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Abstract: In this paper we proposed to improve channels transmission rate but different time-invariant error rates. By assuming the Gilbert–

Elliott model (GEM)for each channel and TCP for high speed the additive increase multiplicative decrease algorithm used in the standard TCP, 

Scalable TCP uses a multiplicative increase, multiplicative decrease (MIMD) algorithm for the window size evolution , we extend our analysis 

to time-varying channels. We compute the probability mass functions of the sequencing buffer occupancy and the sequencing delay for time-

invariant channels. Our approach is based on the logarithm of the window size evolution has the same behavior as the workload process in a 

standard G/G/1 queue. The Laplace-Stieltjes transform of the equivalent queue is then shown to directly provide the throughput of the 

congestion control algorithm (CCA) and the higher moments of the window size.  
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I. INTRODUCTION 

The main performance characteristics of a data 

transmission system with ARQ error control, delay, queue 

length. Various protocols which have been proposed use, as 

a part or as a whole, the basic selective-repeat ARQ 

protocol. Their performance analysis has, been restricted to 

throughput characteristics.Two different methods for the 

queue length and delay analyses are presented. The system 

is modeled as a discrete time queue with infinite buffer 

storage. Transmission errors are considered to independent, 

and block arrivals may follow an arbitrary inter arrival 

distribution. The first method uses an exact Markov state 

model, which the theory of absorbing and Markov chains is 

applied, leads to a computational algorithm. The second 

method, which is based on a specific assumption, uses a 

substantially simpler stochastic model and results in 

equations which are easily solved by means of iterative 

computation. In the case of geometrically distributed inter 

arrival times, simple analytical formulas are extracted [1].  

A communication network that regulates retransmissions 

of erroneous packets by a selective-repeat (SR) automatic 

repeat Request (ARQ) protocol. Packets are assigned 

consecutive integers, and the transmitter continuously 

transmits them in order until a negative acknowledgment or 

a time-out is observed. The receiver, upon receipt of a 

packet, checks for errors and returns positive/negative 

acknowledgment (ACK/NACK) accordingly. Only packets 

for which either NACK or time-out have been observed are 

retransmitted. Under SR ARQ, the receiver accepts packets 

that are out of order and must store them temporarily if it 

has to deliver them in sequence. 

Tx and Rx are transmitter and receiver, respectively. The 

re-sequencing buffer requirements and the resulting packet 

delay constitute major factors in overall system 

considerations. The distributions of the buffer occupancy 

and the re-sequencing delay at the receiver under a heavy 

traffic situation. This enables the network designer to 

determine how much buffer capacity at the receiver will 

guarantee certain specified performance measures. The 

retransmission of erroneous packets depends on the 

particular ARQ protocol used. There are three basic ARQ 

schemes: stop-and-wait, go-back-N, and selective-repeat 

(SR).  

 
Figure 1: Basic Structure 

 

In stop-and-wait, the transmitter remains idle after a 

packet’s transmission until ACK, NACK, or a time-out is 

observed. In go-back-N protocol, packets that arrive out of 

order are ignored by the receiver which does not have to 

allocate any buffers to them. Under the selective-repeat 

ARQ packets must be stored in the receiver’s buffers until 

they can be sent out in the original order.  

The buffer needed for this purpose is referred to as a re-

sequencing buffer, and the time that packets spend there as 

re-sequencing delay. Two types of physical systems 

protocols are: 1. A Slotted Time Channel, Constant Packet 

Length, and Heavy Traffic. 2. An Arbitrary Arrival Process 

and Variable Packet Length. Three types of methods are 

used they are: The Probability-Generating Function, The 

First Two Moments - Recursive Formulas, The PGF and the 

First Moment, The Packet re-sequencing Delay [2].  

A generalized stop-and-wait ARQ scheme, data blocks 

are sent to the receiver in sets containing an arbitrary 

number of identical copies. The main idea behind this 

scheme is a reduction of the idle time of the transmitter. For 
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small values it can be verified that the performances of the 

three schemes. For moderate large values, on the contrary 

both the conventional optimized scheme is outperformed by 

the optimum generalized scheme, whose throughput appears 

to be quite insensitive to the error prone [3]. 

Analyze the mean delay experienced a Markovian source 

over a wireless channel with time-varying error 

characteristics. The wireless link implements the selective-

repeat automatic repeat request (ARQ) scheme for 

retransmission erroneous packets. We obtain good 

approximations of the total delay, which consists of 

transport and re-sequencing delays. The transport delay, in 

turn, consists of queuing and transmission delays. Our 

analysis accommodates both the inherent correlations 

between packet inter- arrival times. Traffic burstiness) and 

the time-varying nature of the channel error rate. The 

probability generating function (PGF) of the queue length 

under the “ideal” SR ARQ scheme is obtained and 

combined with the retransmission delay to obtain the mean 

transport delay. For the re-sequencing delay, the analysis is 

performed under the assumptions of heavy traffic and small 

window sizes (relative the channel sojourn times).The 

inaccuracy due to these assumptions is observed to be 

negligible. The autocorrelations in the arrival process or the 

time-varying nature of the channel state can lead to 

significant underestimation of the delay performance, 

particularly at high channel error rates [4]. 

An analytical framework for radio link level 

performance evaluation under scheduling and automatic 

repeat request (ARQ)-based error control in a multi-rate 

wireless network. The multi-rate transmission is assumed to 

be achieved through adaptive modulation and coding 

(AMC) in a correlated fading channel. The analytical 

framework, which is developed based on a vacation queuing 

model, can be applied to any scheduling scheme as long as 

the evolution of the joint service/vacation and channel 

processes can be determined. The exact statistics of queue 

length and delay are obtained and the radio link level 

throughput is calculated under both saturated and non-

saturated buffer scenarios. The performance of max-rate 

(MR) scheduling scheme which exploits multiuser diversity 

and compare its performance with the round-robin (RR) 

scheduling scheme. The MR scheduling always results in 

higher throughput than the RR counterpart, RR scheduling 

offers better delay performance, MR scheme under light 

traffic load conditions. Applications for cross-layer design 

and packet-level admission control under delay constraints. 

This analytical framework would establish the base for fair 

comparison among different scheduling schemes and 

facilitate performance prediction at the higher layers in the 

protocol stack [5].  

The packet delay statistics of a fully reliable Selective 

Repeat ARQ (SR ARQ) scheme is investigated. An N-State 

Discrete Time Markov Channel model is used to describe 

the packet error process and the channel round trip delay is 

considered to be non zero, i.e., ACK/NACK messages are 

received at the transmitter m channel slots after the packet 

transmission started. The ARQ packet delay statistics is 

evaluated by means of an exact analysis by jointly tracking 

packet errors and channel state evolution. To derive a 

Markov Channel description of a Rayleigh fading process 

are discussed and the delay statistics obtained from the 

Markov analysis is compared with that estimated by 

simulation of the SR ARQ protocol over the actual fading 

process. The accuracy of the delay statistics obtained from 

the Markov Channel representation of the actual fading 

process is investigated by explicitly addressing the effect of 

the number of states considered in the Markov channel 

model and the impact of the Doppler frequency. Finally, 

new analysis to obtain link layer statistics over N-State 

Markov channels on the adequacy of the widely used 

Markov modeling approach for the characterization of 

higher layer performance. But result of the delay analysis 

has been extended to the unreliable feedback case insights 

on the impact of ACK/NACK errors [6]. 

The behavior of the Stop and Wait and Go Back-N error 

detection and retransmission (ARQ) protocols in an 

environment characterized by non random errors, Analytic 

models are developed for the case that the error process is 

modeled as a Markovian process. These models may be 

used to predict performance measures such as expected 

queue length and expected delay for the case of the Stop and 

Wait protocol and the Go Back-N protocol when N is very 

large. The models can also be used to determine maximum 

throughputs for both protocols. The results of these models 

are compared with simulation results for the Selective 

Repeat ARQ protocol [7]. 

The SW and GBN retransmission protocols must be 

generalized when used in a multichannel communications 

system. The generalization takes the form of packet-to-

channel assignment rules. The packet-to-channel assignment 

rule is derived and important special cases are identified. 

Simulation results were used to packet-to-channel 

assignment impacts channel utilization when the channels 

are different. The optimal assignment rule produces a 

channel utilization that is better than the channel utilization 

[8]. 

A communications system in  multiple parallel channels 

are available to carry traffic from a transmitter to a receiver, 

and an extension of the selective-repeat automatic repeat 

request (SR-ARQ) protocol that dynamically assigns 

packets to channels for each (re)transmission is presented. 

Because of selective retransmission, packets arrive at the 

receiver out of order and must be stored in a re-sequencing 

buffer. A queuing model for the re-sequencing buffer is 

constructed. The generating function of the buffer 

occupancy and the packet delay distribution are derived [9]. 

II. THE MODEL 

Consider the class of Multiplicative Increase and Multip 

licative Decrease (MIMD) congestion control algorithm 

where each ACK results in a window increment of α − 1 > 

0 and a loss event is responded with a reduction of window 

size by a fraction 1 −β < 1. Scalable TCP can then be 

viewed as an instance from this class with α = 1.01 and β= 

0.875. This motivates us to study the window behavior of 

MIMD congestion control algorithms for the purpose of 

studying Scalable TCP. We focus on the analytical 

performance study of these algorithms, and, hence, of 

Scalable TCP, in the presence of random as well as 

congestion losses. we present three models based on 

different assumptions on the window size. Then we present 

a general analysis of these models. Our approach is based on 

showing that an invertible transformation applied to the 

window size process results in a process that has the same 
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evolution as the total workload process in a standard G/G/1 

queue. The Laplace-Stieltjes transform of the equivalent 

queuing process thus obtained provides the throughput of 

the connection as well as the higher moments of the window 

size of the given MIMD algorithm. 

III. ANALYSIS 

Consider the following discrete time stochastic recursive 

equation Wn+1 = max (AnWn,1)…. (1) The process, {Wn}, 

can be viewed as a sequence of observations of a continuous 

time process sampled at certain, not necessarily equal, time 

intervals. The sequence An 2 (0, 1) is assumed to be 

stationary and ergodic. Taking the logarithm of equation (3), 

we obtain  

log[Wn+1] = max(log[An] + log[Wn], 0).  

Using the substitutions Yn = log[Wn], and Un = log[An] in 

the above equation, we obtain  

Yn+1 = max (Yn + Un , 0)…. (2)  

We now make the following observation: The recursive 

equation (4) has the same form as the equation describing 

the workload process in a G/G/1 queue observed at, say, just 

after an arrival Un denotes the 5 difference between the 

service time of the nth customer and the inter arrival time 

between the nth and the (n + 1) th customer. Since the 

introduced transformation, log(·), is invertible, there is a one 

to one correspondence between the processes {Yn, n ¸ 0} 

and {Wn, n ¸ 0}. This observation allows us to study the 

stability of the window process {Wn, n ¸ 0} via that of {Yn, 

n ¸ 0}. Furthermore, the analogy with queuing theory of the 

process {Yn, n ¸ 0} allows us to obtain the steady state 

moments of Wn. Theorem 3.1 Assume that E [logA0] < 0. 

Then there exists a unique stationary ergodic process. 

{W * n}, defined on the same probability space as 

{Wn}, that satisfies the recursion (1).Moreover, for any 

initial value W0 = w, there is a random time Tw, which is 

finite with probability 1, such that Wn = W * n for all n >= 

Tw. If E [logA0] > 0 then Wn tends to infinity w.p.1 for any 

initial value W0 = w. The log transformation allows us to 

obtain the moments of Wn in the stationary regime (i.e., 

moments of W*n) from the Laplace-Steiltjes Transform 

(LST) of Y*n in the stationary regime (i.e., LST of Y * n ). 

The LST of Y * n is given by   G(s) = E [e - sY *n ]…(4) 

which is defined for s 2 S, where S is the region of 

convergence of G(s). For a given integer k ¸ 0, the kth 

moment of W* n is obtained as follows  

E[(W*n)k] = E[exp(kY *n )] = G(−k)….(5) where −k is 

assumed to belong to S. If −k 62 S then the corresponding 

moment is 1. Thus, all finite moments of W* n can be 

obtained from the LST of Y * n . A similar analysis can be 

done for the stochastic recursive equation  

Wn+1 = min(AnWn,B)….(6) by making the 

transformation Yn = log[B]−log[Wn]. The moments of W*n 

can then be obtained from the LST of Y * n using the 

relation E[(W*n)k] = E[Bk exp(−kY *n )] = 

BkG(k)…..(7)All the moments of W*n are finite since G(s) 

is finite for s ¸ 0.The recursive equation for model (i), as 

given by (1), is similar to equation(3). Therefore, the 

analysis of this model can be done along the lines of the 

analysis of (3). Similarly, the analysis of models (ii) and (iii) 

can be done along the lines of the analysis of (6). We note 

that the analysis of model (iii) is similar to that of model (ii).  

The equivalent queuing system of model (iii) can be 

obtained by deleting the idle periods of the equivalent 

queuing system of model (ii). The throughput of the MIMD 

algorithm, or the first moment of the window size, under 

different models, can be obtained from equation (5) and (7). 

These two assumptions allow us to use a discrete state 

space, S = {0, 1, 2, ...} for Yn. Thus, Yn can be modeled as 

a discrete state space Markov chain. The state Yn = i 

corresponds to Wn = Bl®i. The transition probabilities for 

this model are shown in Figure 2. Let Pn(j), j 2 S, be the 

probability of Yn being in state j at the end of the nth RTT. 

The probability of being in state j at the end of the (n + 

1)th RTT is given by  

Pn+1(j) = (1 − p)Pn(j − 1) + pPn(j + k), j >=1 ,p Pk i=0 

Pn(i), j = 0…..(8)   

 
Figure 2: Transition probability of Yn 

 

Denote the z-transform of Yn by Yn(z). Yn(z) is defined 

as Yn(z) = ∑ Pn(j)zj.(9)  

       j=0 

Upper Bound on Window Size and Window Dependent 

Random Losses: The probability of a loss in an RTT was  

IV. EXPERIMENTAL EVALUATION 

Upper Bound on Window Size and Window Dependent 

Random Losses: The probability of a loss in an RTT was 

independent of the window size in that RTT. In this section, 

we consider a model in which the losses in an RTT depend 

on the window size in that RTT. Specifically, we assume 

that each packet is dropped (or, equivalently, is in error) 

with a constant probability q. As a consequence of this 

assumption, the probability of packet drops in an RTT is no 

longer independent of the window size in that RTT. First, 

we present the model with window dependent losses. Then 

we propose an approximation to this model which will 

enable us to compute the throughput in the window 

dependent model using the expression for throughput in the 

window independent model (model (ii)).  In each RTT, the 

window is reduced only once even in the presence of 

multiple packet drops. Loss recovery mechanisms of the 

recent TCP flavours such as New Reno and SACK. let Wn 

be the window size in the nth RTT. Let pn be the probability 

that the window is reduced in the nth RTT. Then, pn is 

given by pn = 1 − (1 − q)Wn…..(9) The window size 

evolution for this model can be written as Wn+1 = 

min(AnWn,Bu), where Bu is the upper bound on the 

window size, and An is now given by  

An =α w.p. 1 − pn,¯β w.p. pn..…(10) 

V. SIMULATION RESULT 

Scalable TCP was proposed as a modification to the 

existing standard TCP for high speed networks. In the 

congestion avoidance phase, Scalable TCP uses the 

following algorithm to update the sender’s window at the 
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end of every RTT: Wn+1 = 1.01 ×Wn if no losses are 

detected during the nth RTT,Wn+1= 0.875 ×Wn if one or 

more losses are detected during the nth RTT. As mentioned 

in the Introduction, Scalable TCP is an instance of MIMD 

protocols, and therefore, we validate our models by 

performing simulations with Scalable TCP. The simulation 

are performed using Ns-2.The simulation setup has a source 

and a destination node.  

The source node has infinite amount of data to send and 

uses Scalable TCP with New Reno flavor. The link 

bandwidth is 150 Mbps and the two way propagation delay 

is 120 ms. The window at the source is limited to 500 

packets to emulate the receiver advertised window. The 

BDP for this system is approximately 2250 packets (packet 

size is 1040 bytes). In the Scalable TCP we have 

implemented in ns-2, the following assumptions are made: • 

the minimum window size, Bl, is 8. The growth rate of 

Scalable TCP is very small for small window sizes. It has 

been use the Scalable algorithm after a certain threshold. • 

There is no separate slow start phase since slow start can be 

viewed as a multiplicative increase algorithm with α = 2. • 

For each positive ACK received, the window is increased by 

α − 1 packets. When a loss is detected, the window is 

reduced by a factor of β. α is taken as 1.01 and β is taken as 

0.86. This value of β gives k = −log[β]/ log[α] =15. We set α 

and β in this way so as to be close to the values 

recommended in (α = 1.01, β = 0.875). 

 

Figure: 3 

E [Wn] = 8n a/ a − n, respectively. In the simulations, 

the density function of W is obtained by sampling the 

window at an interval of RTT = 0.12s. We would like to 

note that the RTT is very close to the propagation delay in 

the present setting, and does not vary much. This results in a 

small discrepancy between the simulations and the 

theoretical function. The throughput in (TCP packets)/RTT 

as a function of the loss rate, p. The error bars are the 99% 

confidence intervals. Figure 8 shows the throughput in (TCP 

packets)/RTT as a function of the loss rate, p, for the model 

in which the maximum window at the sender is limited by 

the receiver’s advertised window. The receiver buffer is 

assumed to be limited to 500 packets. The error bars are the 

99% confidence intervals. A good match is observed 

between the simulations and the analysis two regions where 

model (i) and model (ii) are valid, respectively. As per 

approaches 1/(k + 1) from either direction, the approximate 

models (i) and (ii) diverge from the simulation results. 

However, model (i) gives a good estimate when (k + 1) p >> 

1, i.e., p >> 0.625 (k = 15 in the simulations). Similarly, 

model (ii) gives a good approximation of the system when p 

<< 0.625. The exact model fits well throughout the range of 

p. The throughput for model (i) is plotted for p ¸ 0.068 

because a (in equation (18)) is > 1 for p>=0.0673. 

 

 
Figure 4: Throughput for maximum evaluation 

VI. CONCLUSION 

On ARQ protocol logarithm of the window size process 

of a connection using the MIMD congestion control 

algorithm is equivalent to the workload process in a 

G/G/1queue. The throughput of the connection and the 

higher moments of the window size process can be 

computed using the Laplace-Stieltjes transform of the 

equivalent workload process. For window independent 

losses, an exact expression can be obtained for the steady 

state probability distribution of the window size, and the 

throughput of the connection. In Future For window 

dependent losses an approximate expression, analogues to 

the square root formula for standard TCP, can be used to 

compute the throughput as well as SISD or MISD can be 

applied for calculating error rate for single and 

multiplicative channels when selective sequential queues are 

approached. 
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