF as an active SBF when the previous active SBF

becomes full. The first step to implement a DBF is

initializing the following parameters: the upper bound on

false match probability of the DBF, the largest value of s,

the upper bound on false match probability of the SBF, the

filter size m of the SBF, the capacity c of the SBF, and

number of hash functions k of the SBF. As we will discuss

further on in this paper, the approaches used to initialize

these parameters re not identical in different scenarios.

Alg 1. Insert (x)

Require: x is not null

1: ActiveBF← GetActiveStandardBF()

2: if ActiveBF is null then

3: ActiveBF← CreateStandardBF(m, k)

4: Add ActiveBF to this dynamic Bloom filter.

5: s ←s+1

6: for i = 1 to k do

7: ActiveBF[hashi(x)] ←ActiveBF[hashi(x)]+1

8: ActiveBF.nr← ActiveBF.nr+1

GetActiveStandardBF()

1: for j = 1 to s do

2: if StandardBFj.nr < c then

3: Return StandardBFj

4: Return null

Given a dynamic set X with n items, we will first show

how a DBF is represented through a series of item insertion

operations. Algorithm 1 contains the details regarding the

process of the item insertion operation. It is clear that the

DBF should first discover an active SBF when inserting an

item x of X. If there are no active SBFs, the DBF creates a

new SBF as an active SBF and increments s by one. The

DBF inserts x into the active SBF and increments nr by one

for the active SBF. If X does not decrease after deployment,

only the last SBF of the DBF will be active, whereas the

other SBFs are full. Otherwise, these full SBFs may become

active if some items are removed from the set X.

It is convenient to represent X as a DBF by invoking Alg

1 repeatedly. After achieving the DBF, we can answer any

set membership queries based on the DBF instead of X. The

detailed process is illustrated in Alg 2, which uses an item x

as input. If all the hashj(x) counters are set to a nonzero

value for 1≤ j ≤k in the first SBF, then the item x is a

member of X. Otherwise, the DBF checks its second SBF,

and so on. In summary, x is not a member of X if it is not

M. M. Siva Krishna et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,650-655

© 2010, IJARCS All Rights Reserved 652

found in all SBFs, and is a member of X if it is found in any

SBF of the DBF.

Alg 2. Query (x)

Require: x is not null

1: for i = 1 to s do

2: counter ← 0

3: for j = 1 to k do

4: if StandardBFi[hashj(x)]= 0 then

5: break

6: else

7: counter← counter + 1

8: if counter = k then

9: Return true

10: Return false

If an item x is removed from X, the corresponding DBF

must execute Algorithm 3 with x as the input in order to

reflect X as consistently as possible. First of all, the DBF

must identify the SBF in which all the hashj(x) counters are

set to a nonzero for 1≤i ≤k. If no SBF exists that satisfies the

constraint in the DBF, the item deletion operation will be

rejected since x does not belong to X. If there is only one

SBF satisfying the constraint, the counters hashj(x) for 1≤ j

≤k are decremented by one. If there are multiple SBFs

satisfying the constraint, then x may appear to be in multiple

SBFs of the DBF. Thus, it is impossible for the DBF to

know which the right one is. If the DBF persists in removing

membership information of x from it, the wrong SBF may

perform the item deletion operation with given probability.

The wrong item deletion operation destroys the DBF and

leads to, at most, k potential false negatives. To avoid

producing false negatives, the membership information of

such items is kept by the DBF, but removed from X.

Alg 3. Delete (x)

Require: x is not null

1: index ←null

2: counter← 0

3: for i = 1 to s do

4: if BF[i].Query(x) then

5: index← i

6: counter ←counter + 1

7: if counter > 1 then

8: break

9: if counter = 1 then

10: for i = 1 to k do

11: BF[index][hashi(x)]←BF[index][hashi(x)]-1

12: BF[index].nr ←BF[index].nr-1

13: Merge()

14: Return true

15: else

16: Return false

Merge()

1: for j = 1 to s do

2: if StandardBFj:n < c then

3: for k = j+1 to s do

4: if StandardBFj.nr + StandardBFk.nr < c

then

5: StandardBFj← StandardBFj U StandardBFk

6: StandardBFj.nr+← StandardBFk.nr

7: Clear StandardBFk from the dynamic

Bloom filter.

8: Break

Furthermore, two active SBFs should be replaced by the

union of them if the addition of their nr is not greater than

the capacity c of one SBF. The union operation of counting

Bloom filters is similar to that of standard Bloom filters,

which performs the addition operation between counter

vectors instead of the logical or operation between bit

vectors. Note that there is at most one pair of SBFs which

satisfy the constraint of union operation after an item is

removed from the DBF.

The average time complexity of adding an item x to an

SBF and a DBF is the same: O(k), where k is the number of

hash functions used by them. The average time complexities

of membership queries for SBF and DBF are O(k) and

O(k+s), respectively. The average time complexities of a

member deletion for SBF and DBF are O(k) and O(k+s),

respectively.

IV. CONCISE REPRESENTATION AND

MEMBERSHIP QUERIES OF MULTI-ATTRIBUTE

DYNAMIC SET

A. Multi-Dimension Dynamic Bloom Filters:

Standard and dynamic bloom filters just focus on

representing sets consisted of single attribute objects, and

supporting approximate membership queries based on a

single attribute. In reality, it is common to describe and

represent a given object using multiple attributes in many

applications. In order to deal with this situation, we propose

multi-dimension standard bloom filters (MDBF) and multi-

dimension dynamic bloom filters (MDDBF). The basic idea

is to represent sets consisted of multi-attribute objects from

each attribute dimension using standard and dynamic bloom

filters. In the following discussion, we first explain the

details of adding objects with multi attribute to a MDDBF in

Alg 4. Then add all the objects of a dynamic set A to the

MDDBF according to Alg 4.

In order to represent multi-dimension information of a

given object, we first obtain the DBF for each attribute

dimension according to the attribute name from current

MDDBF. Then, add the value of each attribute to the

corresponding DBF by

Alg 4. Insert (element)

Require: element with multi-attribute is not null

1: Get all attribute names of the element, and store them to a

string array attributes

2: for i = 0 to attributes.length do

3: DynamicDBF ← GetDynamicDBF(attributes[i])

4: if DynamicDBF is null then

5: DynamicDBF ← CreateDynamicDBF(m, k)

6: SetDynamicBF(attribute[i], DynamicDBF)

7: DynamicDBF.Insert(element.GetValue(attribute[i]))

calling Alg 1. It is necessary to initialize every DBF for

each attribute dimension before processing the first addition.

Once dynamic set A has been represented as an

MDDBF, we check whether an element is a member of set

A according to the MDDBF instead of the set A itself. We

present the details of the algorithm of supporting

membership queries based on the value of multi-attribute in

Alg 4.

M. M. Siva Krishna et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,650-655

© 2010, IJARCS All Rights Reserved 653

Alg 2. Query (element)

Require: element with multi-attribute is not null

1: Get all attribute names of element, and store them to a

string array attributes

2: for i = 0 to attributes.length do

3: DynamicDBF← GetDynamicDBF(attributes[i])

4: if DynamicDBF.Query (element.GetValue(attributes[i]))

is false then

5: Return false

6: Return true

The major process of Algorithm 4 is as follows. First,

find the corresponding DBF for each attribute dimension of

an element. Second, check whether the value of element for

each attribute dimension is presented by corresponding DBF

by invoking Alg 2. If the responses for all attribute

dimensions are true, one can assume that element ∈ A with

some false positive probability. Otherwise, one can be sure

that element A.

The time complexity of adding an element to MDDBF is

O(l×k), where l denotes the number of attribute dimensions

used to describe the full information of a given object, and k

denotes the number of hash functions used by dynamic

bloom filters. The average time complexity of querying an

object from a given MDDBF based on multi-attribute is O(l

× k × (s + 1)/2), where s is the number of standard bloom

filters used by the DBF for each attribute dimension.

Algorithms of multi-attribute set representation and

membership queries are similar between MDBF and

MDDBF, so these algorithms for MDBF are omitted here.

V. APPLICATIONS OF DYNAMIC BLOOM

FILTERS

Bloom filters have a great potential for distributed

protocols where systems need to share information about

what data they have. A survey of network applications of

bloom filters has been presented in [9]. Moreover, bloom

filters as a better data structure has great potential for

representing objects in memory [10], [11]. DBF is also

suitable for various applications mentioned in those papers,

and has some better characteristics than standard bloom

filters.

In distributed applications, some peers own large amount

of data while most of the nodes own a small amount of data.

If we set relevant parameters of standard bloom filters

according to the largest amount of data, it would result in

huge waste of space and bandwidth. By adjusting the

number of standard bloom filters used according to the

actual number of data at each node, DBF can overcome this

problem. Furthermore, DBF can tolerate the data increase

without reconstructing a new bloom filter at each node. If a

distributed application desires to distribute DBF of each

peer among part of or all other peers, it also needs to keep

the consistency among replications for each DBF. In reality,

the data insertion just affects the active BF of DBF, and for

keeping consistency it is enough to gossip the active BF

instead of the whole DBF.

a. Bloom joins: Bloom joins [12], [13] is a method for

performing a fast join between two distributed data sets

R1 and R2 based on a attribute a: R1 in site 1 and R2 in

site 2. The bloom joins includes the following steps.

First, site 1 represents R1 as a BF(Ra) in the attribute

dimension a and sends it to site 2. Second, site 2 sends

tuples of R2 with a match in BF(Ra) to site 1, noted as

R12. Third, site 1 performs a join operation between R1

and R12, and produces the final result. The first

transmission only sends a summarization of a

projection of the tuples, and the second transmission

usually contains a small fraction of the tuples. So this

method is economical in network usage.

DBF is also suitable to perform single attribute

distributed bloom joins between data sets as the number of

tuples increases. Furthermore, MDDBF can be used to

perform multi attribute distributed bloom joins between data

sets as the number of tuples increases. In the following, we

will give an example.

SELECT R.a, R.b, R.c, S.d, S.e FROM R, S

WHERE R.a = S.a and R.b=S.b

First, Site 1 represents data sets R as a BF(Ra,b) in the

attribute dimensions a and b, and sends it to site 2. Second,

site 2 sends tuples of data set S with a match in BF(Ra,b) to

site 1, denoted as Rr,s. Third, at site 1, performs a join

operation between R and Rr,s, and produces the final result.

b. Informed Routing: The searching strategy in

unstructured P2P systems is either blind search or

informed search [14]. In a blind search such as iterative

deepening [15] and random walker [16], no node has

information about the location of the desired data. In

an informed search [17], [18], each node keeps some

information about the data location.

Bloom filters are an alternative method to implement

informed resource routing for distributed applications, and

many literatures have recently presented different

approaches to utilize bloom filters for different scenarios

[19], [20], [21], [22], [23]. The common assumption in those

literatures is to represent local resource using bloom filters

and gossip it to other peers according to different control

mechanisms. Thus, each peer can possess individual bloom

filters coming from related peers, then re-construct them

according to the distance and/or direction between the local

peer and other peers, and obtain a set of union results of

individual bloom filters at each relative distance and/or

relative direction.

A dynamic bloom filter is still suitable to support

informed routing, and has more advantages than the

standard one as the resource at each peer increases.

Furthermore, a dynamic bloom filter is more suitable to

support the necessary union operation than the standard one

according to Theorem 5. As mentioned above, dynamic

bloom filters, standard bloom filters, and their variations just

represent objects and support approximate membership

queries in a single attribute dimension. On the other hand, it

often requires to route multi-attribute queries in reality. Both

MDDBF and MDBF can satisfy this need. The former has

the advantage over the latter as the resource at each peer

increases, and supports the union operation better than the

latter according to Theorem 7. Thus, DBF and its variations

are better alternatives than standard bloom filters to

implement informed routing in some scenarios.

c. Implementation of global index: We will refer to the

globally replicated index as the global index, while the

more detailed index that describes only the resources

hosted locally by a peer will be denoted as the local

index. Global index can be implemented in a number

of ways. We define bloom filters in such a way that

each peer summarizes the set of terms in its local index

M. M. Siva Krishna et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,650-655

© 2010, IJARCS All Rights Reserved 654

as a bloom filter. The cost of replicating the global

index can be reduced by simply decreasing the

gossiping rate; updating the global index with a new

bloom filter requires constant time, regardless of the

number of changes introduced. Furthermore, bloom

filters can be compressed to achieve a single bit per

word average ratio. Memory-constrained peers can

also independently trade accuracy for storage by

combining several filters into one.

When the global index has been established and

propagated to the whole network, each peer uses a copy of

global index hosted at local storage to find the desired peers

and appropriate resources within one hop. In order to

support queries that contain a set of queries based on

different attribute dimensions, we can adopt MDDBF to

summarize local content index and construct global content

index by a periodic gossiping update operation.

VI. CONCLUSIONS

A bloom filter is a simple, space-efficient, randomized

data structure for concisely representing a static data set in

order to support approximate membership queries. As the

actual size of the set increases continuously after

deployment, a bloom filter should scale well in order to

avoid too much deviation between the actual false positive

probability and the predefined threshold. In order to deal

with this problem, we present dynamic bloom filters to

support concise representation and approximate membership

queries of dynamic sets. It has been proved that dynamic

bloom filters not only possess the advantage of standard

bloom filters, but also have better features than standard

bloom filters when dealing with dynamic sets. False positive

probability of dynamic bloom filters can be controlled at a

low level, and space complexity is also acceptable if the

estimation of the threshold of the dynamic set does not

deviate too much. In addition, we present multi-dimension

dynamic bloom filters to support concise representation and

approximate membership queries of dynamic sets from

multiple attribute dimensions.

We have explored three kinds of representative

applications of dynamic bloom filters: bloom joins,

informed search, and implementation of global index. These

applications also illustrate that dynamic bloom filters and

their variations scale well and are practical for representing

dynamic sets. Finally, we have simulated the informed

search protocol based on bloom filters in unstructured P2P

networks. Our simulation shows that informed search based

on bloom filters can obtain high recall and success rate of

query than the blind search protocol.

In future work, we will further enhance dynamic bloom

filters in order to support the removal operation, and

compare the space/time trade-off of both dynamic and

standard bloom filters.

VII. REFERENCES

[1]. M Mitzenmacher. Compressed bloom Filters.

IEEE/ACM Trans. networking, 10(5):604-612, 2002.

[2]. L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary

Cache: A Scalable Wide Area Web Cache Sharing

Protocol,” IEEE/ACM Trans. Networking, vol. 8, no.

3, pp. 281-293, June 2000.

[3]. A. Kirsch and M. Mitzenmacher, “Distance-Sensitive

Bloom Filters,” Proc. Eighth Workshop Algorithm

Eng. and Experiments (ALENEX ’06), Jan. 2006.

[4]. A. Kirsch and M. Mitzenmacher, “Building a Better

Bloom Filter,” Technical Report tr-02-05.pdf, Dept. of

Computer Science, Harvard Univ., Jan. 2006.

[5]. A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li,

“Space-Code Bloom Filter for Efficient Per-Flow

Traffic Measurement,” Proc. 23rd IEEE INFOCOM,

pp. 1762-1773, Mar. 2004.

[6]. S. Cohen and Y. Matias, “Spectral Bloom Filters,”

Proc. 22nd ACM SIGMOD, pp. 241-252, June 2003.

[7]. M. Xiao, Y. Dai, and X. Li. Split bloom filters.

Chinese Journal of Electronic, 32(2):241–245, 2004.

[8]. B. Bloom, “Space/Time Tradeoffs in Hash Coding

with Allowable Errors,” Comm. ACM, vol. 13, no. 7,

pp. 422-426, 1970.

[9]. A. Broder and M. Mitzenmacher, “Network

Applications of Bloom Filters: A Survey,” Internet

Math., vol. 1, no. 4, pp. 485-509, 2005.

[10]. C. Jin, W. Qian, and A. Zhou. Analysis and

management of streaming data: A survey. Journal of

Software, 15(8):1172–1181, 2004.

[11]. C. D. Peter and M. Panagiotis. Bloom filters in

probabilistic verification. In Proc. the 5th International

Conference on Formal Methods in Computer-Aided

Design, pages 367–381, Austin, Texas, USA,

November 2004.

[12]. L. F. Mackert and G. M. Lohman. R* optimizer

validation and performance evaluation for distributed

queries. In Proc. the 12th International Conference on

Very Large Data Bases (VLDB), pages 149-159,

Kyoto, Jpn, August 1986.

[13]. Z. Li and K. A. Ross. Perf join: An alternative to two-

way semi join and bloom join. In Proc. International

Conference on Information and Knowledge

Management, pages 137–144, Baltimore, MD, USA,

November 1995.

[14]. X. Li and J. Wu. Searching techniques in peer-to-peer

networks. In J. Wu, editor, Handbook of Theoretical

and Algorithmic Aspects of Ad Hoc, Sensor, and Peer-

to-Peer Networks. Auerbach, New York,USA, 2006.

[15]. B. Yang and H. Garcia-Molina. Improving search in

peer-to-peer networks. In Proc. the 22th IEEE

International Conference on Distributed Computing,

pages 5–14, Vienna, Austria, July 2002.

[16]. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search

and replication in unstructured peer-to-peer networks.

In Proc. the 16th ACM International Conference on

Supercomputing, pages 84–95, Marina Del Rey, CA,

United States, June 2002.

[17]. A. Crespo and H. Garcia-Molina. Routing indices for

peer-to-peer systems. In Proc. the 22th International

Conference on Distributed Computing, pages 23–32,

Vienna, Austria, July 2002.

[18]. D. Tsoumakos and N. Roussopoulos. Adaptive

probabilistic search in peer-to-peer networks. In Proc.

M. M. Siva Krishna et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,650-655

© 2010, IJARCS All Rights Reserved 655

the 3th International Conference on Peer-to-Peer

Computing, pages 102–109, Sweden, September 2003.

[19]. S. C. Rhea and J. Kubiatowicz. Probabilistic location

and routing. In Proc. IEEE INFOCOM, pages 1248–

1257, New York, NY, United States, June 2004.

[20]. T. D. Hodes, S. E. Czerwinski, and B. Y. Zhao. An

architecture for secure wide-area service discovery.

Wireless Networks, 8(2-3):213–230, 2002.

[21]. P. Reynolds and A. Vahdat. Efficient peer-to-peer

keyword searching. In Proc. ACM International

Middleware Conference, pages 21–40, Rio de Janeiro,

Brazil, June 2003.

[22]. D. Bauer, P. Hurley, R. Pletka, and M. Waldvogel.

Bringing efficient advanced queries to distributed hash

tables. In Proc. IEEE Conference on Local Computer

Networks, pages 6–14, Tampa, FL, United States,

November 2004.

[23]. K. Shanmugasundaram, H. Bronnimann, and N.

Memon. Payload attribution via hierarchical bloom

filters. In Proc. the 11th ACM Conference on

Computer and Communications Security, pages 31–41,

Washington, DC, United States, October 2004

