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Abstract: Data mining employs a variety of traditional statistical methods such as cluster analysis, discriminate analysis, logistic regression, and 

time series forecasting. Due to the mega high dimensionality nature of datasets, data dimension reduction has drawn special attention for such 

type of data analysis. Feature extraction can be viewed as preprocessing step which removes distracting variance from the datasets so that 

clustering, classifiers can estimators perform better. In this paper principal component analysis, a linear transformation is used for dimensionality 

reduction and clustering with K-Means algorithm is applied and shows the results. 
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I. INTRODUCTION 

Data Mining refers to the mining or discovery of new 

information in terms of patterns or rules from vast amounts 

of data. Data mining is a process that takes data as input 

and outputs knowledge. One of the earliest and most cited 

definitions of the data mining process, which highlights 

some of its distinctive characteristics, is provided by 

Fayyad, Piatetsky-Shapiro and Smyth (1996), who define it 

as “the nontrivial process of identifying valid, novel, 

potentially useful, and ultimately understandable patterns in 

data.”Some popular and widely used data mining clustering 

techniques such as hierarchical and k-means clustering 

techniques are statistical techniques and can be applied on 

high dimensional datasets [2]. A good survey on clustering 

methods is found in Xu et al. (2005). 

High dimensional data are often transformed into lower 

dimensional data via the principal component analysis 

(PCA) (Jolliffe, 2002) (or singular value decomposition) 

where coherent patterns can be detected more clearly [4]. 

Such unsupervised dimension reduction is used in very 

broad areas such as meteorology, image processing, 

genomic analysis, and information retrieval [3]. It is also 

common that PCA is used to project data to a lower 

dimensional subspace and K-means is then applied in the 

subspace (Zha et al., 2002)[15]. In other cases, data are 

embedded in a low-dimensional space such as the 

eigenspace of the graph Laplacian, and K-means is then 

applied (Ng et al., 2001)[13].The main basis of PCA-based 

dimension reduction is that PCA picks up the dimensions 

with the largest variances. Mathematically, this is 

equivalent to finding the best low rank approximation (in 

L2 norm) of the data via the singular value decomposition 

(SVD) (Eckart & Young, 1936). However, this noise 

reduction property alone is inadequate to explain the 

effectiveness of PCA [7] 

Dimension reduction is the process of reducing the number 

of random variables under consideration, and can be 

divided into feature selection and feature extraction [1]. As  

 

dimensionality increases, query performance in the index 

structures degrades. Dimensionality reduction algorithms 

are the only known solution that supports scalable object 

retrieval and satisfies precision of query results [14]. 

Feature transforms the data in the high-dimensional space 

to a space of fewer dimensions [3].The data transformation 

may be linear, as in principal component analysis (PCA), 

but any nonlinear dimensionality reduction techniques also 

exist [9]. In general, handling high dimensional data using 

clustering techniques obviously a difficult task in terms of 

higher number of variables involved. In order to improve 

the efficiency the noisy and outlier data may be removed 

and minimize the execution time, we have to reduce the no. 

of variables in the original data set. To do so, we can 

choose dimensionality reduction methods such as principal 

component analysis (PCA), Singular value decomposition 

(SVD), and factor analysis (FA). Among this, PCA is 

preferred to our analysis and the results of PCA are applied 

to a popular model based clustering technique [6]. 

Principal component analysis (PCA) is a widely used 

statistical technique for unsupervised dimension reduction. 

K-means clustering is a commonly used data clustering for 

unsupervised learning tasks. Here we prove that principal 

components are the continuous solutions to the discrete 

cluster membership indicators for K-means clustering 

[7].The main linear technique for dimensionality reduction, 

principal component analysis, performs a linear mapping of 

the data to a lower dimensional space in such a way, that 

the variance of the data in the low-dimensional 

representation is maximized. In practice, the correlation 

matrix of the data is constructed and the eigenvectors on 

this matrix are computed. The eigenvectors that correspond 

to the largest eigenvalues (the principal components) can 

now be used to reconstruct a large fraction of the variance 

of the original data. Moreover, the first few eigenvectors 

can often be interpreted in terms of the large-scale physical 

behavior of the system. The original space (with dimension 

of the number of points) has been reduced (with data loss, 
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but hopefully retaining the most important variance) to the 

space spanned by a few eigenvectors. 

Many applications need to use unsupervised techniques 

where there is no previous knowledge about patterns inside 

samples and its grouping, so clustering can be useful. 

Clustering is grouping samples base on their similarity as 

samples in different groups should be dissimilar. Both 

similarity and dissimilarity need to be elucidated in clear 

way. High dimensionality is one of the major causes in data 

complexity. Technology makes it possible to automatically 

obtain a huge amount of measurements. However, they 

often do not precisely identify the relevance of the 

measured features to the specific phenomena of interest. 

Data observations with thousands of features or more are 

now common, such as profiles clustering in recommender 

systems, personality similarity, genomic data, financial 

data, web document data and sensor data. However, high-

dimensional data poses different challenges for clustering 

algorithms that require specialized solutions. Recently, 

some researchers have given solutions on high-dimensional 

problem. Our main objective is proposing a framework to 

combine relational definition of clustering with dimension 

reduction method to overcome aforesaid difficulties and 

improving efficiency and accuracy in K-Means algorithm to 

apply in high dimensional datasets. K-means clustering 

algorithm is applied to reduced datasets which is done by 

principal component analysis dimension reduction method. 

II. METHODOLOGIES 

A. Clustering: 

Cluster analysis is one of the major data analysis 

methods widely used for many practical applications in 

emerging areas[17].Clustering is the process of finding 

groups of objects such that the objects in a group will be 

similar (or related) to one another and different from (or 

unrelated to) the objects in other groups. A good clustering 

method will produce high quality clusters with high intra-

cluster similarity and low inter-cluster similarity [8]. The 

quality of a clustering result depends on both the similarity 

measure used by the method and its implementation and 

also by its ability to discover some or all of the hidden 

patterns [16]. 

B. K-Means Clustering Algorithm: 

K-means is a commonly used partitioning based 

clustering technique that tries to find a user specified 

number of clusters (k), which are represented by their 

centroids, by minimizing the square error function [5]. 

Although K-means is simple and can be used for a wide 

variety of data types. The K-means algorithm is one of the 

partitioning based, nonhierarchical clustering methods. 

Given a set of numeric objects X and an integer number k, 

the K-means algorithm searches for a partition of X into k 

clusters that minimizes the within groups sum of squared 

errors. The K-means algorithm starts by initializing the k 

cluster centers[12]. The input data points are then allocated 

to one of the existing clusters according to the square of the 

Euclidean distance from the clusters, choosing the closest.  

The mean (centroid) of each cluster is then computed so 

as to update the cluster center [11]. This update occurs as a 

result of the change in the membership of each cluster. The 

processes of re-assigning the input vectors and the update 

of the cluster centers is repeated until no more change in the 

value of any of the cluster centers. 

The steps of the K-means algorithm are written below: 

a. Initialization: choose randomly K input vectors 

(data points) to initialize the clusters. 

b. Nearest-neighbor search: for each input vector, 

find the cluster center that is closest, and assign 

that input vector to the corresponding cluster. 

c. Mean update: update the cluster centers in each 

cluster using the mean (centroid) of the input 

vectors assigned to that cluster 

d. Stopping rule: repeat steps 2 and 3 until no more 

change in the value of the means. 

C. Principal Component Analysis: 

Principal component analysis (PCA) involves a 

mathematical procedure that transforms a number of 

possibly correlated variables into a smaller number of 

uncorrelated variables called principal components. The 

first principal component accounts for as much of the 

variability in the data as possible, and each succeeding 

component accounts for as much of the remaining 

variability as possible. Depending on the field of 

application, it is also named the discrete KarhunenLoève 

transform (KLT), the Hostelling transform or proper 

orthogonal decomposition (POD).PCA was invented in 

1901 by Karl Pearson.[1] Now it is mostly used as a tool in 

exploratory data analysis and for making predictive models. 

PCA involves the calculation of the eigenvalue 

decomposition of a data covariance matrix or singular value 

decomposition of a data matrix, usually after mean 

centering the data for each attribute. The results of a PCA 

are usually discussed in terms of component scores and 

loadings (Shaw, 2003). 

PCA is the simplest of the true eigenvector-based 

multivariate analyses. Often, its operation can be thought of 

as revealing the internal structure of the data in a way 

which best explains the variance in the data. If a 

multivariate dataset is visualized as a set of coordinates in a 

high-dimensional data space (1 axis per variable), PCA 

supplies the user with a lower-dimensional picture, a 

"shadow" of this object when viewed from its (in some 

sense) most informative viewpoint.PCA is closely related 

to factor analysis; indeed, some statistical packages 

deliberately conflate the two techniques. True factor 

analysis makes different assumptions about the underlying 

structure and solves eigenvectors of a slightly different 

matrix. 

D. Principal Components (Pc): 

Technically, a principal component can be defined as a 

linear combination of optimally weighted observed 

variables which maximize the variance of the linear 

combination and which have zero covariance with the 

previous PCs. The first component extracted in a principal 

component analysis accounts for a maximal amount of total 

variance in the observed variables. The second component 

extracted will account for a maximal amount of variance in 

the data set that was not accounted for by the first 

component and it will be uncorrelated with the first 

component. The remaining components that are extracted in 

the analysis display the same two characteristics: each 

component accounts for a maximal amount of variance in 

the observed variables that was not accounted for by the 
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preceding components, and is uncorrelated with all of the 

preceding components. When the principal component 

analysis will complete, the resulting components will 

display varying degrees of correlation with the observed 

variables, but are completely uncorrelated with one another. 

PCs are calculated using the Eigen value decomposition of 

a data covariance matrix/ correlation matrix or singular 

value decomposition of a data matrix, usually after mean 

centering the data for each attribute. Covariance matrix is 

preferred when the variances of variables are very high 

compared to correlation. It would be better to choose the 

type of correlation when the variables are of different types. 

Similarly the SVD method is used for numerical accuracy 

[10].After finding principal components reduced dataset is 

applied to kmeans clustering. 

E. Data Set Description: 

We conduct our experiments on a breast cancer data set 

which data is gathered from uci web site. This web site is 

for finding suitable partners who are very similar from 

point of personality’s view for a person. Based on 8 pages 

of psychiatric questions personality of people for different 

aspects is extracted. Each group of questions is related to 

one dimension of personality. To trust of user some 

questions is considered and caused reliability of answers 

are increased. Data are organized in a table with 90 

columns for attributes of people and 704 rows which are for 

samples. There are missing values in this table because 

some questions have not been answered, so we replaced 

them with 0. On the other hand we need to calculate length 

of each vector base on its dimensions for further process.  

All attributes value in this table is ordinal and we 

arranged them with value from 1 to 5, therefore 

normalizing has not been done. There is not any correlation 

among attributes and it concretes an orthogonal space for 

using Euclidean distance. All samples are included same 

number of attributes. 

III. RESULTS 

A. Experimental Setup: 

In all experiments we use MATLAB software as a 

powerful tool to compute clusters and windows XP with 

Pentium 2.1 GHZ. Reduced datasets done by principal 

component analysis reduction method is applied to kmeans 

clustering. As a similarity metric, Euclidean distance has 

been used in k-means algorithm. 

The steps of the Feature Reduction k-means clustering 

algorithm are as follows. 
 

Algorithm: K-Means clustering algorithm 

 

Input: X = {d1, d2… dn} // set of n data items. 

 

Output: A set of k clusters 

 

Phase-1: Apply PCA to reduce the dimension of the breast 

cancer data set 

a. Organize the dataset in a matrix X. 

b. Normalize the data set using Z-score. 

c. Calculate the singular value decomposition of the 

data matrix. X =UDV T 

d. Calculate the variance using the diagonal elements 

of D. 

e. Sort variances in decreasing order. 

f. Choose the p principal components from V with 

largest variances. 

g. Form the transformation matrix W consisting of 

those p PCs. 

h. Find the reduced projected dataset Y in a new 

coordinate axis by applying W to X. 

Phase-2: Apply the K-means clustering with Reduced   

Datasets. 

a. Initialization: choose randomly K input vectors (data 

points) to initialize the clusters. 

b. Nearest-neighbor search: for each input vector, find 

the cluster center that is closest, and assign that input 

vector to the corresponding cluster. 

c. Mean update: update the cluster centers in each 

cluster using the mean (centroid) of the input vectors 

assigned to that cluster. 

d. Stopping rule: repeat steps 2 and 3 until no more 

change in the value of the means. 

B. Experimental Results: 

Breast cancer original dataset is reduced using principal 

component analysis reduction method. Dataset consists of 

569 instances and 30 attributes. Here the Sum of Squared 

Error (SSE), representing distances between data points and 

their cluster centers have used to measure the clustering 

quality 

Step 1: Normalizing the original data set 

Using the Normalization process, the initial data values 

are scaled so as to fall within a small-specified range. An 

attribute value V of an attribute A is normalized to V’ using 

Z-Score as follows: 

                      V’=(V-mean(A))/std(A) 

It performs two things i.e. data centering, which reduces 

the square mean error of approximating the input data and 

data scaling, which standardizes the variables to have unit 

variance before the analysis takes place. This normalization 

prevents certain features to dominate the analysis because 

of their large numerical values. 

Step 2: Calculating the PCs using Singular Value 

Decomposition of the normalized data matrix 

The number of PCs obtained is same with the number of 

original variables. To eliminate the weaker components 

from this PC set we have calculated the corresponding 

variance, percentage of variance and cumulative variances 

in percentage, which is shown in Table I. Then we have 

considered the PCs having variances less than the mean 

variance, ignoring the others. The reduced PCs are shown 

in Table II. Only Sample 20 instances of 529 observations 

is shown in table2.The variance in percentage is evaluated 

using formula 

                                 Var of Pcs 

    Var in per   =                                 ×   100 

                                  Total Var 

The cumulative variance in percentage first value is 

same as percentage in variance, second value is summation 

of cumulative variance in percentage and variance in 

percentage. Similarly other values of cumulative variance 

are calculated. 

Step 3: Finding the reduced data set using the reduced 

PCs 

The transformation matrix with reduced PCs is formed 

and this transformation matrix is applied to the normalized 

data set to produce the new reduced projected dataset, 
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which can be used for further data analysis. We have also 

applied the PCA on three biological dataset and the reduced 

no. of attributes obtained for each dataset is shown in Table 

II. 

Step 4: Reduced datasets are applied to k-means 

algorithm 

The clustering results shown in Figure I by applying the 

standard k-means clustering [17] to the reduced breast 

cancer dataset. The SSE value obtained and the time taken 

in ms for reduced breast cancer datasets with original k-

means is given in Table III. 

Table I.  The Variances, Variances in Percentages, and Cumulative 

Variances in Percentages Corresponding To Pcs 

 

Table II.  The Reduced Datasets Containing 6 Attributes With 20 Instances 

 

Table III.  Shows Results of K-means With Number of Clusters, Sse and 

Execution Time 

                       K – Means 

  Dataset No of Clusters SSE Execution 

Time(in ms) 

 

 

Breast 

Cancer  

Reduced 

Dataset 

1 12604 0.513 

2 9513 0.631 

3 8075 0.689 

4 7641 0.777 

5 1959 0.862 

The above results show that the k-means algorithm 

provides sum of squared error distance and Execution time 

of corresponding clusters. Figure 1 shows graph of SSE and 

Number of clusters. In this figure, when number of clusters 

increases, sum of squared error distance values decreases. 

Figure 2 shows number of clusters increases, Execution 

time increases. 

 

Figure 1. Shows SSE and Number of Clusters 

 

Figure 2. Shows Execution Time and Number Of Clusters 

IV. CONCLUSION 

In this paper a dimensionality reduction through 

Principle Component Analysis is applied to k-Means 
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algorithm. Using Dimension reduction of principal 

component analysis, original breast cancer dataset  is 

compact  to reduced data set  which was partitioned in to k 

clusters in such a way that the sum of the total clustering 

errors for all clusters was reduced as much as possible 

while inter distances between clusters are maintained to be 

as large as possible. The experimental results show that 

principal component analysis is used to reduce attributes 

and reduced dataset is applied to k-means clustering. 

Evolving some dimensional reduction methods like 

canonopies can be used for high dimensional datasets is 

suggested as future work. 
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